{"cells": [{"cell_type": "markdown", "id": "a2cbed93", "metadata": {"papermill": {"duration": 0.022351, "end_time": "2025-04-08T10:48:17.748222", "exception": false, "start_time": "2025-04-08T10:48:17.725871", "status": "completed"}, "tags": []}, "source": ["\n", "# Tutorial 3: Initialization and Optimization\n", "\n", "* **Author:** Phillip Lippe\n", "* **License:** CC BY-SA\n", "* **Generated:** 2025-04-08T10:48:10.181245\n", "\n", "In this tutorial, we will review techniques for optimization and initialization of neural networks.\n", "When increasing the depth of neural networks, there are various challenges we face.\n", "Most importantly, we need to have a stable gradient flow through the network, as otherwise, we might encounter vanishing or exploding gradients.\n", "This is why we will take a closer look at the following concepts: initialization and optimization.\n", "This notebook is part of a lecture series on Deep Learning at the University of Amsterdam.\n", "The full list of tutorials can be found at https://uvadlc-notebooks.rtfd.io.\n", "\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/course_UvA-DL/03-initialization-and-optimization.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/Lightning-AI/lightning/)\n", "| Check out [the documentation](https://lightning.ai/docs/)\n", "| Join us [on Discord](https://discord.com/invite/tfXFetEZxv)"]}, {"cell_type": "markdown", "id": "15edd6df", "metadata": {"papermill": {"duration": 0.012475, "end_time": "2025-04-08T10:48:17.775213", "exception": false, "start_time": "2025-04-08T10:48:17.762738", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "feb107ab", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2025-04-08T10:48:17.803878Z", "iopub.status.busy": "2025-04-08T10:48:17.803505Z", "iopub.status.idle": "2025-04-08T10:48:19.077108Z", "shell.execute_reply": "2025-04-08T10:48:19.076181Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 1.290963, "end_time": "2025-04-08T10:48:19.078859", "exception": false, "start_time": "2025-04-08T10:48:17.787896", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.\u001b[0m\u001b[33m\r\n", "\u001b[0m"]}, {"name": "stdout", "output_type": "stream", "text": ["\r\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\r\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\r\n"]}], "source": ["! pip install --quiet \"torchmetrics >=1.0,<1.8\" \"pytorch-lightning >=2.0,<2.6\" \"torch >=1.8.1,<2.7\" \"matplotlib\" \"seaborn\" \"numpy <3.0\" \"torchvision\""]}, {"cell_type": "markdown", "id": "6afdbf8c", "metadata": {"papermill": {"duration": 0.009291, "end_time": "2025-04-08T10:48:19.098269", "exception": false, "start_time": "2025-04-08T10:48:19.088978", "status": "completed"}, "tags": []}, "source": ["
\n", "In the first half of the notebook, we will review different initialization techniques, and go step by step from the simplest initialization to methods that are nowadays used in very deep networks.\n", "In the second half, we focus on optimization comparing the optimizers SGD, SGD with Momentum, and Adam.\n", "\n", "Let's start with importing our standard libraries:"]}, {"cell_type": "code", "execution_count": 2, "id": "856db26c", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:19.118216Z", "iopub.status.busy": "2025-04-08T10:48:19.117592Z", "iopub.status.idle": "2025-04-08T10:48:23.222972Z", "shell.execute_reply": "2025-04-08T10:48:23.222187Z"}, "papermill": {"duration": 4.117494, "end_time": "2025-04-08T10:48:23.224913", "exception": false, "start_time": "2025-04-08T10:48:19.107419", "status": "completed"}, "tags": []}, "outputs": [], "source": ["import copy\n", "import json\n", "import math\n", "import os\n", "import urllib.request\n", "from urllib.error import HTTPError\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline\n", "import matplotlib_inline.backend_inline\n", "import numpy as np\n", "import pytorch_lightning as pl\n", "import seaborn as sns\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.utils.data as data\n", "from matplotlib import cm\n", "from torchvision import transforms\n", "from torchvision.datasets import FashionMNIST\n", "from tqdm.notebook import tqdm\n", "\n", "matplotlib_inline.backend_inline.set_matplotlib_formats(\"svg\", \"pdf\") # For export\n", "sns.set()"]}, {"cell_type": "markdown", "id": "2735c731", "metadata": {"papermill": {"duration": 0.00933, "end_time": "2025-04-08T10:48:23.248199", "exception": false, "start_time": "2025-04-08T10:48:23.238869", "status": "completed"}, "tags": []}, "source": ["Instead of the `set_seed` function as in Tutorial 3, we can use Lightning's built-in function `pl.seed_everything`.\n", "We will reuse the path variables `DATASET_PATH` and `CHECKPOINT_PATH` as in Tutorial 3.\n", "Adjust the paths if necessary."]}, {"cell_type": "code", "execution_count": 3, "id": "b6c2411f", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:23.267590Z", "iopub.status.busy": "2025-04-08T10:48:23.267327Z", "iopub.status.idle": "2025-04-08T10:48:23.415119Z", "shell.execute_reply": "2025-04-08T10:48:23.414319Z"}, "papermill": {"duration": 0.159003, "end_time": "2025-04-08T10:48:23.416410", "exception": false, "start_time": "2025-04-08T10:48:23.257407", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Seed set to 42\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Using device cuda:0\n"]}], "source": ["# Path to the folder where the datasets are/should be downloaded (e.g. MNIST)\n", "DATASET_PATH = os.environ.get(\"PATH_DATASETS\", \"data/\")\n", "# Path to the folder where the pretrained models are saved\n", "CHECKPOINT_PATH = os.environ.get(\"PATH_CHECKPOINT\", \"saved_models/InitOptim/\")\n", "\n", "# Seed everything\n", "pl.seed_everything(42)\n", "\n", "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n", "torch.backends.cudnn.deterministic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "# Fetching the device that will be used throughout this notebook\n", "device = torch.device(\"cpu\") if not torch.cuda.is_available() else torch.device(\"cuda:0\")\n", "print(\"Using device\", device)"]}, {"cell_type": "markdown", "id": "22c7f8d1", "metadata": {"papermill": {"duration": 0.009315, "end_time": "2025-04-08T10:48:23.435753", "exception": false, "start_time": "2025-04-08T10:48:23.426438", "status": "completed"}, "tags": []}, "source": ["In the last part of the notebook, we will train models using three different optimizers.\n", "The pretrained models for those are downloaded below."]}, {"cell_type": "code", "execution_count": 4, "id": "97817327", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:23.455475Z", "iopub.status.busy": "2025-04-08T10:48:23.455148Z", "iopub.status.idle": "2025-04-08T10:48:25.691311Z", "shell.execute_reply": "2025-04-08T10:48:25.690204Z"}, "papermill": {"duration": 2.247617, "end_time": "2025-04-08T10:48:25.692650", "exception": false, "start_time": "2025-04-08T10:48:23.445033", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGD.config...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGD_results.json...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGD.tar...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGDMom.config...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGDMom_results.json...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_SGDMom.tar...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_Adam.config...\n", "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_Adam_results.json...\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/FashionMNIST_Adam.tar...\n"]}], "source": ["# Github URL where saved models are stored for this tutorial\n", "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial4/\"\n", "# Files to download\n", "pretrained_files = [\n", " \"FashionMNIST_SGD.config\",\n", " \"FashionMNIST_SGD_results.json\",\n", " \"FashionMNIST_SGD.tar\",\n", " \"FashionMNIST_SGDMom.config\",\n", " \"FashionMNIST_SGDMom_results.json\",\n", " \"FashionMNIST_SGDMom.tar\",\n", " \"FashionMNIST_Adam.config\",\n", " \"FashionMNIST_Adam_results.json\",\n", " \"FashionMNIST_Adam.tar\",\n", "]\n", "# Create checkpoint path if it doesn't exist yet\n", "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n", "\n", "# For each file, check whether it already exists. If not, try downloading it.\n", "for file_name in pretrained_files:\n", " file_path = os.path.join(CHECKPOINT_PATH, file_name)\n", " if not os.path.isfile(file_path):\n", " file_url = base_url + file_name\n", " print(f\"Downloading {file_url}...\")\n", " try:\n", " urllib.request.urlretrieve(file_url, file_path)\n", " except HTTPError as e:\n", " print(\n", " \"Something went wrong. Please try to download the file from the GDrive folder, or contact the author with the full output including the following error:\\n\",\n", " e,\n", " )"]}, {"cell_type": "markdown", "id": "a452d364", "metadata": {"papermill": {"duration": 0.009502, "end_time": "2025-04-08T10:48:25.712501", "exception": false, "start_time": "2025-04-08T10:48:25.702999", "status": "completed"}, "tags": []}, "source": ["## Preparation"]}, {"cell_type": "markdown", "id": "078caa6d", "metadata": {"papermill": {"duration": 0.009412, "end_time": "2025-04-08T10:48:25.731823", "exception": false, "start_time": "2025-04-08T10:48:25.722411", "status": "completed"}, "tags": []}, "source": ["Throughout this notebook, we will use a deep fully connected network, similar to our previous tutorial.\n", "We will also again apply the network to FashionMNIST, so you can relate to the results of Tutorial 3.\n", "We start by loading the FashionMNIST dataset:"]}, {"cell_type": "code", "execution_count": 5, "id": "c6ad8a60", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:25.753650Z", "iopub.status.busy": "2025-04-08T10:48:25.753222Z", "iopub.status.idle": "2025-04-08T10:48:32.821975Z", "shell.execute_reply": "2025-04-08T10:48:32.819182Z"}, "papermill": {"duration": 7.085537, "end_time": "2025-04-08T10:48:32.827026", "exception": false, "start_time": "2025-04-08T10:48:25.741489", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to /__w/11/s/.datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\r", " 0%| | 0/26421880 [00:00 first make them a tensor, then normalize them with mean 0 and std 1\n", "transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.2861,), (0.3530,))])\n", "\n", "# Loading the training dataset. We need to split it into a training and validation part\n", "train_dataset = FashionMNIST(root=DATASET_PATH, train=True, transform=transform, download=True)\n", "train_set, val_set = torch.utils.data.random_split(train_dataset, [50000, 10000])\n", "\n", "# Loading the test set\n", "test_set = FashionMNIST(root=DATASET_PATH, train=False, transform=transform, download=True)"]}, {"cell_type": "markdown", "id": "8b4a33fb", "metadata": {"papermill": {"duration": 0.011496, "end_time": "2025-04-08T10:48:32.851720", "exception": false, "start_time": "2025-04-08T10:48:32.840224", "status": "completed"}, "tags": []}, "source": ["We define a set of data loaders that we can use for various purposes later.\n", "Note that for actually training a model, we will use different data loaders\n", "with a lower batch size."]}, {"cell_type": "code", "execution_count": 6, "id": "31fed34c", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:32.886713Z", "iopub.status.busy": "2025-04-08T10:48:32.883375Z", "iopub.status.idle": "2025-04-08T10:48:32.901240Z", "shell.execute_reply": "2025-04-08T10:48:32.890431Z"}, "papermill": {"duration": 0.040118, "end_time": "2025-04-08T10:48:32.903347", "exception": false, "start_time": "2025-04-08T10:48:32.863229", "status": "completed"}, "tags": []}, "outputs": [], "source": ["train_loader = data.DataLoader(train_set, batch_size=1024, shuffle=True, drop_last=False)\n", "val_loader = data.DataLoader(val_set, batch_size=1024, shuffle=False, drop_last=False)\n", "test_loader = data.DataLoader(test_set, batch_size=1024, shuffle=False, drop_last=False)"]}, {"cell_type": "markdown", "id": "67fc6e41", "metadata": {"papermill": {"duration": 0.011441, "end_time": "2025-04-08T10:48:32.926722", "exception": false, "start_time": "2025-04-08T10:48:32.915281", "status": "completed"}, "tags": []}, "source": ["In comparison to the previous tutorial, we have changed the parameters of the normalization transformation `transforms.Normalize`.\n", "The normalization is now designed to give us an expected mean of 0 and a standard deviation of 1 across pixels.\n", "This will be particularly relevant for the discussion about initialization we will look at below, and hence we change it here.\n", "It should be noted that in most classification tasks, both normalization techniques (between -1 and 1 or mean 0 and stddev 1) have shown to work well.\n", "We can calculate the normalization parameters by determining the mean and standard deviation on the original images:"]}, {"cell_type": "code", "execution_count": 7, "id": "759e17fb", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:32.951137Z", "iopub.status.busy": "2025-04-08T10:48:32.950764Z", "iopub.status.idle": "2025-04-08T10:48:33.280772Z", "shell.execute_reply": "2025-04-08T10:48:33.280190Z"}, "papermill": {"duration": 0.347305, "end_time": "2025-04-08T10:48:33.285534", "exception": false, "start_time": "2025-04-08T10:48:32.938229", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Mean 0.2860405743122101\n", "Std 0.3530242443084717\n"]}], "source": ["print(\"Mean\", (train_dataset.data.float() / 255.0).mean().item())\n", "print(\"Std\", (train_dataset.data.float() / 255.0).std().item())"]}, {"cell_type": "markdown", "id": "539dc206", "metadata": {"papermill": {"duration": 0.013369, "end_time": "2025-04-08T10:48:33.316941", "exception": false, "start_time": "2025-04-08T10:48:33.303572", "status": "completed"}, "tags": []}, "source": ["We can verify the transformation by looking at the statistics of a single batch:"]}, {"cell_type": "code", "execution_count": 8, "id": "f315c6f0", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:33.349232Z", "iopub.status.busy": "2025-04-08T10:48:33.349019Z", "iopub.status.idle": "2025-04-08T10:48:33.547199Z", "shell.execute_reply": "2025-04-08T10:48:33.540319Z"}, "papermill": {"duration": 0.226549, "end_time": "2025-04-08T10:48:33.556533", "exception": false, "start_time": "2025-04-08T10:48:33.329984", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Mean: 0.020\n", "Standard deviation: 1.011\n", "Maximum: 2.022\n", "Minimum: -0.810\n"]}], "source": ["imgs, _ = next(iter(train_loader))\n", "print(f\"Mean: {imgs.mean().item():5.3f}\")\n", "print(f\"Standard deviation: {imgs.std().item():5.3f}\")\n", "print(f\"Maximum: {imgs.max().item():5.3f}\")\n", "print(f\"Minimum: {imgs.min().item():5.3f}\")"]}, {"cell_type": "markdown", "id": "8cc93e3e", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.014116, "end_time": "2025-04-08T10:48:33.589077", "exception": false, "start_time": "2025-04-08T10:48:33.574961", "status": "completed"}, "tags": []}, "source": ["Note that the maximum and minimum are not 1 and -1 anymore, but shifted towards the positive values.\n", "This is because FashionMNIST contains a lot of black pixels, similar to MNIST.\n", "\n", "Next, we create a linear neural network. We use the same setup as in the previous tutorial."]}, {"cell_type": "code", "execution_count": 9, "id": "20f0a2c3", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:33.692645Z", "iopub.status.busy": "2025-04-08T10:48:33.692151Z", "iopub.status.idle": "2025-04-08T10:48:33.699557Z", "shell.execute_reply": "2025-04-08T10:48:33.699027Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.099486, "end_time": "2025-04-08T10:48:33.700682", "exception": false, "start_time": "2025-04-08T10:48:33.601196", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class BaseNetwork(nn.Module):\n", " def __init__(self, act_fn, input_size=784, num_classes=10, hidden_sizes=[512, 256, 256, 128]):\n", " \"\"\"Base Network.\n", "\n", " Args:\n", " act_fn: Object of the activation function that should be used as non-linearity in the network.\n", " input_size: Size of the input images in pixels\n", " num_classes: Number of classes we want to predict\n", " hidden_sizes: A list of integers specifying the hidden layer sizes in the NN\n", "\n", " \"\"\"\n", " super().__init__()\n", "\n", " # Create the network based on the specified hidden sizes\n", " layers = []\n", " layer_sizes = [input_size] + hidden_sizes\n", " for layer_index in range(1, len(layer_sizes)):\n", " layers += [nn.Linear(layer_sizes[layer_index - 1], layer_sizes[layer_index]), act_fn]\n", " layers += [nn.Linear(layer_sizes[-1], num_classes)]\n", " # A module list registers a list of modules as submodules (e.g. for parameters)\n", " self.layers = nn.ModuleList(layers)\n", "\n", " self.config = {\n", " \"act_fn\": act_fn.__class__.__name__,\n", " \"input_size\": input_size,\n", " \"num_classes\": num_classes,\n", " \"hidden_sizes\": hidden_sizes,\n", " }\n", "\n", " def forward(self, x):\n", " x = x.view(x.size(0), -1)\n", " for layer in self.layers:\n", " x = layer(x)\n", " return x"]}, {"cell_type": "markdown", "id": "0be75df2", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.011742, "end_time": "2025-04-08T10:48:33.724725", "exception": false, "start_time": "2025-04-08T10:48:33.712983", "status": "completed"}, "tags": []}, "source": ["For the activation functions, we make use of PyTorch's `torch.nn` library instead of implementing ourselves.\n", "However, we also define an `Identity` activation function.\n", "Although this activation function would significantly limit the\n", "network's modeling capabilities, we will use it in the first steps of\n", "our discussion about initialization (for simplicity)."]}, {"cell_type": "code", "execution_count": 10, "id": "2ed5e51f", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:33.750313Z", "iopub.status.busy": "2025-04-08T10:48:33.749807Z", "iopub.status.idle": "2025-04-08T10:48:33.764368Z", "shell.execute_reply": "2025-04-08T10:48:33.763224Z"}, "papermill": {"duration": 0.033629, "end_time": "2025-04-08T10:48:33.770088", "exception": false, "start_time": "2025-04-08T10:48:33.736459", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class Identity(nn.Module):\n", " def forward(self, x):\n", " return x\n", "\n", "\n", "act_fn_by_name = {\"tanh\": nn.Tanh, \"relu\": nn.ReLU, \"identity\": Identity}"]}, {"cell_type": "markdown", "id": "99d19399", "metadata": {"papermill": {"duration": 0.011707, "end_time": "2025-04-08T10:48:33.793181", "exception": false, "start_time": "2025-04-08T10:48:33.781474", "status": "completed"}, "tags": []}, "source": ["Finally, we define a few plotting functions that we will use for our discussions.\n", "These functions help us to (1) visualize the weight/parameter distribution inside a network, (2) visualize the gradients that the parameters at different layers receive, and (3) the activations, i.e. the output of the linear layers.\n", "The detailed code is not important, but feel free to take a closer look if interested."]}, {"cell_type": "code", "execution_count": 11, "id": "b16e8708", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:33.822831Z", "iopub.status.busy": "2025-04-08T10:48:33.822645Z", "iopub.status.idle": "2025-04-08T10:48:33.841153Z", "shell.execute_reply": "2025-04-08T10:48:33.839627Z"}, "papermill": {"duration": 0.038897, "end_time": "2025-04-08T10:48:33.842968", "exception": false, "start_time": "2025-04-08T10:48:33.804071", "status": "completed"}, "tags": []}, "outputs": [], "source": ["##############################################################\n", "\n", "\n", "def plot_dists(val_dict, color=\"C0\", xlabel=None, stat=\"count\", use_kde=True):\n", " columns = len(val_dict)\n", " fig, ax = plt.subplots(1, columns, figsize=(columns * 3, 2.5))\n", " fig_index = 0\n", " for key in sorted(val_dict.keys()):\n", " key_ax = ax[fig_index % columns]\n", " sns.histplot(\n", " val_dict[key],\n", " ax=key_ax,\n", " color=color,\n", " bins=50,\n", " stat=stat,\n", " kde=use_kde and ((val_dict[key].max() - val_dict[key].min()) > 1e-8),\n", " ) # Only plot kde if there is variance\n", " hidden_dim_str = (\n", " r\"(%i $\\to$ %i)\" % (val_dict[key].shape[1], val_dict[key].shape[0]) if len(val_dict[key].shape) > 1 else \"\" # noqa: UP031\n", " )\n", " key_ax.set_title(f\"{key} {hidden_dim_str}\")\n", " if xlabel is not None:\n", " key_ax.set_xlabel(xlabel)\n", " fig_index += 1\n", " fig.subplots_adjust(wspace=0.4)\n", " return fig\n", "\n", "\n", "##############################################################\n", "\n", "\n", "def visualize_weight_distribution(model, color=\"C0\"):\n", " weights = {}\n", " for name, param in model.named_parameters():\n", " if name.endswith(\".bias\"):\n", " continue\n", " key_name = f\"Layer {name.split('.')[1]}\"\n", " weights[key_name] = param.detach().view(-1).cpu().numpy()\n", "\n", " # Plotting\n", " fig = plot_dists(weights, color=color, xlabel=\"Weight vals\")\n", " fig.suptitle(\"Weight distribution\", fontsize=14, y=1.05)\n", " plt.show()\n", " plt.close()\n", "\n", "\n", "##############################################################\n", "\n", "\n", "def visualize_gradients(model, color=\"C0\", print_variance=False):\n", " \"\"\"\n", " Args:\n", " net: Object of class BaseNetwork\n", " color: Color in which we want to visualize the histogram (for easier separation of activation functions)\n", " \"\"\"\n", " model.eval()\n", " small_loader = data.DataLoader(train_set, batch_size=1024, shuffle=False)\n", " imgs, labels = next(iter(small_loader))\n", " imgs, labels = imgs.to(device), labels.to(device)\n", "\n", " # Pass one batch through the network, and calculate the gradients for the weights\n", " model.zero_grad()\n", " preds = model(imgs)\n", " loss = F.cross_entropy(preds, labels) # Same as nn.CrossEntropyLoss, but as a function instead of module\n", " loss.backward()\n", " # We limit our visualization to the weight parameters and exclude the bias to reduce the number of plots\n", " grads = {\n", " name: params.grad.view(-1).cpu().clone().numpy()\n", " for name, params in model.named_parameters()\n", " if \"weight\" in name\n", " }\n", " model.zero_grad()\n", "\n", " # Plotting\n", " fig = plot_dists(grads, color=color, xlabel=\"Grad magnitude\")\n", " fig.suptitle(\"Gradient distribution\", fontsize=14, y=1.05)\n", " plt.show()\n", " plt.close()\n", "\n", " if print_variance:\n", " for key in sorted(grads.keys()):\n", " print(f\"{key} - Variance: {np.var(grads[key])}\")\n", "\n", "\n", "##############################################################\n", "\n", "\n", "def visualize_activations(model, color=\"C0\", print_variance=False):\n", " model.eval()\n", " small_loader = data.DataLoader(train_set, batch_size=1024, shuffle=False)\n", " imgs, labels = next(iter(small_loader))\n", " imgs, labels = imgs.to(device), labels.to(device)\n", "\n", " # Pass one batch through the network, and calculate the gradients for the weights\n", " feats = imgs.view(imgs.shape[0], -1)\n", " activations = {}\n", " with torch.no_grad():\n", " for layer_index, layer in enumerate(model.layers):\n", " feats = layer(feats)\n", " if isinstance(layer, nn.Linear):\n", " activations[f\"Layer {layer_index}\"] = feats.view(-1).detach().cpu().numpy()\n", "\n", " # Plotting\n", " fig = plot_dists(activations, color=color, stat=\"density\", xlabel=\"Activation vals\")\n", " fig.suptitle(\"Activation distribution\", fontsize=14, y=1.05)\n", " plt.show()\n", " plt.close()\n", "\n", " if print_variance:\n", " for key in sorted(activations.keys()):\n", " print(f\"{key} - Variance: {np.var(activations[key])}\")\n", "\n", "\n", "##############################################################"]}, {"cell_type": "markdown", "id": "33daa0df", "metadata": {"papermill": {"duration": 0.011724, "end_time": "2025-04-08T10:48:33.866657", "exception": false, "start_time": "2025-04-08T10:48:33.854933", "status": "completed"}, "tags": []}, "source": ["## Initialization\n", "\n", "Before starting our discussion about initialization, it should be noted that there exist many very good blog posts about the topic of neural network initialization (for example [deeplearning.ai](https://www.deeplearning.ai/ai-notes/initialization/), or a more [math-focused blog post](https://pouannes.github.io/blog/initialization)).\n", "In case something remains unclear after this tutorial, we recommend skimming through these blog posts as well.\n", "\n", "When initializing a neural network, there are a few properties we would like to have.\n", "First, the variance of the input should be propagated through the model to the last layer, so that we have a similar standard deviation for the output neurons.\n", "If the variance would vanish the deeper we go in our model, it becomes much harder to optimize the model as the input to the next layer is basically a single constant value.\n", "Similarly, if the variance increases, it is likely to explode (i.e. head to infinity) the deeper we design our model.\n", "The second property we look out for in initialization techniques is a gradient distribution with equal variance across layers.\n", "If the first layer receives much smaller gradients than the last layer, we will have difficulties in choosing an appropriate learning rate.\n", "\n", "As a starting point for finding a good method, we will analyze different initialization based on our linear neural network with no activation function (i.e. an identity).\n", "We do this because initializations depend on the specific activation\n", "function used in the network, and we can adjust the initialization\n", "schemes later on for our specific choice."]}, {"cell_type": "code", "execution_count": 12, "id": "2ad2e326", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:33.895695Z", "iopub.status.busy": "2025-04-08T10:48:33.895231Z", "iopub.status.idle": "2025-04-08T10:48:34.472251Z", "shell.execute_reply": "2025-04-08T10:48:34.471005Z"}, "papermill": {"duration": 0.596957, "end_time": "2025-04-08T10:48:34.475437", "exception": false, "start_time": "2025-04-08T10:48:33.878480", "status": "completed"}, "tags": []}, "outputs": [], "source": ["model = BaseNetwork(act_fn=Identity()).to(device)"]}, {"cell_type": "markdown", "id": "ac78c9bf", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.018258, "end_time": "2025-04-08T10:48:34.513390", "exception": false, "start_time": "2025-04-08T10:48:34.495132", "status": "completed"}, "tags": []}, "source": ["### Constant initialization\n", "\n", "The first initialization we can consider is to initialize all weights with the same constant value.\n", "Intuitively, setting all weights to zero is not a good idea as the propagated gradient will be zero.\n", "However, what happens if we set all weights to a value slightly larger or smaller than 0?\n", "To find out, we can implement a function for setting all parameters below and visualize the gradients."]}, {"cell_type": "code", "execution_count": 13, "id": "61cfe6f6", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:34.548370Z", "iopub.status.busy": "2025-04-08T10:48:34.548024Z", "iopub.status.idle": "2025-04-08T10:48:43.564110Z", "shell.execute_reply": "2025-04-08T10:48:43.563134Z"}, "papermill": {"duration": 9.035554, "end_time": "2025-04-08T10:48:43.565508", "exception": false, "start_time": "2025-04-08T10:48:34.529954", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTExLjUyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdS5Mjx3WF9/gVWNoLJvP9WOphM0I7aRj2QuEFTY6oYUyPgi8r/O99LtCDqkyc2+xG9/T4cmIk4hDIqvNlViEvKu/NL//49n/effv2L1/9/viHN4cvt1ff/nwIxx/w9/ujP/6Av/88huNX+Pv9wR+/8Me7wwjBlVjkxfvLixiGS7VU/Ot7vHF6+ffD4W+HL3+HJn4+ejdCq7n50vvVizx8GNW3fvxJjv7V9IbDQ+8+HGpzCUfL0Y3zce8OYWQXcgo97uT3ezl0nP1H/b6FSTud+o/Hq8ZDrK6H+z9oJ3VXjz+9Pf7n8cPxy99FcRqOf8LfH/D3RHBlHJOrvcdU51Pe5Ok8Dm8Ofz7++LFp70JB/3xs/fTyq3v18CP67tRTAWcJTVorbZRxjMUFL+19e3f4/deHL/8d7wjHr/+G/vLHr787/PX4L/5fj/91/PpPh3/7+vDn0xE/gfPhnR8149BzZ13kl3Deqyun1nyqj3Je9s53LeFcWh4tlOFHOA7X9m3EuY2vfvrmu+PdN99/ePfLr9+9VRoMpeF0e/f1DDC4fPaqn1v42Nb2HyPQ9TiCD/js9sZd//0ILD7IYf39v4XkWq0hpNiDfObbuyMa/OKPb3/45j9+ffPNh5+/uHv34defj3/8x/HPn6z7H3+d3tbzxbuOj+O8Wi8jtc882u9bbNn52FKLs91NvtUuxoHYrcP13GrPGffGBwaSxz+vZjr44nzHN8SYXe/0Z9qGH4frEs3mhhucbjy+rvFUcca+17oY3/TnGk/B4aYUWs81PWQ8va5x/H9EYyEtxjf9ucZrcj7FEUsu4aGhnlfjPx6kmS+kwVBPZ4vzy7mkMN97l3v6H/7x64dfngkwnY3G0X0aEV8AmMvk80QG3834L/XjVCafZj4u1ph6xMnd054+fNx/+LB8+HBoSS4uDIvpHtuKS6PE3Kdb7KYG3Io2+dLEJGMy9Pv///aJUdhvrnnMBdJs/6L2Acc1+DZB2as2zBObd4eOr//TbGMyv6no49ZiL3lCsldNmGc2YT46XOHVzz2/qQ1zTbSewoxkp9owT2zCfHY19NSXnr+oFecfg89tQrJXbZgnNmG+uhEz7mCz+YuKb5Ka8V2SZyQ71YZ5YhPmh4txSNQ3mb+otbiYMNYXJDvVhnliU36hcAUxb557flOnnt+QWOt5ZhPmE0KBUOLc85tauut1xDQmJHvVhnliE+Yxwc4N4cBs/qLW6Hweo8YJyV61YZ7YhPnuMJ31Y+n5i7of4Dsk5oY9sYloA6Fgw0f63PU7eRr4lzbMDXxqVPxj0l5zrWPxf5H3ThUsRgAQpwIA8/bmcykLgIs8A6BcjAAgTgVAc7XVuF4AH9X9tG7XhLnZHvMp7of8Iurj2v0XefbPqBixT4zCf4gu9tbDbP+iIqbHmecRZyh72YZ94lPcZwRsqYyl9ze5otmCdsJEZa8asU+Min+c4RipL/Y/qtPY30ExN/iJT3GPSbwvoa69f5Hn3r9Qsdf7xKg8NcQ8Hhf1Yv+iliIPFUtoM5S9bMM+8Xl+ZtpDbdOj1Pd7eR/Wbm2YC3apUfGPuXyMJS63/k2eRv8Oi7nhz5wKAMzmY0dfLgAu8jTz2xqxN/NjTgEgYTafsjygngBs8j7I2zViLvajTgWAPBUavS0jYJMnAJyLEQDEqQDAfD6XWtcRcJGnGcCOi7kZAHMqADChLyHndQRc5HkEbFzsjQDiVABgTl9aTOsIuMj7Zxq7Rsw96qBOAQAvYk0e05kJwCbPI+DSiL0RwJwKAMzrMaHzy3K3Ta648WP27/vCZScbAUCcCgCcYculryPgIs8AKBcjAIhTATAQzXtZTzQDuMhDOr32NGPZqUbsE5+wX4LLvcrnJ/ub3IMLKaeZySbaMM9civnk2ggjL32/yTvzjIgR88SlmK/Oj9bi2vMXebryt0bsXfnMqQCAEZ9KWHv/Is8AKBcjAIhTAEAw2/xAMzOATZ6C4B0Xc0EwcyoAMKeXxYVpAXCRpwhgx8VcBMCcCgDM6aPvdR0BF7k0F1vvrc9c9rIRAMSpAMCcHt/jZR0BF3n/nHvXiLnH39SpAMCcHvP49VfwTZ5ugjsu5m6CzCkANEzk0GhcRsAmzyNg42JuBDCnAgBz+py9X0bAJjdZ4hdam7HsVCP2iU+xjzPMo421/y/ydAvcGrF3C2ROBQBm9aWUtiyC2OTpl+AdF3O/BDOnANAlnSikuiwC2OQZAOViAwBzKgAkyakhvFsAXOT9uuZdI+aWO1OnAgBz+xZHWkfARZ5GwNaIwRFAnAqA7lLrLawj4CKX6IpvbeSFy06+ALjPUomS/eLQ0PksfzOljeWSHt7wTLc7NSMVn3hSutz1UR9s28PUY9NvesTlkRA5nx6bhN4+tqRnzrz/5n/f/vSz8+6fb999//dfjvskmhuygc+5yE/MCsbQcv16qVRqQR591+WR8U6eWO1aCVfZwTJKLm+QP7cmVh3Y2IoF4z7lsfzWu5PXXr0ltyrJ938pGddZfCBbdriIWfOovZUth9KVh3JO/ePyTD8dwOQ7vA00O4+ATX4JgGM4kDudfXxUnrW7Ssr7hAgQ6pEUgZ38AgiSpDU3tJaK/KzyKAZaznUsGGmjhDONm5OuP/GV+aRby61Jj/28TPN89rclNb8KAoTQIePbvM0INvlmBN7vEdSEs8fX9ZDEzYcSfgvJe30VEiO5FOQcZxKb/EIkOubuaYwcsq/pocIGLAP4VUiE0F0etaKjJhQ7/YVYyJLGFOrIKRXM33QY7bMNC8zBnKy6SmmBsek3F7uQsbWDkQbwnq+QB2/Ap2oAn4kGbgy9YOAut8yd/lI0agZfP3KLsPEQjatbxj5jvNc9lNszx2+kK4HVQY2NnhpYPRiVHfQ5J15k35b1BapMGtkFVjZAEGsCoriYa17SalWZ8jEGglgTEAgDS4wtLY4VmfIxBoJYExADt62Ojy2OFZnyMQaCWAOIGl2oqeel6xWZ87EFglkTEPiKqJjvLV2vyZSPMRDEmoCorrWSwzoiFJnyMQaCWBMQUk0khLF2vSJTPsZAEGsAgele6nUsKxU0mfOxBYJZExCY+o/YlpRdVaZ8jIEg1gREcWP0UvLiWJEpH2MgiDUB0V3yiGLXrldkyscYCGINIDreGXxYkpk1mfOxBYJZExB4cSo+uYBQZMrHGAhiTUAgeojyG8/iWJEpH2MgiDUBgeghttzWrldkyscYCGJNQCB6SCnWtesVmfIxBoJYA4gR5adgP6f/KiqnYwsDcSYU5Ee53NOKQZEZHWMYiDPhgMih+Lr8HKeoFI4xDNfOhALChlLz1UWhyIyOMQzEmTznRtRQ47IYhqsKHFMYmDOhgJChttHKgkGRGR1jGIgz4YCIoaUlTVpTKRxjGK6d3fElIe+nJSH7srdbI7warg0QfBVM8K70kpakYU3m3GyBYNYERHRSkTws14AmUz7GQBBrAqI4vA3vXRwrMuVjDASxJiAQL/hY+9r1ikz5GANBrAkIRAy+57Z2vSJTPsZAEGsAEREyhBzL0vWKzPnYAsGsCQhEDdH7vHS9JlM+xkAQawICYUMsPa4jQpEpH2MgiDUBgcghhbqkH6sy5WMMBLEGEAmhQ2ppzKteNJnzsQWCWRMQUlXlKklBlSkfYyCINQGB6CH3UdcRociUjzEQxJqAQPRQcitr1ysy5WMMBLEGEBnRQ/UlLV2vyJyPLRDMmoBA9FArJggLCEWmfIyBINYEBKKHFmWjmdmxIlM+xkAQawKiudxaXxKYVZnyMQaCWBMQw7WeauuLY0WmfIyBINYAosTr7azeqzLnYwsEsyYgMtvBS5UpH2MgiDUBUdleXqpM+RgDQawJiMH29VJlyscYCGJNEhkD2+NLkzkfWyCYNQGR2H5fqkz5GANBrN3xjNf3ukz5PKkGgJINqmWOH97wRNE7NQcdn3hyxik/+oPHeEpNAAwdDKCO3rjPo358UYD4OYsC5Bhdvl5hVjB5iNdVtHfyBGvXSqBFAbY3+PlQz06ky7Gz+pc7ee3WG/LocsDgiX6M2gcu4s9QFOATAuzltJvsRO9eewl0rTnf8pB/MPG4rR7Ap3NfcmKZGjv5BRiUlF2ThOfuR35eOYCcpE7T6ePPKQXwKa/Hp9xQbhxTsgphO/vbSgG8CoKeHKbbHcNoQrDJN5eYwGW1Q9Awj6sj5N8YV3Tr71cBIVttlBT9Kf99/zWy6S+EQjZ1QciX8sPj4WpP7NdDUWXXETnDBcWmvxQKTO9rKiWfvpB0FvWB/cFlfrRDcnu2941sX3UKrU0mkmfFtDWZNbKbQpsAwawJiMgKa6sy5WMMBLEmIAorsq3KlI8xEMSagGis2LYqUz7GQBBrAmKwotuqTPkYA0GsAQRekOLbmsz52ALBrAmIzIpwqzLlYwwEsSYgKivGrcqUjzEQxJqA6KwotypTPsZAEGsAUQIrzq3JnI8tEMyagEisSLcqUz7GQBBrAqKwct2qTPkYA0GsCYjOynarMuVjDASxBhCyG8l1+W5N5nxsgWDWBERkZbxVmfIxBoJYExCFlfNWZcrHGAhiTUA0VtZblSkfYyCINQExXO25+LXrFZnyMQaCWAOIFtwYPval6xWZ87EFglkTEBlt4G1L12sy5WMMBLEmIBA9+LDkHmkqpWMMw7UzoYDQwbe6pGmqMqNjDANxJg90ETmcNjec/HKVw7GFgTgTCggbgnx+waDIjI4xDMTZHXnk/3575L/P6959nud724DAFjggXEh4ywpBka95GUNAfIHCwMdSXZ9fcZWjsYWBOBMKCBRku4+l0zWZ0TGGgTgTDogTcNNbpkiKSuEYw3DtTCggSChoYJkiaTKjYwwDcSYcECOU0UJYDCsyxWMMBLF2dyg+yIs8ZmuKrPAxBYJaExCIElqIfVkTqsmUjzEQxJqAqK605us6IhSZ8jEGglgTEN3JKraydr0iUz7GQBBrABGCC9fLzjWZ87EFglkTEMnlkXNcul6TKR9jIIg1AYGQwfu45GOqMuVjDASxJiAQN/gyRlwcKzLlYwwEsQYQ0cvO2q0tXa/InI8tEMyagEDsEFpZKkyqMuVjDASxJiAQPMSU8joiFJnyMQaCWBMQslnrCGntekWmfIyBINYExGAbRaky5WMMBLEGECmwjaI0mfOxBYJZExCZbRSlypSPMRDEmoCobKMoVaZ8jIEg1gREZxtFqTLlYwwEsSapM4FtFKXJnI8tEMzaHc9hfK/LlM+TMryVJD8tDfjwhuf/3akJxfjEkxMJ+dEfPMZTMrxlyX6v5wy7p6R358+Z3o0AAoyulpQ1qTp4Xb14J0+kdq0Emt59eYP8yY++eB6RN1d9YUUWd/Lap7fk547oUq24JnP6POndnxBgvd8Cdn7Ys5NfAGAt2dV4Ko+BadiNSd6fjkGLgSVo7OQXYNBCxM0drUVMRZ+X5F1lC+ePtSSel+j96aA+7dZy44XZ03kx6/nsb0v0fhUE+0TvHYLnJ3qXUvYIHpnoHVh286uAmBK9918oz0/0XlA8MtGb5ry/Dop9ovcexfMTvVcUj0z0Tg8kehfJstmavD3R+0a2rzqTVqcVnRUhVmXSyG4mbQMEsQYQwbMixJrM+dgCwawJiMiKEKsy5WMMBLEmIDIrQqzKlI8xEMSagGisCLEqUz7GQBBrAmKwIsSqTPkYA0GsAQTiCFKEWJM5H1sgmDUBkVkRYlWmfIyBINYERGVFiFWZ8jEGglgTEJ0VIVZlyscYCGINIFJgRYg1mfOxBYJZExCJFSFWZcrHGAhiTUAUVoRYlSkfYyCINQHRWRFiVaZ8jIEg1gAie1aEWJM5H1sgmDUBEVkRYlWmfIyBINYERGZFmlWZ8jEGglgTEIge4hhlLI4VmfIxBoJYExCIHlJpee16RaZ8jIEg1gCiIHrIocSl6xWZ87EFglkTEIgecktLDpIqUz7GQBBrAgLRQ0l+rCNCkSkfYyCINQGB6AGf6WvXKzLlYwwEsSYPuRE91Fzr0vWKzPnYAsGs3fFFAO91mfIxBkJZ9lBcbTUul8BFnbLc92skaPa7DRDXjoVDc6NHH9eeV2RGzRgG4gwcGtrobcnNU1QOxxYG4kwoRFdGKmPpdk1mdIxhIM6EQ3Z9jKXOpKZSOMYwXDsTCggafAl17XZFZnSMYSDOhANihuCvRj9XKRxjGK6dgUJHwBBqW3I0NZnSsYWBORMOiBdiLEuKpipTPMZAEGsCAvFC7MmvA0KRKR9jIIg1AYF44XoluipTPsZAEGsAMRAvpNHb0vWKzPnYAsGsCQgEDLkgflpAKDLlYwwEsSYgEDCUkPM6IhSZ8jEGglgTEIgZSotp7XpFpnyMgSDW7g7NS7PJLymaiqzwMQWCWhMQiBtwD1xSNFWZ8jEGglgTELIhZy59HRGKTPkYA0GsCYjG9otSZcrHGAhiTUAMtl+UKlM+xkAQawARAtsvSpM5H1sgmDUBkdl+UapM+RgDQawJiMr2i1JlyscYCGJNQHS2X5QqUz7GQBBrdzyn8b0qcz5PSvpWEv605ODDG54LeKemGUua+FOTCvnRHzzGU5K+cVfFABolfEyVfXzed/2ced+t4USvV5gNL3trzRA/ahOm3ecDzfje3hDmgzw/WVf2MI25LNUnd/Laobck69YsTcQYQo6fJeP70wHEjcaNgZOeI7Cd/AIAO+6sMUtroaVbM74/IYMWnW8hLfl9O/klGMjz4SitRV/i81K+MW9xI4UiP4zJNrvPSPn+tJfmI+8qt16W4X5N6+nUb8v3fhX/Fad2zrbd/G/azf5L3vs/3aTw1f2g//J5AAycW+xhGgCbdjOA3PYAhncp999I8A7X6d2vQiBEnJ0/jc4NwU58IQYBd9oQx29kdofPNAxCrgg1/Hwj2IkvBSHj9hj8b9wK4ucaCS24fr5OdxA28aUg1IbgIP7G/SAWLcO/Zb9ncXuG/41Q86uGTVJ647p2N75PWBHqnTwt9dq1wpeA2UBBPAuKxspQqzIFZwwEsQYQ+JohZag1mfOxBYJZExCRlaHeycF3CmjSjaEgngVFZoWoVZmCMwaCWBMQjRWi3snLmLi0YnlMEM+CYrBS1KpMwRkDQawhjPaBlaJWZIWPKRDUmoDIrBT1Tp4ugl0rdi8O6llQVFaMWpUpOGMgiDUB0VkxalWmfIyBINYAInhWjFqTOR9bIJg1AZFYMWpVpnyMgSDWBERhxahVmfIxBoJYExCNFaNWZcrHGAhiTR5KeFaMWpM5H1sgmDUBEVmx7p08zyS2VgzPJJjn84Oq1koO65hQZArOGAhiTUA053sIYx0Tikz5GANBrAmIIfWQR1+7XpEpH2MgiDWASEF+AW5LZq4mcz62QDBrAiK5MXopeQGhyJSPMRDEmoBA/OBzSuuIUGTKxxgIYk1A4JSCD3HtekWmfIyBINYAIsvSoGXfjPeqzPnYAsGsCQjEDzHUsXT9Js9Tqq0Vw1Mq5llQIIKILbd1TCgyBWcMBLEmIBBBpBTrOiYUmfIxBoJYA4iCACINP6/aUVROxxYG4kwoIHjIuacVw0WebxGXRgzfIZhlIYHoAee+/CinqJSaMQzXzoQCQodS89VlociMjjEMxJlwQORQY1i+FxSVwjGG4doZKFSEDbWNtnS7IlM6tjAwZ8IBUUNLS56yplI4xjBcOxMK1cXrHARVZnSMYSDOhEN3pZe05OaqMsVjDASxJovJvesjhLBcAYrM+dgCwawJiOTwNrx3AaHIlI8xEMSagEC84GPt64hQZMrHGAhiTUAgYvCIG9auv8jzvHprxfDEmnkGio6YIeRYls5XZA7OFghmTUAgaoje52VMaDLlYwwEsSYgMts2TJUpH2MgiDUB0di2YapM+RgDQawJiMG2DVNlyscYCGINIEZg24ZpMudjCwSzJiAS2zZMlSkfYyCINQFR2bZhqkz5GANBrAmIzrYN28nzlGpr5UWnVPvEqENw5ZS+9Cgwf1kTqPbJNZJJm0aHi3OKjvcjybbSzmefx5BVxL26lps8sUNIefqhJR3P2RjDVynKWyVZqpXcT7Lsk4tpVBBZ9qU+qQPnGpPcMKA2HCS3kxwcuktqJoic4eTU9IiuZC9PjSXxyp92KhM5wdaQcgCQpaJfPq9yLi6nluEU55dHSO18yOZCKwUtwk3quaZz2wPvib0XsV5gPdfTIkjphj4y3u1hEh7z8bxIFIPJI1IoOGTNUr7/vGSyYaS1dCyYQIfiR79fQIj3Zh+PJeOc7pMRu+xPLSuG0EiSVJ4Szu/OrpSCDjyWiC/Y4dup7YBR0BJOXWSYiee2o3c47dLqsQi00M4nKNUWImYpkDECYNrn+wUIXo7fRU7Jh3MjyTsMP6A9yR2h8VmOYiKnUyPwdTqPlDGOU65FDuhTL/nj89vSvAwY2dAggm84PakAPzQQxHmMOaUT1ZwdBnpFg5DlCV86HS+DKkZn7SLL/mvh3EZ3GMkVg0Te3TG6zu8eCFtLw/RDdg4YVfjKr3649eJLCKPhRNWPcJZxIyohxCb4cq21jPvfCBt6Uma1GADNy6mefzTLMIHRgIP3KGUJ7n9DAtQqWxR0cBr9fMia0Tb+N4kcMFrv5YpxWavUQ+oOlwdYnmT0QcBVdGpERtrpupHg09eR5XcZnEkZsdb7SAxthNP5Dditp6Zbl4FeUpSeQcv+dN3IHL3iIkJfiwwDJd1/LSPIT5L4gH8Lvp0uyY4rIfsgeVPy7hBSjvMNrEgBBd/LA/KcR/lguRIlWV2rbIGWr/PY73h1DClt8qRUeH5QvfWnlCiR29QoebT7Z9dPKFHSWYmSXdNpjI8Z7dHjDOc283VRgndvP/xy/O7dz7/89O6/f/3l3T8+TJmjh/8D5EzJWgplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjY2NTYKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDI0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUluxDAMu/sV/MAAlqzFeU+KQQ/t/68lHRTtwRAjS1zi7sREFl62UNdCh+PDRl4Jm4Hvg9ac+Bqx4j/aRqSVP1RbIBMxUSR0UTca90g3vArRfqSCV6r3WPMRdyvNWzp2sb/3wbTmkSqrQjzk2BzZSFrXRNHxPbTec0N0yiCBPjchB0Rpjl6FpL/2w3VtNLu1NrMnqoNHpoTySbMamtMpZshsqMdtKlYyCjeqjIr7VEZaD/I2zjKAk+OEMlpPdqwmovzUJ5eQFxNxwi47OxZiEwsbh7QflT6x/Hzrzfibaa2lkHFBIjTFpd9nvMfneP8AlU9cJgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyNDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFNcgUhCIT3nqIv8KrkVz3PpFJZTO6/Dc28JCtaheYD0wITR/ASQ+yJlRMfMnwv6DJ8tzI78DrZmXBPuG5cw2XDM2Fb4DsqyzteQ3e2Uj+doarvGjneLlI1dGVkn3qhmgvMkIiuEVl0K5d1QNOU7lLhGmxbghT1SqwnnaA06BHK8HeUa3x1E0+vseRUzSFaza0TGoqwbHhB1MkkEbUNiyeWcyFR+aobqzouYJMl4vSA3KCVZnx6UkkRMIN8rMlozAI20JO7ZxfGmkseRY5XNJiwO0k18ID34ra+9zZxj/MX+IV33/8rDn3XAj5/AEv+XQYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDE3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCA4OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNgDAMRHtP4RHiv9kHIQrYv8VJcGPf3ZNeUuJA5ToRjqaBJ0H1mV4g2ekBVkXiUUnM/029qUVTz6btq00EJzOO9XUcqJrTetBaKG2TFt5wfQCcHe0KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IDY3IC9DIDcxIC9HIDk3IC9hIC9iIDEwMCAvZCAvZSAxMDMgL2cgL2ggL2kgMTA4IC9sIC9tIC9uIC9vIDExNCAvcgovcyAvdCAvdSAxMTkgL3cgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9DIDE3IDAgUiAvRyAxOCAwIFIgL2EgMTkgMCBSIC9iIDIwIDAgUiAvZCAyMSAwIFIgL2UgMjIgMCBSCi9laWdodCAyMyAwIFIgL2ZpdmUgMjQgMCBSIC9mb3VyIDI1IDAgUiAvZyAyNiAwIFIgL2ggMjcgMCBSIC9pIDI4IDAgUgovbCAyOSAwIFIgL20gMzAgMCBSIC9uIDMyIDAgUiAvbyAzMyAwIFIgL29uZSAzNCAwIFIgL3BlcmlvZCAzNSAwIFIKL3IgMzYgMCBSIC9zIDM3IDAgUiAvc2V2ZW4gMzggMCBSIC9zaXggMzkgMCBSIC9zcGFjZSA0MCAwIFIgL3QgNDEgMCBSCi90aHJlZSA0MiAwIFIgL3R3byA0MyAwIFIgL3UgNDQgMCBSIC93IDQ1IDAgUiAveSA0NiAwIFIgL3plcm8gNDcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNzUgPj4KL0E0IDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ4IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDgzNlopCj4+CmVuZG9iagp4cmVmCjAgNDkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTc3NTggMDAwMDAgbiAKMDAwMDAxNzQ1MyAwMDAwMCBuIAowMDAwMDE3NDg1IDAwMDAwIG4gCjAwMDAwMTc2NjcgMDAwMDAgbiAKMDAwMDAxNzY4OCAwMDAwMCBuIAowMDAwMDE3NzA5IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDA3MDkzIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNzA3MiAwMDAwMCBuIAowMDAwMDE2MDQyIDAwMDAwIG4gCjAwMDAwMTU4MzUgMDAwMDAgbiAKMDAwMDAxNTM2MCAwMDAwMCBuIAowMDAwMDE3MDk1IDAwMDAwIG4gCjAwMDAwMDcxMTMgMDAwMDAgbiAKMDAwMDAwNzQyMSAwMDAwMCBuIAowMDAwMDA3NzQxIDAwMDAwIG4gCjAwMDAwMDgxMjEgMDAwMDAgbiAKMDAwMDAwODQzOCAwMDAwMCBuIAowMDAwMDA4NzQyIDAwMDAwIG4gCjAwMDAwMDkwNjQgMDAwMDAgbiAKMDAwMDAwOTUzMiAwMDAwMCBuIAowMDAwMDA5ODU0IDAwMDAwIG4gCjAwMDAwMTAwMjAgMDAwMDAgbiAKMDAwMDAxMDQzNCAwMDAwMCBuIAowMDAwMDEwNjcxIDAwMDAwIG4gCjAwMDAwMTA4MTUgMDAwMDAgbiAKMDAwMDAxMDkzNCAwMDAwMCBuIAowMDAwMDExMjY1IDAwMDAwIG4gCjAwMDAwMTE0MzcgMDAwMDAgbiAKMDAwMDAxMTY3MyAwMDAwMCBuIAowMDAwMDExOTY0IDAwMDAwIG4gCjAwMDAwMTIxMTkgMDAwMDAgbiAKMDAwMDAxMjI0MiAwMDAwMCBuIAowMDAwMDEyNDc1IDAwMDAwIG4gCjAwMDAwMTI4ODIgMDAwMDAgbiAKMDAwMDAxMzAyNCAwMDAwMCBuIAowMDAwMDEzNDE3IDAwMDAwIG4gCjAwMDAwMTM1MDcgMDAwMDAgbiAKMDAwMDAxMzcxMyAwMDAwMCBuIAowMDAwMDE0MTI2IDAwMDAwIG4gCjAwMDAwMTQ0NTAgMDAwMDAgbiAKMDAwMDAxNDY5NyAwMDAwMCBuIAowMDAwMDE0ODU4IDAwMDAwIG4gCjAwMDAwMTUwNzIgMDAwMDAgbiAKMDAwMDAxNzgxOCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ5IC9Sb290IDEgMCBSIC9JbmZvIDQ4IDAgUiA+PgpzdGFydHhyZWYKMTc5NjkKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:48:35.824888\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdS7MluXWd5/dXnKE0YBLvx5A0bUYoPKHIsAcOD2iqJTejiwqySSr0773W3vkA8u5TXbf6dpXRrRbrrjoXJ/dKYAPIBD78/Fff/P3bP3zzz7/+5eO//Pbl59dPf/j+xT/+iP/+7eEef8R///Hwj1/jv397cY+fuceHl9bT5kLmD9+dPwTft1hywR+/wwenH//vy8u/vvz8Fyji+4fbuq8lVZdbe/VD6s734mp7/IXf/uvpAy8f+/TLS+pbw7elsHX93g8v+PRWUvQtDPJ3o+yb3/Kh7yVMmlz6nx+vCvehbM3v/6Kc2Lby+Ms3j//5+NPj578IjNQ//gn//RH/iYM3j3vdfIm+tOmKL3W6ipffvvzm8eejYLf5jLtzlC0//npXX/6MOyf3yT963IoU5nntIW/esbg/fHj55e9efv7f/MP7x+/+FTfLPX73Ly//6/EP7h8f//vxu396+a+/e/mNfOH7h+2r32pqNfjbnTrldwgcIW9BSvPJp0+JPI+RDyWVvoXWam3JdRi61bGMMJfxi3/EF289VNci/3n8wx/++u3ff//Xb//9T4+///677396cz+9CXyeryFI+biu2nKP9aN1afsCtWkvsdUt+Z5zmgO+5B8ZcItbiL2VUhoyz8di9l8sZh/91mpMLc5BD/qPjNqHuhXc5Z7RAOpHww5fLmxEGkNN/h72pf/YsGvYfKo1ZFfKx2t4nLMGC/kZi/O8FlSbvqUc/Zx4bknjV9/86ftv//qfP9K/qHGG3lzsweeKvjJpRxlixt+Uo6tM0rNuoYTYQkp5N3v65cf4yy+3X355yXnL6PVLnBJNrlvrGVl3yjOXmv0Wu2fp3w0ljCq62l/+/x+8EeaHl4ISnHcxTsFfakZEHtmjz5YM6hLBW2Ei+LChqeDi5uBPlY201JrjZMmorhG8ESaCT7i+UNztzp8qxmDZN9zmyZJRXSN4I0wEj9Gqb7Hd7vypdsnJ+L/ZkkFdI3gjTASP7B6Sr2kO/lTxKxv6zoSMP3oyyWuEbwT64YUD9tB77lP4l8orTjn1VmdXRnmJ8K1AET5mvTHXNN/9S/U5bKlXGXsOpgzqGsEbYSJ4tOCEWG73/lQ9QkK35kKfPRnlNcI3AkX4uKBUo7/d+1P1MeOP+KHMrozyGuEbgX54aW7rObo+3/1L9Ql3vAbn2uzKKC8RvhUowsdkEL/R5rt/qWMbH0xZreVbYSJ4jNxRh8vt3p+qj5hEYcpYbp6M8hrhG4EifIzdq0s5z+GfKno405VRXiN8I9APLx2T5lrCXPNP0Ze4oaXnFmZPRnmJ4I0wETvabwsuzLf+UqfO7fJkuS7PihPRp6222vwc/CH6hMtvLvt+s2SQ1wj+dZjyTN71mPvtzp/qHL3pyRrBG3Ei+r7F3uM8xTvFaUwzWLLcUMcI88OLdxi54xaW+dYPsvd56w1lhcmVUV0ifDNSGoAxm3f9Hv+h+py36Ap+8WbLqC9iwOtIGT9G777UWG4GnDJ/r+bQcp+NGeVFDDBCpQO4pBBy8DcHTtkHvxV+R7w5M+qLWGDECgs8RvGhoT7PFlwy35SE4HpKd2sGfQ0LrFhpAd+AyTvQ2YJTnmvBaM1ytcCKlRZgOB97q/dacMrTJGe0ZrnJjxkrLcCgPuVS7rXglKd+f7JmtfGAGSssCHxv6FO61YJLnsZ9ozXLjQfNWGkBBvi5hnirBZc854LBmvVygRUrLUDvXqLz9WbBKU9P+Udrlnv6b8ZKCzDYL6jQt6VVl9wyZwMYAs3OjPIiBhiR0gCM9mvK7V4HTnk2wPRlEQOMSGFARGtGEfVWAy55mgYNpSw4PbJipQWRgfD3ZwtOeXzROxSy3PtfM1IaUFCG7+leB055NsD0ZREDjEhpQNtyrzXca8Apl7ylGKufbRnURcI34kT4CQN9F7O/3f9LzmnzvZfSZldGeQ0DrEhpAIb5rqOYmwGXjJhbwOB39mWUFzHAiJQGYJDvs2vxZsApl4DpMIa9ffZllBcxwIiUBmCIH1wr9xpwyXmrXJhYZl9GeREDjEhhQMYAP5SSbzVgkKcmcBWyXBOwIqUBGN7HkG7PyEd5NMD2ZREDjEhpAEb3KDTca8Alj01gKGS5JmBFSgMwuk+JSxtmA57Ipl2LGGCERAMwuE+99nsNuOSpCVyFrNcEjEhhQMHYPudc54URz2TbrjUMsEKiARjbFzTldDPgiWz6sogBRkg0AIP7Un2614AnsunLIgYYIdEAtOUaerzf6iey6csiBhghcTeK21pt1d9u9SCP3eBQyDt0g/MOmi0//uPlaUSzHf/868e802bc4FH54BK/ww0eZfN8glWYtFPJKcpuhsJ9e3IbO/4UkizvQ4LnZpweuMEjt9TCrnZXGi5Apn/Fy4Ng5EKHXBD8A0khuxSPpfLJMz+0wqXDsngIbcZz9hC4swZXWEtXtToXSn50v3XkFH6VzK9b6OnBHZU1hCClls35WmJ9eAd3PNzxKudeMCfhW9sse7wgtq1jupKDGB+Tr7J/oW+pxyJLHByum8v5H7LCN0R8zb6+OeRYZO1n2GJ3iQ//4xari/J1lbe0c+cDZwP4qyDPASpGBa5W3loY3HuQTTE1bwF1J+gCo1qrL0HlVtBtNpFzjlFetVeYlXLzXspA0U161lq3gg63V1mE6XPs+ml8pEUuz8PleddTL6rCIvyFyC6mKi+uKruskEMRuaCgmFRGBWtFl30ixiyrvxzupA8+iNo8XBfZb665zEVhkLPHvfAql9wbbwB9ilIZIAfuugtiH5+cSVsRGQ0gy2WjVvMto8j4TfSooYqMuldCUFmfOHi2JFRVsa/Bdy5UQTDcgRR8jKpWrtTtsn4BA5Qqy/j40CaVhFgymmwuXNclcquxNy5wc7TXV9ZG7jnE3UB9Zx+HFowrodzgJPMdZFYK3zVEtGFUaa6OhRxw0fKqGNXbd1xglUJi6F5283W3xezQQuRKaFPeF+BhRh0bg6ncrpqdrMYJMLs5PodFNMhAqezLs0pBtuEijcQlqfCEcsTFFtwoqVDde9SRhyxnSi4nWbyNSoS2IVUYcm+p8lluQpvCTU8iF9a5VLXqFFxhSyqjBfJhn9xI1BxJEmiZ0SE56V6BgGlx31fRuOQ8t0oENG1MFGpSufie99dLteFG6EIETKd6a/xOfNxH3JOw62xMXt/OpxzcvkABSSLKs2d8Fg2xOn1A75BxcBMSWza+KlRJWd6hCSCp8GrwcdSTY/0D4sOt5eVENn5UrfrQFSANH9pfAXHpry4MQX3yAe2Lz74jKl2ru4yGHl0UPdQW9c2pQ0ZCS+c7M89byi2YD11agCJLZW+AJM19yYfeGlJ60yUHrC8aLNIVEi5fPwY09tr2xzAeuSvV6pLoSG6u1F1H5Pgr0VFe1he8aDqoA+jB+LVIvFFaEd9x54BL1hzpkJqrvv5HkkFqddpp1ZSC97te2Ok2KT54V5PqiB2WybtyNOnQctDLLLCnS2fHfdjIKMdLVfQMGEJJfUI/nqNeDkLMUvupI7zo6q7XCKu6pgaHfCr3logCj35ZO1O0WbRE6qhfSFJBFnDge3vRbM7XeMgU3VWtmUiocZcxkmeGRoEN/ZdWQHwEabbLGiFcQEKsWgpyD7ejB26EQtfY1APIpXUuEkALRU1wUuvpXyidDQZJAYlW07+MBZDLkMa50LbkFvXTqOmhdnR7yCy+p6YrUngvXY3o91BIz93phSDLlMJmgQtxCXfA73JN0oF1fqNP+iYbNwaT9upgIpoQyuj7k24+0kxM+2xCBUbrzUCrQG6OshYqsIp1rZIRaQl1jKvk0ER7ZKQPfTcAx9HVs8eOOdWgj8zRqeDG+wdSTkEH2uKuIgxcJc0quJSoz5e54KBVNDOaVWGnyoWbr3DnHg2lRWQofRuBnhopCmVzVyJ6NqeBIv+g98zpgbENmnLW/AAZ3+jRh2bUehdzO57oYmTADyOzhXg+5uXiL1xrRoOq7ApFRi6PMhTJrIYhSxqkzC2wyM4sAzdb2zozaEKUjdeRa0zaFtFxIpfiSih3xKi2spt1GGbJVftS9yqOAQaKK/rEHXmgaDBI2hnjOy8XiC4i7Z9GhgtkL3CIV/C/MrihjJzATAbZhb1n5QgD3xeTPMx2bMx6Jcg5yPBBJ/dIUfF4HOhC4CsPlo2kKzu1KReMDrjFhMVxfCMy2i/61AcXTWT4JJeXUY+YaCNlVEwXjudJ6E8d7gcfrmIMoHcGtymhkwoy7EZnv7+DyNyFgn+CyEmHi+whAyZjWZ9Jwc2kMi3Gnyu/MZeq2RO9LEZcTS4j4cP7nL6xe+AwkV0islyU28hNvhi/8e1xZEvpWoNR5VJGz5op4xuknaKzh70cf3JAhrbupQgMDdAd5n0DXk9O8w7GuBwCRn0jgZa5zyuQA+AMF65I31X3QnAzMOFEak+sv8j+EkvlLKGz2+GIjLCQ+pjnLIkbePb+wZbn7faBkxC0p31e9YOECou6ghJNcMWHp+wW/Mab6Bevv/WjZTsE9akcAaTexvzIf4kzqUdJzykA//33//nNX/DTiAH4DF6O0nreyM0J6DTi670ekXO01spt6esgTx4NpfhX/BzWjvMD/Pdz57UvVp3CRBNJ9rZy9xTvd/JzwBCY3mF0wgwIDz8LpPPTRY8ehXe0pHmJ0iC/gwMY3WhpriDPfYoD3j0h6gSmdHQamNUw+70vUucnrGRvaiWfiS3CnHK4+k/F7LgvWNsGG9AoMKJ1Oc42XPI72YD+DF0zxmGZPfhHnQj5qziBcTIfxmCwNDlxye/kROcUAUkNbqD4jzqRv06dkNmkx+y6z1YM+jt5wRWFmJFjylCd+4EGUr9OteDosRaZds1mXPp7mYEhcMYwP3WW+3FAlXPPoEW165ZNLfNHwIs+010+w//Uh9Y//Az/oy8AMOqJfFiU+m1ZKz4rD/5uy1oHeSQWDYWYIKM1jDAiphGY9CVkr3Yz4pRHetHojwU1WsMII2IYkZhOA59sTUZc8kgyGgoxAUdLGGFFTCMw/c7N5VuNuORxUedQiLnWcw0jjIhpRCJXs6V7jTjlkXA0+mOBj9YwwoiYRhS+ySrhXiNOedruMJRib4NYwwojZlrBB46Z+MHZilOewEejRSYQaQ0rjJhhhbzy9f62JHaQRxbK6JCFSFnCCCtiGhE3jPj6bWnsIE90iNEgkxqxhhVGzLSibB7T+Bs3ZpCnHYKjRebOwTWsMGKmFY3PpUmlna045QmUNFpkApTWsMKIGVYUtzWXYrzVikueMsXg0LKZwoqYRkS+E/Q3ss4gT3uIR4PMvcVrWGHETCv4ppyPz29WnPIEUxotMiFLa1hhxEwrMJcIvvR7rTjlCa00WmQil9awwoiZT/P5dK+m23rRQZ670sGidbtSK2ZawbegMdxWjg7ytNN8ssjagb6GFUbM+zue2F2+OXGoNyNsgxYz4nXE9KFwfQ5ftM9GnPI8uroMWndwZYVMJzCbyK7cnt6d6rTzePTH3JG8hhGvI4YPfOWXS7o3jUueCE2DQSa4aQkjrJDpBKYSJdzWZF/qBGoa/TEBTmsY8Tpi+iDLgjBovhlxyhOdYzDIhHasYYQRMp3APKLGG8fnUido0+SPBXNaw4jXEcOHzhWy8hJ+MuKSbzXiMmjZGmGFTCfi5lqON6LNIM/Tr8GhdadfVsy0Ist7LH9rHZc8DyVGi5YdS1gx0woef8PP3qw45Xl8OVi07vjSivnDS3RcZhJKu60Fu+Q5VQwWLZsrzJhpBaYRrqXqb1ac8vRuY7Ro2XceZsy0InEfUMj3WnHKI+poKMQkIK1hhBExjeAaNefSvU6c8myE6c9iRhgR0wjMIwI3dN+MOOVpojWUsu4EzIwZVngvy6lvZJxBHl+LD4Us+7bcjJhGRA6RYq83I055MsL2ZzEjjIhphOyOu69FH+QBCjWUYaGi1rDBiJc2NO536OVeH055ZEMNhZjIqDWMMCKGEYG7hFLNt/owyAMcYyzEYmYsYYQVMY2I3Emd461GXPLIihoKMRFSaxhhREwjMIUoJYZ7jbjkgRQwFmIBBNYwwoiYRmACUbk/9GbEJY9NYyhk3aZhREwjOrevtxsoZpQnI0x/FjPCiFi3s4QWS50XFY3y1DSuQpZtGlbENCK9Pn31u+eyadtiRhih0YhiHTg7ymPTGApZtmlYEdOIbh0++1Q2bVvMCCM0GJG8dRDtM9n2Zy0jrNBoRLQOpX0qm/4sZoQRGo0o1gG1T2XTn8WMMEKjEc06rHaUx+5zKOQdu89x99SLIKoen2jLa0TVuH2nIp9nUkI+iMwN+QIwqL2HopsyEr4n8sZmRwBETnWXWyXb50GyQA5d32lwL0smY4FTzl6C6yqXrXjHN4EE+ySUfu4DaUQ78WlebUUpO4FgkpS5U757Mcvprgh4hXk9sm8noCMrZyBwS36Jsl3c+Y17+qsujk5cx1QraTJkHcmRKrp8PCFkOV+FhIcYdIE9xn++JQGaBO7PD0GLb0KOqrraPBRcjhaDYRJBFknoSI2sFV1z6jfXZWMZvghGeNnDSLnUyFEVkRA5uZTka+FeyJiOFKFOpSSPb1THlWVZetRIfe1d9bgl78nxop59yt7veu+eJC8tn3wu0UnJ6mRWCeaikmix67h9oSvAqreuJCgumY2uCeaLEI3K7ai73lrdMVP4X+7JoFzheMX16wrbknPU4tsGn/CPUrOQJ2Pc9YIswXV2LAcXmXT9dt8EspTFTdy22HUxGupcSY7EE9SKxn16ftd7ilHOigvkjh2rO9E20MSCrgTOLur7Jc52m+ezUt6e6v1eOpJWcqyjwqVwXNAieoLJPcki2k5QRIth13GbBTNG3ASLORZY5toENMYLQC0NepXIBbkKaQx66iW2Q6+xCGqMy1FDrFp83xzvXJRtjtn16NKulxgFH8YlJnxleCxPCz4IP+xY9K06blxrfQd3NfLXjrVLobSd8sWBbe27jCZZZJ9FJeAj6JrhSixREaQXcTdotPFYGoWkIVCvwCdMRHSIXjdfklC9AozCtWq0ldu6kmC9SECqyHZSdyq5QVG4XqFJ66i73F0UrhdH4D7re7HaeTSicL2QZJjepJBGkpxXkSQhra1QUVGE9iXcfKQnfQ/vuQxBcF9E0CGxCXItNOSw2oX3FRwfHiatINB7bgL8IiApZiV7cYVHjrXmJowp1JUukTZUdV8FBEaAVfd75mrkU2VBfhF4FAiG2/WWCXOhYST9db1KZKiYBAUWmKxK0x2TDXcHSejAcoXu9EaRktGjwMCgo02VqJdDbFXIxHVBr75VNb4zHaIeJ8XztRz0MpFtXUF/UkUvNcWadx1NIOvXIuW0/eO4O7gtBHDh/qEDUKwPdaLTCOCKhLIIjIY6GiQ6By4HEWRUKrpKvyNF4QcCuDCuRGZJ/dDRN3Q5/4egMiQUuVmdeTWybfDzSODM8ao3JBcCuKJQZrzelU7wjicBQSpUYgcrOip1c07W6bBIpLT40NeOyCykVchrx1SV7RfZu6AeSUeD1Ju63BW+m0MPjmbDbok4N3346niGVdZTHFppupeRKvJQRddKs5HVvX44obaQJMatwyVFZStSxhcmpEjI6A91+1t0SDfwER0CC0FPJambb4SQ2RJ6qk7QGJKpfiWhZq4hI+H60Hdkd8iI0bP/YsDB79GwE+qZnC7EC+96VR25iXg8lUtNaVdxEz17NRSS8EcpG/1tLYXppaOednR2+jzabz0Ie46etKTpLfrA1ItLlO4et1/SEp/iu5aCYrpQh4LeHY8khqqPDopkRlxd0U9j4IFokCuKECfT/uSX6CFkE4xHUCVwr7I+MCeODl2GPBkv8ET2k1NGK2FSR/eLlhDi8XgdRqBOcKcyes2yh4N+GV+PJMfOHYM4r5/m5u/q0AVxZATrZRwBgzlmIdsBORzJVvFwlDFIxLVQxk2KehsCB1V8h0E5IJNJ/qLcUfP5RB9pDdVQn+qi5yWlpgkyKyG9xV1GcsU/xItinFi9fjpzvWLKQo1CFtdcRJlpssvzLwKz/PFYLKOn0FEhEtz+ap5EvITBQecQEkMTXfTIZ0e4gQyNyzjIVRKZYLqCb/QcE7fii+BPI7MDrrYlhU/h5sVdxh9DkGezZA86fQqBzNmIdpSBNQafes+Y35PLBGyhEeOKtPnxmQXSMgFbRa5b6xq7DlxukwvECC3oy1Suv8H4M+igHT7sn2Zs5SE8xqLQLU59fU6ytAHDaEJbddiPNoQcsx9y04+CeWYDmsZ+/E/j2xiR0bBTk1UzkacdO+n6ZO6A2aTyrpCNpP+MpP5zZOIJjuIwQLPAMP9I7AzSM/ENiKknpJZngCKUbEJcPjxFHeE33kyDsb/9o9/xFuQUR2Npn5BxWdqnM6fCV2FOJSeDq/uOF3R3GFS+OmZykCeThlK8yZy6PuDmr/rRmA+0GGltfX5xMcj32/k51CX0gRjMECzMfvopdYmYxlI7O2iTv/RnlE2EIu/99ac/fHigiJ/96ps//v5//O23v//T9z/78O2f/vb941f//vjNDvL4Cf3jnNGFcFuJOcjv4F/ivFdKc7ghn4Pt+gkN6NyilOttz/Agv4cBXKnK0mojjPLHYLuQkTm9kDr2vsyun7KRviXLfGYbrW68+k9mdn0VF2rAyAG9zWzCqb6TB6WSx+k5uIn1B4BdX8UGGf5jmt1vtWHQ38kKtGaysTmT/AEuk0tfxwpifUuO8ebEKb+TEfKURR64eEziPmpE+TpG5C67yzGXnJ249Peygs+/PB8DYmj/A+2jPWF1RXm6dxb5I1hdn2nuF32pkYglb69O30zEkr8+fXOQRyjXUIjJ6lrDCCNiGpE34xTOQR6hXKM/FqtrDSOMiGlEtU7jHOQRyjUUYrK61jDCiJhGdOtczkEeV9cOhdjnsi5hhBExjCCz//X5nIM8QrlGfyxW1xJGWBHTiGSd0znI0/6UoZQnR5YvYYURM60o1omdgzwxuUaLTFbXGlYYMdOKbp3dOcgjamd0yCLwrGGEETGM4HEVr8/wHOQJJDIaZAJGlrDCiplWROt4ykGetnqOFplbQNewwoiZVhTrAM9Bnphco0Umq2sNK4yYaUWzjqwc5ClTDA4tmymsiGFEctbRlYM8bQofDTI3iy9hhRUzreAPrw6xHOSJyTVaZLK61rDCiJlWZOs4y0GemFyjRSaraw0rjJhpRbUO/BzkuSsdLFq3K7ViphXdOhF0kCdUwGSRhRBYwwojZn2z41vK7lYrLvlmhW3RWlZYMdMKnrvouMB0tuKU5wHWYNG6AywrZlpRMLcsrt5rxSlPG8NHi8wN42tYYcRMKzClcP6G2LjUicw1GmQSu9Yw4nXE8IGrTF0tNyzRIE9orsEgk9i1hBFWyHSCi9njDTN/qRNbZfTHZK6sYcTriOkDj23m79+MOOUJzTUaZBG71jDCCJlOcM3p3QbVbrVh8Gbd2nCPFg5UfCziIzcTLnmefR3mrDv1sgKmD1xFWe6vvk51HkGM7iw7gjAipg+ZS2ljvteHU56HlZdB644qrZDpBLfMNH8bSZ3qnB8Gf9bND0bE9AEzh4wCbgOpS55fdFwGrfuewwoZTjRMHHKvfl7nNMgjf2ooxMRSLWGEFTGNwLShZG6BmI045ckI25/FjDAiphGYNlQf2r1GnPI83bpKWXi6ZcVMKzq3iblyrxOnPL0hvwpZ9w25FTFXnPoNZbZ8qxOXPBth+rOWEVbENEK2HN4X7w/yQOIayrD4XGvYYMRLGzLPGE/hXh9OeQRxDYWYfK41jDAiphGYOzgXbhCiUR5IImMhFmBkDSOMiD+8ZIdPcnfSvJhokEcQ11CIyedawQgzYhqBH7xsx5+NuOQBlzAWYlEU1jDCiJhGcENfzeVeIy55aANjIas2DTNiGoHZQ4jcfjgbccmTEaY/ixlhREwjOrde+nivEZc8NY2rkHWbhhExjPDh9bnC3z2VbdvWMsIKjUZg8vD6JOVRHpvGUMiyTcOKmEYU6yTlp7Jp22JGGKHRiG6dpPxUNv1ZzAgjNBgRvHWS8jPZ9mctI6zQaES0TlJ+Kpv+LGaEERqNwOzh9UnKozx2n0Mh79h9viefa9yyo3wu52VfArft98r3WgLo8kXX3fut8USytgO60r4cP2zJt4RfVUBXEySRbGDplfgOAXT51vXTmIDmAlOUz1X1GZavW4mBaUT5XE73wPDbPRkDiufyTtc9O4xLenBxx3N5YZgkci9cy6TBCJ4rNKG7yCL5UkMMO56LbIeHrhgXiIrf8Vyh6s4bbsAtsQvdhXyu0qsutudmg1Bi3PlcpTddb11RqI+yCAYxO54kITqhF/jpAnQlvR7uBO8xtQPQFdOxnLvy6Z0/AF0ErHBtIswWftUB6GoCSqHec43EjimgK5VjNXSOhYShnc8l/K/EWHomRGLnc+1hxbgFQc8cfC7vj2WyMJN7sk8+l34+8UlKivkEdO2fJysp1NpOQNeu5i7bCQ8817Hy1FfYkg46V9oLqahYzp9wLgX0UEYbScI0UziXgEe4bDNx03Q54FxNFzsjF5fma9/ZXKHreoyElsJTPvJO53JNiCmwmmyiTHSZ0rkUBEKdCBaiy5TOVeKxdDLj/xFdpnQuRZ0lIjbQ7NoB5wo17zKqOd/d7HAusQBXhqYSCC7b0Vy6pKrgN8nvOtBcaBsPXXXmUUH59FfRXEm3R0GvuUVyyATNhVYrxWfukoVB4UBzxX1NCvzzaPF5Z3M1r++a2HZ7dLKvQthcuaoeNxjDlcHC5mqOR2LoIh/UedfrwebquroaevUupQvNpQtAMltA5fYMRXM59YYsmkKc3IHm0j2cXDqTEjltO5sr9aBriyo5T7joA86V3aGjSJ/zyedKevnIEI2ssJ3PFUMMu06MVPIHn6umY6FKD2RHHXyu2vVVvSPjjVwtxXORW6TrORwZbPHAc2lKgFwKAUQHnktpYchJJO8EAZoJnstp/S5xQ6bIO9CsEdjid70TkNgOPletWj5qdSZn5+Rz6c0qSF2xFXmRKHyuU65oDXyhqniuPReXtjnUpNAPPJc+PYaMIhSXJnSusL+mx/3vye2lI+EUYZpRrzUKME3xXELO4/vsKEYqmytptyD72F3ldyqbK2l9gl6qEzCasrliVx3pKXUBo+1srhh3Ha1XwGjK5mq6ULUmoUORjKZsruiOd825FCGjKZtrX3tQC+ELBwItNFc1S9dKcJSgzpTNpZhDvoBDfmiywglZNzsniKHUHEG1OfodzlU1qUPGb5KAJnQuNAh9QI+Mg3yKpi10rh0TSLnHng841/HhwGf4xJ8pnCvojqcWSQQg/UzhXK4dr4PQRNEAdjhX0XwAGXmSGUnhXCFpIXIcsSDRFM6V1K4mD0oFibbTubT9NeSkKjytA88lsCz0qujWoyDRlM8Vdltwj5FhcM8U0BX0fS73QhNf13dAV1bTO5oimlkJO6CruUMuaKG4MgV0VQEk8el+RfInHIGArqZ8KWSKDZ03MWkK6FJkHr4bw4NMIJoCurQHgVpQ713Z+VzNHc/RMbklD035XFGzAB1FZ9TDzufCkERktM0QkRV2PpdSEEkJwViAvbjwudr+Vr+zOjkmkJ3PpQm+oxZ7Mg0Vz5XcoTYE0OOO5zqeWaJUAjAFzuUVkZlxQwoyO26U0rm0g+eDveALYWg7nSsfz/uQEpi1dzqXjIrgPkYbmTA0pXMlMZUPxbwnWXGHc4VdhDdEoSmby+9FYPyKQZnrO5sr7J9mu+hknimbq0pyoow+gswzZXPpbk4+c/Hoqps/2FySa3CnZMdnqQeby+nsC/1q4zELB5vLH88rMBBhJlE2VxSEG+VC6mHf2Vxe7i4uGcMDVt2DzRWSyJmjKMGYKZ5LOlKZ+Tomw53OFVRF2uDgW1/XkM6lcwEeh5HzfhLTQefCfBFtgonzgHO1Y+KAv8plhHNxlhG5qjZPcK5x8nFyuEzxDXCuJ0iWZyQnlGzSWj48ZULhN96MfbG//aPf8RY4F0dp/U1QrvRVoFwZvUF6vbWl8myq1+eEDvJkzlCKN6Fc5wf4b/qs2ekTnEfhPIcdynT9l3q/iZ/B8ijsyVEYcg96ws9iSv108SNpIPu5dNvbOsjv4YCMNlga+Y+f4kB4xpQqTmCaSHECxntfrNRPZ/Pb2snnuZw5T7+u/rOxUl/EBQ5QMTTBgHZy4ZLfyQXCnJm+vJA63gaW+iJGcKaWUyk9zU4M+jtZgRET6deOGz/cD1SKV2SpL+NF5rRACPSzF5f+Xl5wTJorH3eRyv3pcKkBqJTlgcxZ5I8AKn2muV/2KTTmTsaZlRgBWWdWDvJIThoKMYFKSxhhRUwjgnVm5SCP5KTRHwuotIYRRsQ0IltnVg7ySE4aCjGBSmsYYURMI+pmnFo5yONyyKEQc5XkGkYYEdOIbp1aOcgjOWn0xwIqrWGEETGmFS5Yp1YO8rShYCjF3miwghVmzLQiWedWDvIEThotMoFKa1hhxEwrinVy5SCPPJTRIQuTsoYRRsQ0olknVw7yRHsYDTIpEGtYYcQMK/jS+/UhjIM87cobLTJ36y1hhRUzrYjWMZWDPIGTRotMoNIaVhgx04psHcQ4yFOmGBxaNlNYEdOIZh3EOMjT7t3RIHNX7xpWGDHzUaWzjmIc5AmcNFpkApWWsMKKmVYE6zDGQZ7ASaNFJlBpDSuMmGlFto6rHOS5Kx0sWrcrtWKmFdU6x3KQp33dk0XWfu81rDBiPl9r9NxvVpzyzQrbosWsMGKGFegHXMxcEDhZccnzAGuwaN0BlhUzrUhcmJDDrVZc8rSTd7TI3OG7hhVGzLSi8AjU6O+14pQndNJokYlUWsMKI2ZagSlFjq7fa8UpT/Ck0SITqrSGFUbMsIIH8+J32q1WXPIExBgtMkEZS1hhxUwreOowX0vdrDjlCaA0WWSBldawwoiZVnDl6O08t+9Gea4Vo0Xr1gojZlrBE1dLuLePQ50nY4NB607GjIjhQ+aKfq4Om4245HlQMRi07JjCCplO8NTKeoOGXOo8zhz8WXecaURMHwQHk/u9RpzynCQug9bNEVbIdKJusfcbLP9Spzccoz/rvvkwIqYPmEmggpd7jTjlkSB0lWFyhdawwQgYPhRMI7y7N4xTnV0wzVnLBiNeuoAZhC/1BpAZ5HnudRay8NTLCplOYAIRQr4xZAZ5fC0+FLLs23IzYhqB6UNomEzejDjl2QjTn8WMMCKGEVU2jd0XXw/ygFEayrDgSkvYYMVLG3BfY+emvtmGUx4pSkMhJlxpDSOMiGkE97vkUu714ZIHDMRYiEWHWMMII2IagXmD7LC9GXHKI0VpKMSEK61hhBExjGj4tVxDvNWIQR72uo+FWFvglzDCiphGYN5QoruhYkZ5bBpDIcs2DStiGsHjzzGDvC0rGuTJCNOfxYwwIqYRmDjUlNu9Rlzy2DSGQtZtGkbENKK/Pgj2u+eyadtiRhihwYjuraNvR3lqGlchyzYNK2IakTbj6NunsmnbYkYYodGIYh19+1Q2/VnMCCM0GtGso2+fyqY/ixlhhMY9N946+vaJ/MSfpYwwQ6MR0Tr6dpSHfnIs5B27z/eEK43bd4ivqT1xkxVlPm7nu61OJkoQ1EduhFikrNt3nMtRlg5SJgwmZ27198kn3cLhN4+yE6acJAJ1F3T1ekCB+AshH3jXklL7kEZybxmTkMat0jnoxvsO4zAmbfnBKyXBSXafo4oRGeFd2PDJ2nXzTJfVSjzAxztM+2PQ9wi4DUSheAWXILaiMkZ5jqgQeeGECqsMhuK4K5U4DIFzyMM0XWGNwVAoBAIQVoPLjvpw3iGMlpMsk8GcyvnU667Xkjh44uuLnrPuYcGt2CLBSVnYR+hIUs+7jmtOTZFLnRMy/XwjHahFL3oNqXZd3Ns314Iuw6n4Y/FajieoxwWnK2CL91mM5wrY2Lugp0g5qgo/Kh4WogJERSi1Sv7FQ5eJIn5ctNKPAuYF+nlymXKRY9YCq4ziYbiYkuvvCdcgKIBL6PTzBd6moJgj3O7uDlmqflTXPAKXqDxCrMJ5EPxRycro4ALFHr2Aqogc8vBZL7PjByegqkzUiSIpuIjPtS6cKqHltHP5Y8ENJaaqkNdRfNB1PGipqQmmCnr1XrEK1BvqVxA5uuTOpYMEK8oS2s5DH7re2sCXuVkwVcJoCk7n2qh2uG+Co+IrDBcVrcBFZQ03luApIo9gwf61qBdocvriK3KLoxbT4E0/SFLw3VVdsYgI0fxkd0QhY6I5KYZMm14Dj06NpHGEWsqulyqICLJwYq8KJeESnkAW0s7OibHksusNLTIqmgfVMmb9fNxYj5tQl9IB36KMzwhKKhLLoiPHiKZXo6CkSPnCmKHoYpmMyhIIU6Nem3f6xIqEJFQD7nLhucBZUFm6oiR6fGGWi8fkhHeTekUy7cKeCoLpUf4Hl1241IU9xZWdKDEfOgwthbtrOgkWRZ+cRiQ815gVILcEQ/ou14a8FKWYzqwuHiQkl5AFYYW7WZBs9LV+QG5LdU/m+O1eDr0giZFgBSuRYFM/lgEEWOQVlhR9UaRJETRGUIIVSS3IbqqzGnkhWBU22nSuMsioFU1BQaj/Xe8gESK4NCFYcfVeLZqjoNfYhWDFmoDkrjkk8RqaEKxkiVtu57v7VOtBqsqoGZqLuDoUBnJBB+5DIC1QX1yiZ0KVD7o/h4Q4beXQ2dWojOCDes/dn2QwKb3OedTUuutoYYKqwu3PcG1/H4jcRWYN6w4PmOhRl/CiGyLFqGkdQa/a9stB7kKrrFpHMMFPmhqRURzSBeFQ3A3NpVvHa7aKUnHN6FtQR73uJchkQjF20ouQxeopI7kRatcjCy9RC0fbwLeiNaNHRAPfX9lwC3Eihw1qwjxKEEWUoRLZw36y7LSaUtCOQiSxjMyEyA2RD33vQzKPcIvwq0rSotrRC1DuaFupCqKvlEiOX/JF6EcwtwfV0Rn4Xtl/QUerbNqvQUf9QRfLYniPgj5Rz1vAYCIJowmdfNQaBrllfFPjtaCfzZoi0McjHMIPSSuqeW/0pfICEolTvNiatW1DRo9P1hAhS/BqD4gLIsj9agSu4bq1DAxGWGMLyUqwqqndldA8jy6KzzWrq8kfrwdQjTCC4GgEXZxCynCzNviacVWsA0ydbZcbcrcTLiQy/R5NReXAYAhNEzWv17Q3Rsi9cGEbOUwIRYBLpSLhoa9GD8cP81ZLMJWQn9xLYNG17ugryg31Fv0bKylGP0kvm7seya6ljBYWtTesaB3oGPk4HzmYtCe9ELRV9HGBo7ZeMQKRDzfH5YiRu0YIR+sKIaPcA3sxAWhi2BaPh4MYBsYuM3zW+b0QJKjI1MKBIjoPJxA5pCPyEuVka8FOORn7UZYS9Zlq9PstaxhPVQIF5dPoeHTExZNAIsfPRB2hku+Vns8aCMv0IsOSLje4C2ENM04phF8jt4wwLnIWqXr0XZqY2BI5hOvEFDUYokZx0ooqyteuTLz4hFw26mgiOM1T5lokrTus0el4uNoEgafTHPQ+vCH8MMa1MgYgIsWRgaRFZ1SRvs8FakVFEhQTenqXVUaJXDVLBhKRdzHe5hO4UN7n8Fx+AzPpCW/kGWgHJZsokg9PkT2kLL2VaWJ/+0e/4y3MJI7hEkvhv29iJ5Wvwk6q7Ble72LBrGVrtxVkhzbZM/y+N6lJ1wf8/CU/mtmB9IBmVXOeb/0g32/kZyA70ORIOsyZkLNPoga9Qtn8hA4QnolfvS0VHuT3cIDwPSnNdYzJP8EB/4ybhOnExoqIK2WOfF9u0k9n8xvayOdZXEMZL/2zoUlfxAKMsTCJxAjlcuCU3skAviLmKpKQWYffxkv6Ih6QvokxrB+rwaW9kwvkivpKYnLuP0AHekVK+iIueJ84KcOQ+HLh0t7JBT5ci3xWgsHND9lQvo4NZEGETkrs4MMlvpcRkaPIXtGZY/70cSPa1zEC7TZw5jz6cGrvZQPx1T5j2ll4vuPHbLj3Qyc0q/IRzNDQPh+a9Zm+ftm3C2Rdvz5IshJ1/fogyUEe6VhDISY0aw0jjIhhBKncrw+SHOSRjjX6Y0GzljDCiphGBOsgyUEe6VhDISY0aw0jjIhpRLKOkhzkcZnrUIi5+nUNI4yIaUS1jpIc5JGONfpjQbPWMMKImEZ06yjJQZ62iAyl2FtH1rDCiBlWkMj/+jDJQZ7gWKNFJjRrCSusmGlFso6THOSReTM6ZKFw1jDCiJhGFOs4yUGeiB6jQSbpYw0rjJhpRbNORhzkaZ/laJG5/3INK4yYYQXXZLw+O3KQJzjWaJEJzVrCCitmWsEXJ69ORxzkKVMMDi2bKayIaUS2Tkcc5Gk/9miQuU97DSuMmGlFs85HHOQJjjVaZEKz1rDCiJnP7J11QuIgT3Cs0SITmrWCFWbMtCJYZ0gO8tRljhYt25WaMdMKVvNXh0sO8rRTf7LI2sG/hhVGzPtLLfQC/l4rTvlmhW3RYlYYMdMKrp/yvt9rxSlPA6nRomUHWGbMsILHjzYe8zVbccnTDu3RInPn9hJWWDHTCm405UqzmxWnPMGxRotMaNYaVhgx04qCIWOb34t/N8oTHGu0yIRmrWGFETOt4MryJKtmJitOeUKcjBaZ6JM1rDBihhU8C9g7f+MjDfIEx5ossqBZS1hhxUwruJL4ds7ad6M814rRomVrhRUzrcCkgocD3mvFKU/TrtGiZadjZsy0osmZrPVeK055HleMFi07rrBihhU8XzvGUG614pLn0eZg0bqjTStmWhG4nt7dlsKd6pwpBoPWzRRGxPQBM4qUWrwbccrTi47BoGXff5gh0wl0h9ndnvlf6giHGoowmVFr2PA6XrqAuUQu6VXDOOXZB8udxWwwAoYPCROJwq1/kw2nOk/ArjIWnoAZEdMHzCJK7fVWHy55fDd+lbHsG3MzYPqAKUSNN07Spc4umOYsZsPreOmC7B28L78f5IGPdRVhQbPWMMEIFy5wS2nL8UYGGuSRjjUUYkKzljDCiphGRFky5m+tYpAHvMdYiEX9WMMII2IawePh+dmbEac80rGGQkxo1hpGGBHTCEwZnOyen4245IFhMBZioQ3WMMKImHs1uNO7pXqrEYM8NY2rkGWbhhWxblopPoV8qxGDPBph+7OYEUbENCJxp6RL9xpxyWPTGApZtmlYEdOI+vqw3++ey6ZtixlhhEYjunW88ShPTeMqZN2mYUQMI6q3jjd+Jtu2rWWEFRqNSNbxxk9l05/FjDBCoxHco//qeOOnsunPYkYYodGIZh1v/FQ2/VnMCCM0bjzy1vHGozx2n0Mh79h9vic0a9x54zZcIbHK3L7DzbGdtxDTRVRqL7wC2Z7SyHbg9hRSRkTs3BLNl3nEbHj8UVepu61jkoF5JhqGQ+dZdWNH3lxyfCFM0IfDdepKVYSQUyMWhSic2JKyBuAsaQ4pyBa12JtPqoct1xCC7pDD513zonPFFoJQpBNuiY+yULyRpu5CVqRTcDn3susNVXVfFBpr1lLylkrraedONRioi6wFrBGI5SK1hpSYuusl1BKUm4W5lNvX39YNfxeFfgQ9dNxuWWLG/WOwRheptpRiS7teWtxxVz1AluK7l8pcFTDlU/HnSs6WfPV6OTlmp+b0sKXg3X7anSfXSle2RZjW647rai6koJeTYFpLxHJlbvCrTnAqtfPZCXt4j8ki/qDbD3jfYvYiY+qUc9ivklQzNnzBWoUaUk+7jm8m0oQ6fVLre98Qkq+KwapOeGSq9wwPm+KxcDkSLRej4Xa24kV3ab+1zfENqg9uP7oslCLlcMVWKF0uB3ccsjZKF2FOy7VIsLHxWYjocLaU4vRe+RZjOZb4JPI9doYawne6Coq0H5YqNbNhVOTjvg4GlxSTvsVEU6z6PI4cN9R3vsyIRHdFkmR0hUSKxXXlHIWSU1Add7Tjt7vQmFwJSuzhMgKPhkpCVkgCgjn1mmMqioZLjiQi0esWY2gkZ0GPoWd/6N0jYXj9vIcBep2dlJgmhCxUwtYUyNKCYwXORGEJ66vU8wU2qTeEW5G0hQD2z0eeaJEFYoWxUnAKBGvcccmC9ARb4uP0NpItxb9QqFbzZNmIXnEzfOFagShwkpL6riOBdsmP0IOv7nilGpOLQQ9f4i3Kdde7l+dehHC15pJ+vG+pI0V6uS0VrUZtwA+ET8lqjb4hKYWib+FIn6+sbHCnea9EPb6Sih0ZqQhrK3QuqxYdzR4NGRMHWf9S92DJNsN9IEwK1ZpJs4X9VYaLjhAr8o7QhoThQ5mhov1xcWrcv7LBmI46z0zK1KIrbrjBvzRyrTp3ziP8tr8d6KESa8VW7VLQu5TkcRgacM+E0lWhrVEtJRNeRYxMDLWrjBaF/hQGdda8WEPZZdxtoqu6EumDPnJEQ+O1BoKRkOeTEN74XDoXT2ATsmNn61CZb7yRUdODqb33/W4K5qcQRFXIOyxuf2bDhamZyKnCTb0+lOPhHhIT2VK5sptJwqBpZBlVLuglsQ79kz4SzcRPeUKkmN2yC7KhrLFnQ4xOEUPwVehKfCbA6sBdCCQpOq9OFVIbPaFLBCMGH0ra54shy4mcbNLIfn2fM/DbudGHPeXxbBYjaKRy5m7SCWuqgilqxPvz6xvliL5EZ2DoQEOpcrI8eT+EwImMtgdvqxSSIvKbXAhB6FyVJ6weGLyXPQxYZImzoI5s9Q1Mnicsi2cYF5T8GnPxwUbBkN/zJlKG/aXPS38Lh4ddFGpX13/fwuFpjyf0kliJPSPqKzjB8I1FJQtewsFaxSAHg5EBXvIv337/1798+3/+xh+m/eQv/w+BNXgECmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTQxMTMKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IDY1IC9BIDY4IC9EIDc2IC9MIDk3IC9hIC9iIC9jIC9kIC9lIDEwNSAvaSAxMDggL2wgMTEwIC9uIC9vIDExNCAvcgovcyAvdCAvdSAvdiAxMjEgL3kgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0EgMTcgMCBSIC9EIDE4IDAgUiAvTCAxOSAwIFIgL2EgMjAgMCBSIC9iIDIxIDAgUiAvYyAyMiAwIFIgL2QgMjMgMCBSCi9lIDI0IDAgUiAvZWlnaHQgMjUgMCBSIC9maXZlIDI2IDAgUiAvZm91ciAyNyAwIFIgL2kgMjggMCBSIC9sIDI5IDAgUgovbiAzMSAwIFIgL28gMzIgMCBSIC9vbmUgMzMgMCBSIC9wZXJpb2QgMzQgMCBSIC9yIDM1IDAgUiAvcyAzNiAwIFIKL3NldmVuIDM3IDAgUiAvc2l4IDM4IDAgUiAvc3BhY2UgMzkgMCBSIC90IDQwIDAgUiAvdGhyZWUgNDEgMCBSIC90d28gNDIgMCBSCi91IDQzIDAgUiAvdiA0NCAwIFIgL3kgNDUgMCBSIC96ZXJvIDQ2IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAwLjUgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzAgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0NyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDQ4NDNaKQo+PgplbmRvYmoKeHJlZgowIDQ4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDI0Mzc0IDAwMDAwIG4gCjAwMDAwMjQxMTEgMDAwMDAgbiAKMDAwMDAyNDE0MyAwMDAwMCBuIAowMDAwMDI0MjgzIDAwMDAwIG4gCjAwMDAwMjQzMDQgMDAwMDAgbiAKMDAwMDAyNDMyNSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAxNDU1MSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMTQ1MjkgMDAwMDAgbiAKMDAwMDAyMjcxMCAwMDAwMCBuIAowMDAwMDIyNTAzIDAwMDAwIG4gCjAwMDAwMjIwMzIgMDAwMDAgbiAKMDAwMDAyMzc2MyAwMDAwMCBuIAowMDAwMDE0NTcxIDAwMDAwIG4gCjAwMDAwMTQ3MzQgMDAwMDAgbiAKMDAwMDAxNDk3MSAwMDAwMCBuIAowMDAwMDE1MTA0IDAwMDAwIG4gCjAwMDAwMTU0ODQgMDAwMDAgbiAKMDAwMDAxNTgwMSAwMDAwMCBuIAowMDAwMDE2MTA2IDAwMDAwIG4gCjAwMDAwMTY0MTAgMDAwMDAgbiAKMDAwMDAxNjczMiAwMDAwMCBuIAowMDAwMDE3MjAwIDAwMDAwIG4gCjAwMDAwMTc1MjIgMDAwMDAgbiAKMDAwMDAxNzY4OCAwMDAwMCBuIAowMDAwMDE3ODMyIDAwMDAwIG4gCjAwMDAwMTc5NTEgMDAwMDAgbiAKMDAwMDAxODEyMyAwMDAwMCBuIAowMDAwMDE4MzU5IDAwMDAwIG4gCjAwMDAwMTg2NTAgMDAwMDAgbiAKMDAwMDAxODgwNSAwMDAwMCBuIAowMDAwMDE4OTI4IDAwMDAwIG4gCjAwMDAwMTkxNjEgMDAwMDAgbiAKMDAwMDAxOTU2OCAwMDAwMCBuIAowMDAwMDE5NzEwIDAwMDAwIG4gCjAwMDAwMjAxMDMgMDAwMDAgbiAKMDAwMDAyMDE5MyAwMDAwMCBuIAowMDAwMDIwMzk5IDAwMDAwIG4gCjAwMDAwMjA4MTIgMDAwMDAgbiAKMDAwMDAyMTEzNiAwMDAwMCBuIAowMDAwMDIxMzgzIDAwMDAwIG4gCjAwMDAwMjE1MzAgMDAwMDAgbiAKMDAwMDAyMTc0NCAwMDAwMCBuIAowMDAwMDI0NDM0IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDggL1Jvb3QgMSAwIFIgL0luZm8gNDcgMCBSID4+CnN0YXJ0eHJlZgoyNDU4NQolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:48:42.859832\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 2.0582759380340576\n", "Layer 2 - Variance: 13.489116668701172\n", "Layer 4 - Variance: 22.100568771362305\n", "Layer 6 - Variance: 36.20956802368164\n", "Layer 8 - Variance: 14.831439018249512\n"]}], "source": ["def const_init(model, fill=0.0):\n", " for name, param in model.named_parameters():\n", " param.data.fill_(fill)\n", "\n", "\n", "const_init(model, fill=0.005)\n", "visualize_gradients(model)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "c6d45fbd", "metadata": {"papermill": {"duration": 0.020709, "end_time": "2025-04-08T10:48:43.613433", "exception": false, "start_time": "2025-04-08T10:48:43.592724", "status": "completed"}, "tags": []}, "source": ["As we can see, only the first and the last layer have diverse gradient distributions while the other three layers have the same gradient for all weights (note that this value is unequal 0, but often very close to it).\n", "Having the same gradient for parameters that have been initialized with the same values means that we will always have the same value for those parameters.\n", "This would make our layer useless and reduce our effective number of parameters to 1.\n", "Thus, we cannot use a constant initialization to train our networks."]}, {"cell_type": "markdown", "id": "00a7758a", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.025397, "end_time": "2025-04-08T10:48:43.659030", "exception": false, "start_time": "2025-04-08T10:48:43.633633", "status": "completed"}, "tags": []}, "source": ["### Constant variance\n", "\n", "From the experiment above, we have seen that a constant value is not working.\n", "So instead, how about we initialize the parameters by randomly sampling from a distribution like a Gaussian?\n", "The most intuitive way would be to choose one variance that is used for all layers in the network.\n", "Let's implement it below, and visualize the activation distribution across layers."]}, {"cell_type": "code", "execution_count": 14, "id": "4bda2076", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:43.704455Z", "iopub.status.busy": "2025-04-08T10:48:43.704036Z", "iopub.status.idle": "2025-04-08T10:48:52.122345Z", "shell.execute_reply": "2025-04-08T10:48:52.121659Z"}, "papermill": {"duration": 8.445968, "end_time": "2025-04-08T10:48:52.127531", "exception": false, "start_time": "2025-04-08T10:48:43.681563", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdT7MkuXXd9+9T1FJaMIn/f5aSaTNC4Q0lhr1weEFTI3kY3VSIQ1Ghb+9zLrIyb6JuPfV7/XramIkRu4+qUHl/CSABJHDuL3/1w19+/P0Pf//rv739l394+eX5t9//9OJvf8B//3xztz/gv3+/+duv8d8/v7jbL9zt80vraXMh8y+fjr8E37dYcsEfP+GDl7/+35eXf3r55d+giJ9ubuu+llRdbu3hL6k734ur7fYn/vqvLx94ee3TLy+pbw2/lsLWx+9+fsGnt5Kib0HJn7Tsm9/yXd9LuGhy6f96eyjch7I1v/+LcmLbyu1PP9z+5+2Pt1/+TWCk/vZ3+O8P+E8IToxrRIm9xXC54lO9XMXLP7z85vav94Ld5jPuzr1s+euvd/XlX3Hn5D75W8lbDS7lUhsuMeTNOxb3+88vf/vbl1/+N3/z/vbbf3rpW/Cl9tJqxjd/+48v/+v2V/6vb//79tu/e/mvv0XwbnOehTr1p99/vqGEX/zqhz/87n/82z/87o8//eLzj3/8t59uv/qX229efiNX+/HMvA9biqHnKzQlfwA179rWpbQUe3qOzR2w3Anrm0We/eYi6nq8Rn7KHxF5qluW0lx35Usi9zpyXfNQp1qrtSXX/a1vVZcRrmX8zV/ffNl6qK5F/nP7q9//+ce//O7PP/7LH29/+d2nn7493C/vOd7HNQQpH9dVW+6xvlqXtp+hNu0ltry15kKP14BP+SsDRo2szhWHaomb/lrM+WeL2QfcBTw5ir8GrfSvjNqHtBWfQ43Nvd54fsZb7SvvRS+hT2Gf+teGXdB5hN6T7znWV8PO116DhfyCxaEbiKw2fUs5+iu7qdP41Q9//OnHP//HV/KLI048cF3sweeKIUYa44sQ8TDcyn2EkWRAsoUSYgsp5R325cs3/eWX6csvLzlvGYOlcu3Bc90aHzXt0s9c1erRD1O9lHBXMUL52///gzfC/PxSUILzLsZL8FcVzSjVRyS7ukTwVpgIPmzZFVzcNfiL2tENhwckd3WN4I0wEXzC9YXipjt/UXt0MTwi2dU1gjfCRPB1877FNt35U40c1DWUcUGi1DWCN8JE8OjdQ/I1XYM/VYRZc8iPSO7qGsEbYWJ6h6ctnpG5X4JXatx8RflhRnKoSwRvhYngEypwrul655Uat+gdvzUhOdQ1gjfCRPAY2ySMCqc7f6pxy6kn94DkUNcI3ggTweOCUo1+uvOnGrfespeu7YLkUNcI3gjz80tzG0bErl/vvFITpoXOOX9FotQlgrfCRPBxC/hGu955pWbM/HOJExKlrhG8ESaCx3i9pFKmO3+qFROdWn26IlHqGsEbYSJ4jNerSzlfgz/UjJkkxvDlQkSJa4RuBPn5pSOKWsK1zh9ijlvtvfkrjVNcInAjRMQdttSCC9dbfqq5YeLWW6gXHEpcI3QjSsTO/rriBl5Cv4ulcCUshwsOJa4R+GOIiLtursfcp3t+qHicp45K7jUOLa4RuhElYu9bxHz0Oo07xIY/5MBpq+ah1TVCfwzy84t3XDbMvlxvu5K9Sxi3+yZz9aOMi7pE+GakBIAxOqclU/x31XNVlO8//YRF64sAeIyU8WOY7kuNZQJwyD75jb8pD3MFRsuLADBCJQFcUgg5+InAIXs82hI6eKnsmozWF0FgxMr3rhixhxbdVAlO2Ze+1YjCZjRaXwOBFSsRYNwe5S3nFcEhe8zmTTRaXwSBESsRYPge8Tifa8Eh+xq2grDaTOaUFwFgREoAGManXMpcBw7ZF3R6/FObwGh9EQRGrEAQ+F7QpzTVgVP2CaPdHvHVCY3W10BgxUoEgfP2EKdacMo+YGbvY/FxQqP1RRAYsRIBBvglOl8nBIfM/s817/1ERsmLADAiJQCM8ws3T0wADrnHzbmYer1y0fIiAIxICQAj/Zpym2vAITfHl/t8n3XhouVFABiRAkD0eKa5WKcacMp8rZN8qFcsSl0jfCtOhs81+8LvX8M/ZDzxMgqtcaKi5EUAGJESQEEZvqf5/h9yzlviE79cuWh5EQBGpATQttxrDXMNOOTst4QSa5+4KHkRAEakAJAwxHeRO94uAJSMay4ltomLltcAYEVKABjhu45iJgCnzIVPzIDbxEXJiwAwIiUADPB9di1OAE4Zf+qINE1clLwIACNSAsDwPrhW5hpwymnLKDe2iYuSFwFgRMpt2Rjch1LyVAOUHDkBSrKBTxei5DUAWJESgOzIT9PauJYjBnytlwcsd3WR8I04GT5G9ig0zPf/lNHoO/4pD1QOeREARqQEgJF9kr78CuCU4+ZjaGMmeOFyyIsAMCIlAAztMZ/rcw04ZbWj7cplrY1uZqQAgBF9yZnjuQsAJXPO21Otj1zu8hoArEgJAGP7ggFumgBc5FZz9hMXJS8CwIiUADC2L9WnuQZc5Psu9qmQpTa3m5ESAMb2NfQ414Cr3GIpj1zu8iIAjEh5zsRtrbbqpxpwlc8acCnka2vA9WzMlm///vI0oiuOv//17XqGZj660b2r3MncthgzOqvRafNoF7fw5S0gNl5pRDxedurXxpU+P4a4qfAmf3ppbPK97QP/JiXJRrCIjpATwsKrco4FNIyMuV4euT2sxF5kntw4e06FU/DOjYNePto2F1mTbhhXOI+Q61CLD84nqogVN5pq32p1svoQY63yOq4Dlmu4ETd0yiWm1trYtlJKTfgEGmrwJdQwdnQkl1NKXMCqFf23qJjIBTzEC5f1Yiw99rEHojWM9cINl91Tdn68Gcbgr8vKD1+TE60bLwsDZgUl4DK979wiFPb3qGkLOYWacMMBJSBqWUtyeev4jEM5mElzECHXjfI2/Cgw33wuW8yZC87jZWR04MiTS2FrmT+wv6FzePpgEsZ6imaYR/OEjqDx/5L3VrWU1OR6vMf0DXdEXuh5VOKyq6gQNUaRa80pDj3wVLSr4/1fKw7Vatc7MPpRTO4ZIe5vy3DBtYRRfLsvHXv8xUUEDT3ybXIZ1KAXtuImJ7taRV3t+zunUHzt49Vr7t3vV1+2FBjvjR0wWgO+IDoqbERj6EITl1/b/W0GbzJvCupeRNuRsELGz2LYmm+oEfj9fX2PLzZC7QgR9bemFAeEgLrC1d5y4xvA2JKXmCJXAhI3RKFludTTuLERn8E1chdVEAKybYhLZ80BZOUOspL6uG5UiY45NKYSqNK157TLhQcJPO5SjriNaOgSfaxbqHwFydWnmkpO9zWZhIqCQShmJiHG1u8rOBiZtTbaYPEt3dc1UGc5YkODxXMccEUGCNfC2OMaA2qERIPPZHQkfkx2G1iOKWBDZYilSa+BOtHrfWZUnK9+3wme/T5aitw/lcK+Ox5taMhoV6DMJWkMox3PID52t7xPT9XrCcDA3hOtbX8g/KeHZq3z8yjRPEv7+ekpfHzjTQdyH3/11bIdgvrSo43oNNGrO/kXLafVe0nPDyb+99/9xw9/wt/0ycR3OB8M34U3OiAEtLf4uB01ZvYcrF4XdEq+MFKl+AcnBNaO4wP8970P5BerToXMFt54uk0HoOT5br7nvGpke2wdXbXDU/RNtgjoDvIHOCN8Q4KdzzgUdq0CSv4Igo1PH5YW+Cj4EocEzOnms7rfDgIeERwYtHgdjyv5AyCgCuHhgdJawaj1yyCE/MQvIeCxgCdboO0Eniofa5jwDWvbmzqcd1Y278Ym+XH1X2ai8F0QNL7BwnTiSuBQPwhAxZgltcxR26vH7MN3YcCxeuuomOlKQekfxIFDWswRMaDKDZOB5yDS9wGBUWnMMcU+gTj1jwLBwjFYx3gVQ8FXQJQntguBm7LP8r7CfuGdZLlW8aWT8/98reLVhQ4MkiKXmDEvuL625aggJQ7kL33WJPce5bzGVMhdPtYq1gBhREwQlVOhNJ1On2R0wNHAE68bONbAYMQLDBgsYCoa6nUBf5IPDBactTBY8RJDQHfV8LUJw0U+msVEZ8lmYUVMEGnj7ow014dTpj9D5FzsykfJi4EwIiaIwiXQEuYaccroG1N+pLOLi0EwoiUEzA5r5grVFcIpR55kHSY1E5u7vBgII2JOzTGRahjdTbVByZErjD3GBz6HvBYIK2KCiBtXT6dNP1rm64BQZeXxyueQFwNhREwQZfOYnE6n3rUc0Sm0IEfgrnwOeTEQRsQE0bhKm3OaQJxy2lzr7B2vfJS8GAgjYoAomK9gthqnGqHkxBMxOT7guatrYbDiJQb0/d75yRdAyxhMZ4cZ7URHyYuBMCImCATkua4+gTjlsoXgQpz5KHkxEEbEBIFpQ/ClzzXilOvWQ3dp5qPkxUAYEQNExbwh1DRtFtJy37rji8qJj5LXAmFFTBCYN8QYpk1DSsbzMqIOyLtzVYiWFwNhREwQidscXJ443NVc5aW0KxMdJS+G4TFeUuBOidTijOGQ0TnWVGorFzpaXQyDETA5YN6QXZnW5g4VFaBHX8ZA6ixCy4theIwXFPjSKpc0N4pTbmGrPsR4paPVtTBYAZMD5gwlTLvKTrXnLbY6tv+oIrS8GIbHeEmBu01qr3NtOGRuQsothOQveC7yYiCMkEkCU4YaJ/+BU6W1N8aNZUw4FR+tLwbiMWK+5HdbrfIC+QLilGX3UexjL5cCpOW1QFghk0TEFDrH6Sy+krnnzzv67E2EtL4YCiNmokC319Hmp9ZxytzOmKLLYjioEWl9MRRGzERR8Ul+dkJxyBdPlgsiy6tlDRRGzJ9fouOOnMDNqpctYafM/YEVgyjZsXlBpPSlUJgxEwVmD66l6icUh8zDKZ6Nok6ItL4YCiNmomDmihTyXCsOGf93czyv3CZEWl8MhREzUXCHlXNprhWHjBE1HhoptomQkhcDYURMEJhGBIwX5zpxyHQ2q7nH1CZAWl8MhREzUHDgjPnkdLJfyd1vPvFwxpWQltcCYUVMEJhLxIoR4wTikCuNbeWEgSriFBeDYERLCIV3dd6QruRSt4SZhqzbq0K0vBgII2KCwDwiNVbvK4hDLm7LtaQeJj5KXgyEETFABCerj3mqEafMc84lBVmCUIVoeS0QVsQEgUlEcRwYXUEccnbcfj2WpDQfJS8GwoiYIDCFKCWGuUacMg/FJSfTTV2IkhcDYURMEJhA1MBzk1cQp1x4VjHkNPFR8mIgjIgJgmcZa5t8AbSctpZaaX3io+TFQBgRA0QMW2ix1OvGIS3zkAnnVw98DnktEFbEBJEe88J9ushxy9kFMQnVhSh5MRBGxARRrFR4Wo6ILfeSHvgc8mIgjIgJoltp8bSsdhFe+ay5udCMmAe2vJUiT8tcrcSjoj3wOeS1QFgRE0S00uVpWe0ynvgsufnYjJggipU6b5Lv+86nQpbcjm5GTBDNSqM3yTyJ3x753OWvBaFPRL2IxcbtC7E8WmxMJ2roStH2jdY8uErn+Ygnnwth7BJkGoWw2wjRZ6EPGQ+FijG01PySebZ/31PoUsE/Mnqgx8HYidk3XExhaoO0FVAbe/cLTdic60VGnz2XPrZfJVQhWcAQy2oMSsdmJL5FS032IiUwa/IapdA6A9WtcE7Tstj7jQ07/KYPdOGoPo8iKk/rd36TPlDex1737RzMheQj3VHRnoO4YnF/g3Ml9H7DFXEhQcaEoTb6KNLggx/IdB6Rl3wOXwXUhiIwfKz7O/HaOx0+uuMb0HEqj2+IMfeouYkTBy6jura/MU0RdzKiOnh6eOxnHJjKhMk88HnQrq3GEU7n1aIGVHHcoKOLZC4MHUOXUDsdOug1gSlv2d848QwtDTpAjee8Q9111EI6itDKIqFOjUA7TQJzqMP6wqFV976/rvEh0UtdrDJwP0vZ9YoaWcbrnepxm8flFI6kohh9QMd1jXsEvRXc7Sp6irWX+zsQGnR0+dka3XhdhpoVfBSfD9zRWFy/6wV3SXw+vJj87i9SGKFzfgSL+b+rfde5Vkqfj4Lfz66OVVYE3muk+UCmHHnUcay8o4FyfijOEc37dF+HxscTbTswYs7ej+3UXItEo/BoJDwIXvM+4fS4NNTZIDm/Pb4mdYZrVa6lgO6qZnqIpD6WsNIWEm5LvaEaJ5pHjHWevCXn0cUxoRH/dzyNfcFcHhWy07ajtDg2ZXHVo1W0S39DQCiEG1TGGoCLJY7FEOeyi2Mi6GUxvY9mhDYZxkSZG3uia+J7E0odrrGcNobMXowttHOyJMGjD2O+gTSac8tixMHj2z5VX2R/LS67V/lwRGgFRXj2CaGh8d+H3RX8xsGFilGWdEMyCEWVoAEPnQtRxcs+EvE5yZsmNu1cxO+HjyPM5dzw53A+99we+2zAsbryu/wGh44np7Of+TugZPPg9uenThH4xptPgNu//upvvMWxIxTe7PEg4+v8L7fsCN/FsiOxxT7uDM4RFf8xrYiSL5BUKd607Dg/4K4/9dVHnhMTGmU0hOtrIyXPt/MdJ56TmDuhG0AzTa94LdiWHe4jLDu+IUE8IEJ48NI51I/gJ0n2UBg6n1zea9jx7RCgD8XzCU+SqRWc8gdAwEOPJ+892iFP2XwZhGeGHeiZt7jXtI916/iGFe1Nfc07XVG4qey8+ve5dfwsCEqlex89NC4ITvmDEPD4CkbjqcvO7OcU8neh0CUzHWZZVwqn/H4KXlPgczjkXDwmH69A8N+nLtDMDiNuTJSuGJT+QRy4+bZ1TLOip9viKyS+T32gyV1K4t93JXHqH0WCqR9K9o171F+rE+E71QnMrpvHID5NJE79o0gUR5/N3kvngsErJPITB5dYL0C+wsHlnWh/1iWxRCvO9pB7JtFD8zH3zCTTWNeLfCnkLp9us0uAMCImCMyDH3PQaBnTz/tBSl2IkhcDYURMENXKRaNlLiC5JIsnE5+7vBgII2KC6FZOGi0j4hSLuFJNfO7yYiCMiMe01MhNo2WuMufU4gOfQ14LhBUxQSQrR42WI5c7s1hKX/kc8mIgjIgJoli5arQcMfMsURYkr3wOeTEQRsQE0a2cNVqOsuoq9stXPoe8GAgjYoCI3spdo+XElVmZHOkyTnUtDFa8xBCtHDZazhjZVvzsREfJi4EwIiaIYuWy0XLZ+J6qzXyUvBgII2KCaFZOGy3TEtflPuE51cUwGPECA6bCRmYbJWd519rF0kkVouW1QFgREwT/8pDhRskZU3yPTiFNfJS8GAgjYoLIVqYbJfNUKcbTkudAFaLlxUAYERNEtTLeKLm6DVPukeNRFaLlxUAYERNEtzLfKLlhZpWr9+nKR8uLgTAiBgix7k/ZTTXilLukO0ljnnEWouW1QFgREwSGh+j721QjTplLw46ZTuoV0EVfDIURM1Fw/xQ+NteJQ2YM3PBQ4oRI64uhMGImCh4h9tMx7FPlsnusycvmIQ1I64uBeIwYHAqmD66WybpCyT5nTDhbTeUKSMtrgbBCJgnuL4qTzfCpcntYCtHJHjbNR+uLgXiMmBx48offn0AcsmzDO/rLE5CWFwNhhEwSmEGEGcPQLsYUFzaWYcUaEOZouReGL8gc/WkuEE6Zmy+94+a/CxwlrgXBCpgcuO+xzC+4DlX2yabq2wMdpS8G4jFicsjciRrzXB8OmelUMWCoYsOgAGl5MRBGyCSBmUNqfhpJHSozxdUcc2kTH60vBuIxYnLo3G7YJ5cKJdPjyodYm78C0vJiIIyQQaKh08vMnnolccrceMF9lHkmpPW1UFgxEwVzrWbuXr+iOGTGkGtMsmtbI9L6YiiMmImCEyfZfHVFcchMp9RzLr1MiLS+GAojZqLom6vVlblWHDKNa3IrI3OvRqT1xVAYMTNfp99QZstTrTjlnnnCqEliYlWIltcCYUVMEHErj8cVlNy4VIlvlysfLS8GwoiYILjRPqUw14hDrvRgv08/z0K0vBgII2KCYHpoFybDCiXThDy7OjaTnYVoeTEQRsSfX7LDJ13u/bp1SMlMVHDWiJOPkpcCYUZMEPgLDw/WCcQhZ5542xN0q0K0vBgII2KCQKfnay5zjTjkLD42cmpS4znVxTAY8RIDt7THmOb6cMiZh2hddGWio+TFQBgREwQTcHcf5/pwyhw47IvVuhAlLwbCiJjHlcJjZslPF5l548M48qsLUfJaIKyICQLTh8dcmlrOW0xoE23io+TFQBgRE0SxcmlqOaEz2LdC6EKUvBgII+Jxks/IpqnlyJPUWWbcuhAlLwbCiBgggrfyaWqZPhiVVrIzn0NeC4QVMUFEK5+mlrkVwidJU3Dlc8iLgTAiJgjMHR7zaWpZHcuY+HzUaY2PdHKZTta0QDP9/QwC5gfDEwEQw33DuUMVL35khMx1vM5D9DXFMJIFOre/9o1u67nGKnZ4mYmPxhY7PEA8hpayB5fzMHHAQu+5JQw0cMWpbDF2n+77Nn31qUh2rdjEFoYyD346vntrGK+HKlljUux0XvHctOa26mnCsu9lC/QAz/RxEXuaIXNhIGfUjozhHlNyj+09dJLA5ws3fGFK0PJ9+xMKQudG44zu+3hZIbtGO27xrdLGyUuGTO4QqrnFkCT/uw/jMjCUDAgQ97MXVIsSBg/+eOu10bCFbnmxjgUcusuE2jxvP8+6lOHgwbfpeOz6xuVw/LHnsU+N/qwutmHjEksoY9cWYgjJtz6OyNWSxhS44PbhTvJ1U8HIxu1YIffKmOUtVOVC4nhHhxuYe6B3OO1vqjiqU8/o51rxw5WFD8O+yxV3IQ9TFnDtOe2vPEOnMw1zH7no6/1FaKulpKEntKW2vxd0MbNWyUvi7mlxQr1vtcYohQf69nTpZvkGLeYwVAAtkoqQao/BSeEeNb34cTN4uzyvXTzyUQtSub99Qluk2w6qz9Zi2iPFJXDnAu12gBQD4bS/o8mlVKFe6VBSdx0VMYUmSTyIjmsMsijnaHqW435EM5Yq1i6peVwl48AAk0Z5++7klnAFRcxz0B7x7SDnGFMPG7/KHWg0iEGfMdY1WH1yRcuqbZOxet2XOxqNcSTzUiTouk/+fUFLTOJM5GMbKqqU7/j5Im8he7uvH6Ta6IpDbwLfSrrPpoPHr2e2oJYlQyplsfjj7aJNCE2EZMDkmCEy0pGGdko1hX3OifvseqevUxc/KGkWGf1SxKOUrr1NdlRJxeXw0+HWDrsnnnAVgNlHNPEkHjNopzXXfB+job3VIkM3XFJK9xGd5wheeiZ2jn18uiKIJkbiPC7iuxwPyMGhxpc9+6tvewoaPOi31ON+EI+Hpdv0IGB3morvz+U32MM8sQN45iWCkk2ngM9PXUnwjTdbDti//upvvMUeJvGwyptsYdJ3sYXJDVXhcaNxpaf8Y4YfJV/gqFK8aQtzfID/pneNFp45eqBDaS3OidyUPN/G9zh6oPeRFtjZdb3ZFiZ8hC/Mt0NYEi2vfJlWppX8AQjxXQ6nS3AZDL/UGebhRP43pNDw4EG/6a4vKpT8ERS4Q6SwtJSb/0IK82n8szSHZy+eVSmIzdXH2sN8wyb7pj7nnS228Kl1XP377GF+FgQcT2Z6MV4RnPK7EXC8c149rfQqRnYZndmrfiDfBwPfeWMOhSp95aD0DwLhHbdfpM6fzW/zA/l5SODLeES71icSp/5RJCJzhaA3wvyivuYHEr8TCc6XMJGSab0mceofRQLdRQ6xYTKL4dErJJJ74oyS8wXIVzijvBPtz7vE1JqVuAjDaStxkZYx2cE0WFZZdCFKPpaYlgBhRbwPPx8TF2k5c/bbZV1AF6LkxUAYERNEtpIXKTljDIMJuiw+qEK0vBgII2KCoKvvQ/IiJRda0O7Ju1QhWl4MhBExQXQreZGSaULN3V/pgc8hLwbCiBgzCxes5EVKLjSs9nmszig+Sl4KhBkxQSQreZGSCy2U8XSuEx8lLwbCiJggipW8SMk1M39wlewCqhAtLwbCiJggmpW8SMmdLwHCeF2rCtHyYiCMiAHCeyt5kZIl+SX92tMV0EVfC4UVM1FEK32Rkpk0ABOEJiknNCKtL4bCiJkospXASMk8YuFa6PJyQCPS+mIojJiJolkpjJTsQ9gqX19PhJS8GAgjYoAIzkphpGRPQ/y0v/29AFL6WiismIkiWEmMlMxcFj3Fkc9DI9L6YiiMmIkiW2mMlOwlKUUu+QGR0hdDYcRMFNVKZKRk8b9wObgZkdYXQ2HETBSd2XL6xQX/k5Y7NwjWJFtCVCFaXgyEETFAxMCNGjVNdeKUvUM1wIhKNkiqUi76WiismIki8SmQw1QnTtnHvjWUM54fCpHWF0NhxEwUmE+kGv1cKw5Z0kr1EGRziEak9cVQGDETBR6IObo+14pDvhhAaESmMcQaKIyY+TqcG1wwiZhqxSl7HriIceQ+04i0vhYKK2ai4B6jVMpUK06Z2/64i6tPhJS8GAgjYoJg2rIpKdUnLXNvHZN89BmQ1hdDYcRMFI1bzcLcOu6qj6gFyQWxOteAtL4YiMeIwSHjWw0Ty6lKnDJnnihpnMJRgLS8FggrZJJgKrs6OQGcKued3ElbHvgofTEQjxGTQ95cj7nPNeKQudHWJ2ZCvALS8mIgjJBJom6YW09+16fKTeEt1DyWtzUfpS8G4jFicuD+hcwafgVxyNxL3VyV3bqKj1IXw2AEDA4FkwgmpL1iOFTP1JktDyNjTUfra4EwIiYHzCB8qZMrhJK9R8Qo1E2AtLwYCCNkkqA1UMiTLYSSvXeYg8cmCTIuhJS+GAojZqLABCK06OZKccje8chL8JJPViPS+mIojJiBosrxo3kXv5IRW4jOyaEHVYiW1wJhRUwQzJzdW53qxCkXJrfNQZKUq0K0vBgII2KC4MGgzOMsVxCHnHnCm+eLrny0vBgII2KC4BMAI8W5RpzySBHdJz5aXgyEETH36eNrufKo1QWEknkmLg5vSl2IktcCYUVMEJg/lOgmcwglSzKA3PLER8uLgTAiJojMI7VtModQcpHDtXWic4iLQTCiJQRmQU+5zbXhkJksBE8JsU9ShWh5MRBGxATRH3M5ftJy5i7xPk7Haj5KXgyEETFAdG9lr9SyjCTxzSsfLa8FwoqYINJmZK/UMmcX+1FaXYiSFwNhREwQxcpeqeW24X/3ebgqRMmLgTAiJohmZa9Uco4bxlBdznOrQrS8GAgjYp618Vb2Si3LMfQk3hW6ECUvBcKMmCCilb1Sy5GphZy4xOhClPy1ID7SM+V65oZODF0ScKObj5gZjBM6nVYH4mQAmQ4hfNdDOwIfJLmanFdJUWwF0tarT8OyAF2kR+EIOmUeoq/e7zLIyEvEgj+FGI6zMMVlsWeLoWIuIirT8bTcOw0YcmrtflykYpSKv+S64eJDG6ckeDaw0Jog9831XobrQS9ytL/yhCyd31oan65b6pkvpyHXxleyrL3ObQBJ+w86i9RYxAmCZ2vpfeHzrWDO2FGnx6ZrDBQdj8zRgLP1PjzECipEw3MSl8VJt6fjh8gYTwU5M46ZF8Q4GowrnI4nwOQKRWgjx3fxAT+Juxhky2pJuwkM92/6SGMIsVmhTVW969XjwdRGvhpcuXjaFM8eutDqRlZKUx/3h3qruTDVT6DLRhgAfMYUAB+qIqNGdnFxKb5sUlnHFsESahn75XzdPCp5LWPrYMOdbrteOZPooqNfbHlcTtvQOeA2SfmotsXd92iiy3SOy92OP9WluXA/nmu90IEhZow+ELCUE/imsNE1YziQpO79rreAX4aMmoYh61gbpMkFD4xE0ckghF3Hg1wOdPOEOyLvQ+fL2VxTl/aH4quYsxQ626SMZg098dVM8ENHtcDASDYYA2yPef98QSMPtP3xvBGB7zBuYxsV+oOGW+QdBlXdM7/O0BGCH0ddfckjwSkqNfoSl2QrN5qkS/sWJD5ze4tj+c+VGvv4OBoRWlrtoteAext3vaMBI3RuWWo51ji2J6AJ+0pjIV4NGlEZT/eIcX+vwTW5etyHPGhGVNTMXcRS13wcm6wj3ZEi3VC4yQHV2JVRClNzhkJzjczN+bXJiTbqNdJmbeSib2Vsy42FI6rAFW3uoElMJ7HrrTtaFPGAJtqU2K6UiIaMushXZGybOeTBhgdkAYwvU0uSPQejIrM7RSMrVQxwnE/3LRqdtzPmKNl9aO9QpfxEmww06S5vnrzDpQ0dXQJ+iz00erLeYy/jbTbTfyQeq+auyYbGkXdZiIxNlgmIm8BBD9tSoM3L+Dhu2iieeV3x/KiiY+7Rx1wEf0Gd4E4rGvKgax93Sj7jxHwpsVPKRYx6CjtZNCXZhYGrdHl/5c7uqvk8Whta+35kAIO4VFHr22idEZ3buHo6wuH6x4taFFJGdYWO+yIeTtBxT9KYQWOehKeRuBhxwyBX2/qu157a6FxQ4OhdUVswvwo+ytVwkbbfX37mGMTzCXWrZTcOfheOsNCn0/Qp0RgiulEt8ZAI6I/p+sS7EOl8s+v4srg+ibFXCfd3igldox8sAw2NxuUUlNnE9YnPP/S24+08LXXbnTCf5yNUxF2quD6xquBPo+PiKiv6Km4PRJ+Kpr63/MKGhzbQpK0leoSMpXz0CKip3HpKgyEHqn5fwPYVPeYNT6yaHEYaoqKZRty0wsPFuPJ0LPKCZvBi45VQyyQfLo0mUPtpX4SrQrcj7lZcCEWdxVXxeYkervV9VRD3LIzlUdz0OKo1rbbxWTrJovHjHvpdRa8R0Wtn5oSKbTwUKs/p0UqRE2ZMCcJoerVxGaGjj4JMK6dRpSGjfTGnNZ3F0PUHAVs7DdvoD8KsdARV9jWqSEuoyDEBb87Yl0o7Dier+7ghFc3xWMpxGNXQEJkPuVQOuWS2dsbu2X+MiT4GapHNSOyhUNvCrjbP+kk1JMIWmaOdwoNGAFXRTY7rYH+YJPEqHtRF/KDGEgIzLY40rbifo4Jj/JVykDehnd6TbR9Coz0knlDhLDv5VO5qD/cUvxjZjtFQwcgJIxN2hpDRQpxY/JYeR9rXLsPwmDAO32U6tuUwbKdSTsc0N2V5RV/Zz7uxmZGTGjw0yr7wgVHPmOvQIoyrhNyngZ5yPNlZPxlLpBzRx/r7fIANusviM1tt2FV0yBhaytoz2pKMPjhmrhW9V+JYEk3M5THCxlOa+0s5HmXmTrkv13E3RwDS8T+R32BR9cSS5JmvEUo23Uo+P3VIoqnVW21P7F9/9TfeYlHFcRPd7eTfN1lVle9iVVU5mH887dEaE8Rf4d21Cx71fW+aVJ0f8Ncf+WpPi4oWi0Ydp1SdSp5v5DssLSod/TCaDXhg9Vcclp6YVPkP8Kj6dgRxN/n4aFPmHSV/AMHGg3KdpXmPJ+MXelTN/h3fEEJmw+fLqiuEU/4ICHwcBJYWO67yyyD4Jw5VGEbRdQiDCHHa+1iHqm/YXr+8q3lnW+VO4PPS32dP9bPEXzCUwEywRRX/qb07fsxMVPyFHqJ0XeUI8hUE+fsw4HibWbq8YnBq72aAqbliwFdvtRbajGI285o/1/eBgEkwh/u+d0VBiR+EwTsuUEYa3HII/wqH71QZuCaFpywXLhWHU/woDhEzAozdCw11X/PmCt+rPmBmhEkEhveawyl+FAcuA3ta03Nd9BUM+ZkzF76oaXyFM9c7uf68LzJoYP2YjK7SkvoxGZ2SuYES8+YmS12qlIt+vMpYA4URM1DQbfsxGd0z2Qa3FggrNIIIVjK6p7LJZzEQRmgEkaxkdE9lk89iIIzQCKJayeieyiafxUAYoRFEt5LRPZVNPouBMEIDCNr7PyajeybbfNYCYYVGEMlKRvdUNvksBsIIjSCKlY7uqWzyWQyEERpBNCsd3VPZ5LMYCCM0LmN6Kx3dM9nmsxYIKzSCiJuRju6pbPJZDIQRGkFkKx3dU9nksxgIIzSCaFY6uqeyyWcxEEZon18ad1k9pqN7Ij/hsxQIMzSCCFY6uqeyyWcxEEZoBEGDmId0dE9lk89iIIzQCKJu3A3k51v/RDb5LAbCCI0g+pabZOK6RvxENvksBsIIDSC831orfdp1/Ey2+awFwgqNIBK3mtbJaOipbPJZDIQRGkEUbqnLOU0RP5FNPouBMEIjCO4gTrKL6BLxE9nksxgIIzTufJDs7n4yXHom23zWAmGFRhCYPcyZ/z5pmRufU5C8AaoMpS6GwYh37IThXrw+14dTrlvx3clGbF2IkhcDYURMENxyypS9E4hD7nhesnP0Vz5aXgyEETFARMcNw6FMNeKUM7dNVtnzrspQ6loYrHiJgZl2UcEnCrZqIlsMw2NkpIBpQ0rXNJmfnssWncUwGJGRA2YN2U3L0c9UE85iGB4jIwX0dbmkh+r/RLboLIbBiAwcEmYMJfjpUWGrNpy1MBiRkULieZZep9v+TLboLIbBiIwcCs9/TuZKz1QTzmIYHiMjBTlhOJ9HUDIzifYwzlicZWh1MQxGwNxV7TfXcpwMhZTceFw3YKx0xaPltUBYERNE3GL33k8tQMlpq5HpM698tLwYCCNigsj4JD87gThkHmp1Af/0K6CLvhgKI2aiwHTBhdLmOnHItFFyoY9Z91mIlhcDYUQMELj06FqqU5045YsRvirFNshfAoUVM1Fg0uBTyFOdUDKqQQ7NT4S0vBgII2KCwJ3l2f25Thyyd5UHPoZZqSrloi+GwoiZKOpjnuBPz2UT3GIgjNAIoluZkZ/KJp/FQBihAUT1VmbkZ7LNZy0QVmgEkazMyE9lk89iIIzQCAJTiMfMyE9lk89iIIzQCKJZmZG1HDd8reeZj5IXA2FEzNNE3sqMrGT6aGQedi5XQBf9a1F8pO+WOlCDwXCusWDKzGM5ZYtcWkuUMRoa5v6UMZcWF4a8YU4dxKyi4rGQHW3m+GFoYrYjJ1RaExcGFB2rWPNQLaXShIGmHpWPE5GZSkGcaDA9oUGZuIjg0piZhoZdtO/oMcj7oFoxheFrAVr9BV/rfdt/4oCl7GYV0Y0iMIwL9MqRJPbdOTGdQkQIvNXhFZZqGK5K3DLfI625bmKHg0FQvY0N5K4XP+p0Fsut2hy6vsQzhhDp2TuurUVa+NIKK/GA13Akqo1vcVI8sptVsfrhZpHEY/FSMKIeLhPcOtEcN2GKYVv3+BV5WwoGBUVmyhl9r7hPNB+YErAGmdq6Vryk4Oap8QAoTpwh0Sx9avtL+BSL62Le4VIb6ZkxzN1yT/SX4Zs3Zvpo+5vqmmPafUGYxFfUStcwhElDFNYZMZRpIdAkqfVMy7IcvBdvEb7U89IcxfMFw4fjXR+qaUbVo4kSjdFHIWkLLXVUPcgFM/WcdhnjMDrgFlqWpVLu7xETwpEyaHvWhlo4r+2oeiyDKTr8LhfqRX7RtZHmqNEvCIHGzuujW5Xcc756isnRFQ4j4YB6LDUV9XtL+CFWyc6samnwi7itNTMG1tQ2LGK4VO9jrDSqQ2fgYxfLsBYz7mqgPQ8Nm3AZbizlouvMnj8vBkxtJGzjOreLjs5JSSzRUrkvf+M2tlGxA6pWGmUzCUWnoRJTZea6fxg/XxrtlPhh1MRyXzym3c6wxkvMapJ2uYdKMyU65vU0cpm3JBlJ6aWEy8YVZTGJ4cor7gZNkxINb/zwk2qo6LjH9OGh3UrI4qvS6GOEu0bLvECbONZmyrjW5GmMlAsfpMMdist4gcY14n/MXHYh7qtaLqLtFrrdoZsS5zMubLSIUsqte7r1jRpMbx7cLheYJrKjhyv71D+XjsfDrRca43Xx7mny41L3u5hI9XHPIVe6yHjKBdVwl3m+ptIoCTIaVkt5l9HvoZFQzkyF3vY5Nmotr44+gJRFRc+SckZf1Zl8Kg6PZ8rofemqxOSWeU871MQhMLIDotdhJwORaSQXwjiujYLTLkea5AbUC/R2NEyUm8v2Q7ugzlYQ0NeOywNJnwsNlIi64UrHLBCtwCdxSsL3mBwr7QNgehIOS6TamJFUHnl4ouU4fJpxB4Z5D1VclBgljeeRHE9vYknoqyuU8bUwbk1lWmxP/yR6euERMG5NRU9T+YyjTC+2sKs9ddon8cM88z3KYP/TadHCukczxvsgrTR0/Wl/nOT9QtBkQCcExojq2/pdrknIs7agEtYRDX0hQ3ZNHneofM3vMiLjOUSCyuiQ5dM0MucuuPEkzbRWuo4ZsvilldGV2/IbHIOeWEQ8M5lByY/uEZ9toxq6C73JgML+0eelv8UlCCMItBvXx79vcQlqtyemILGybdN+Jjhx1NNFJcsTpOKBXTHiQD+kPEH+8cef/vynH//Pv/Evl6PaL/8PgFdTggplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEyMTI1CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDI0NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkU1yBSEIhPeeoi/wquRXPc+kUllM7r8NzbwkK1qF5gPTAhNH8BJD7ImVEx8yfC/oMny3MjvwOtmZcE+4blzDZcMzYVvgOyrLO15Dd7ZSP52hqu8aOd4uUjV0ZWSfeqGaC8yQiK4RWXQrl3VA05TuUuEabFuCFPVKrCedoDToEcrwd5RrfHUTT6+x5FTNIVrNrRMairBseEHUySQRtQ2LJ5ZzIVH5qhurOi5gkyXi9IDcoJVmfHpSSREwg3ysyWjMAjbQk7tnF8aaSx5Fjlc0mLA7STXwgPfitr73NnGP8xf4hXff/ysOfdcCPn8AS/5dBgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgNjUgL0EgNjggL0QgNzYgL0wgOTcgL2EgL2IgL2MgL2QgL2UgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTE0IC9yCi9zIC90IC91IC92IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQSAxNyAwIFIgL0QgMTggMCBSIC9MIDE5IDAgUiAvYSAyMCAwIFIgL2IgMjEgMCBSIC9jIDIyIDAgUiAvZCAyMyAwIFIKL2UgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZpdmUgMjYgMCBSIC9mb3VyIDI3IDAgUiAvaSAyOCAwIFIgL2wgMjkgMCBSCi9uIDMxIDAgUiAvbyAzMiAwIFIgL29uZSAzMyAwIFIgL3BlcmlvZCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUgovc2l4IDM3IDAgUiAvc3BhY2UgMzggMCBSIC90IDM5IDAgUiAvdGhyZWUgNDAgMCBSIC90d28gNDEgMCBSIC91IDQyIDAgUgovdiA0MyAwIFIgL3kgNDQgMCBSIC96ZXJvIDQ1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAwLjUgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzAgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0NiAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDQ4NTFaKQo+PgplbmRvYmoKeHJlZgowIDQ3CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDIyMjI2IDAwMDAwIG4gCjAwMDAwMjE5NjMgMDAwMDAgbiAKMDAwMDAyMTk5NSAwMDAwMCBuIAowMDAwMDIyMTM1IDAwMDAwIG4gCjAwMDAwMjIxNTYgMDAwMDAgbiAKMDAwMDAyMjE3NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAxMjU2MyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMTI1NDEgMDAwMDAgbiAKMDAwMDAyMDU3NiAwMDAwMCBuIAowMDAwMDIwMzY5IDAwMDAwIG4gCjAwMDAwMTk5MDIgMDAwMDAgbiAKMDAwMDAyMTYyOSAwMDAwMCBuIAowMDAwMDEyNTgzIDAwMDAwIG4gCjAwMDAwMTI3NDYgMDAwMDAgbiAKMDAwMDAxMjk4MyAwMDAwMCBuIAowMDAwMDEzMTE2IDAwMDAwIG4gCjAwMDAwMTM0OTYgMDAwMDAgbiAKMDAwMDAxMzgxMyAwMDAwMCBuIAowMDAwMDE0MTE4IDAwMDAwIG4gCjAwMDAwMTQ0MjIgMDAwMDAgbiAKMDAwMDAxNDc0NCAwMDAwMCBuIAowMDAwMDE1MjEyIDAwMDAwIG4gCjAwMDAwMTU1MzQgMDAwMDAgbiAKMDAwMDAxNTcwMCAwMDAwMCBuIAowMDAwMDE1ODQ0IDAwMDAwIG4gCjAwMDAwMTU5NjMgMDAwMDAgbiAKMDAwMDAxNjEzNSAwMDAwMCBuIAowMDAwMDE2MzcxIDAwMDAwIG4gCjAwMDAwMTY2NjIgMDAwMDAgbiAKMDAwMDAxNjgxNyAwMDAwMCBuIAowMDAwMDE2OTQwIDAwMDAwIG4gCjAwMDAwMTcxNzMgMDAwMDAgbiAKMDAwMDAxNzU4MCAwMDAwMCBuIAowMDAwMDE3OTczIDAwMDAwIG4gCjAwMDAwMTgwNjMgMDAwMDAgbiAKMDAwMDAxODI2OSAwMDAwMCBuIAowMDAwMDE4NjgyIDAwMDAwIG4gCjAwMDAwMTkwMDYgMDAwMDAgbiAKMDAwMDAxOTI1MyAwMDAwMCBuIAowMDAwMDE5NDAwIDAwMDAwIG4gCjAwMDAwMTk2MTQgMDAwMDAgbiAKMDAwMDAyMjI4NiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ3IC9Sb290IDEgMCBSIC9JbmZvIDQ2IDAgUiA+PgpzdGFydHhyZWYKMjI0MzcKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:48:51.378480\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 0.07692592591047287\n", "Layer 2 - Variance: 0.00398120516911149\n", "Layer 4 - Variance: 0.0002155901602236554\n", "Layer 6 - Variance: 0.00011756643652915955\n", "Layer 8 - Variance: 8.103555592242628e-05\n"]}], "source": ["def var_init(model, std=0.01):\n", " for name, param in model.named_parameters():\n", " param.data.normal_(mean=0.0, std=std)\n", "\n", "\n", "var_init(model, std=0.01)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "25981d94", "metadata": {"papermill": {"duration": 0.025125, "end_time": "2025-04-08T10:48:52.179597", "exception": false, "start_time": "2025-04-08T10:48:52.154472", "status": "completed"}, "tags": []}, "source": ["The variance of the activation becomes smaller and smaller across layers, and almost vanishes in the last layer.\n", "Alternatively, we could use a higher standard deviation:"]}, {"cell_type": "code", "execution_count": 15, "id": "785e1bf8", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:48:52.231007Z", "iopub.status.busy": "2025-04-08T10:48:52.230635Z", "iopub.status.idle": "2025-04-08T10:49:01.284675Z", "shell.execute_reply": "2025-04-08T10:49:01.283930Z"}, "papermill": {"duration": 9.08194, "end_time": "2025-04-08T10:49:01.285889", "exception": false, "start_time": "2025-04-08T10:48:52.203949", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTAxLjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdT5MkuZHd7/Up8rh7YAwc/3EkRWnM1nThckw6yHQYzc6uhtY9a+SQXNtvr/eAyAgPpFdPV3V1t8C2Met+zESG/wKBgAMO929+/+Pff/rhx3/+9ne3//LHp2/Of/3wy5Pc/oT//u3mbn/Cf/9xk9u3+O/fntztN+72/qk52ZxP/Me74x9e2hZyyvjrO3zw8s//+/T0r0/f/BZN/HJzW5OSY3Gp1od/RLTWsiv19hf++reXDzx96NNPTylvFb8W/dbG775/khq2HINUr+R3WpYqW7rrewsXrV/6n28PjYuHIvsftBPqlm9/+fH2P28/3775raelcvsn/Pcn/NcJToxr3nJxLlwu+BAv1/D0x6c/3P58b9ZtknBv7i33f367q09/xn3rd0luJW0uu5xi5ZX7tIljcz+8f/rdd0/f/De5idy++9entnnJpeVaEr753b88/a/bP4j7x9v/vn33T0//9TvY7jYnbNWpv/3w/oYmfvP7H//0/f/42x+///mX37z/6ee//XL7/b/f/vD0h365b49MfNhSabhz17t8ym+ATTys7K0F3+rz3NxBS8H6bJZnt+E+1nDtLkp+C8tTGK35Uop8jOVyMV33vbz5Wkup0TW5ta3oRvy1kd/+403y1nxxsAP/u/3DD3/96e/f//Wnf//59vfv3/3y+el+/MjxOrDe9/ZxXaWmFsoHO9PmvkB/2lvEcFNaaVd77+InWlv9ltGc+BqTfNjg9MUMluC2HBzeIleblf6JZvNKY3J4jqQ5/0G75cvdaClxi9nzTlztPvVPtbs4PPK+5JDw58N2p+uowVZ+w/YwDAT2nAaCQa4jzzRo/P7Hn3/56a//+YkAwzAU47wLzUsqmGLEMb/wAa/DLd9nGLFPSDaffag+kteYFekv3/SXn6YvPz1lv6XaYr4O4TlutSUf62WcuarFNcxx3k0t3FXMUH73/7/xhpkwvmzeibu81d49p5qg1jDeMAjGty25jIu7mnlRq2S0MSO5q2sYb5j5/qkIrs9nd73HV7Xhe+UByV1dwnjLTBgfN8EgXK93/qrW4kJ5QHJX1zDeMBPG4/3oI148V+NPNWBCIL7EKxKlrmG8YSaMxxTQowu3q/GnCjMj5ojlAcldXcN4w0w4t7K5kEq83nmlBkyJYnUPSA51CeMtM2F82EKU5K93Xqlh8wH+up+RHOoaxhtmwviECWcJMt35U8W3PJzZOCM51DWMN8yE8WVrKbg23flT5WzciciM5FDXMN4wk0uFm8c36vXOKzVuDj5DnZAodQnjLTNhPObrOeZ8vfNKhfOFgS3KjORQ1zDeMBPGY75eXEzpavypoqvXklO5IlHqGsYbZsL4skmBX321/RALHFxM4eMViFLXMP3RSFgO571656fbfqptq1VKlQsQJa5humHl+ydxspVKMy67DYfK9VXXYmwXIlpdwnjLTBqPQbuF1NJk/SGnivd5SKldoSh1EfMNQ2l/3kJroU7m39Wc8HYrzucrFC0vYv6jnbQeE3Z4aHm++4cMd0ZCqiVcqGh1EfMNQ2G/YM4ubu78h1rxrdDGe001oeU1zDfspPWYqksuIU/mHzJ7fM4lN3/BcpEXAWCYSgKYuHif/DT2n7J4v7maU5rJaH0RBIatRID5u69wVycEhyxR0HBNdSKj5EUAGJZyHxpthL7jeQFwymgaf/WuhgmM1tdAYNlKBJjJh4YZ/ITgkCW3rTQXcp7QaH0RBIatRIAZPSbyee4Fh8xNt1JyiWFCo/VFEBi2EgEm9klinHvBIUuRTXzNQWY0Sl8EgWErEXATs/gw94JDlgxTE6Y+ZUKj9UUQGLYCQcAUv2+qXxGcMuzdaKlrExqtr4HAspUIMM/Ptbop/uyUxacNL384vxMarS+CwLCVCDDVLxF3c0JwyOIKGg4+zWi0vggCw1YiwCWhiTL3gkNuDlNAl1q7ktHyIgAMSwEguq3VzO9fAJwy3MCUo0i9ctHyGgAsSwkgoA1pceoBp5zzFiUW8VcuWl4EgGEpAaQttVL83AMOOdWtNtd6XINqRMuLADAsJQBM9l1IMveAQ07c63ZlonKIixhvWAnjE9pwjeG0F+NPOTGy2PkUJyZKXgOAZSkBYJKP/6+GCcApF3jDTsbzrxpR8iIADEsJAFN8+Ld57gGnnLZSc65t4qLkRQAYlhIAJvg+5zT3gFOOW6b76ycuSl4EgGEpAWB6H3yc18eVHLaGGfCYCatGlLwIAMNSxupjco9G/dQDlBy22FLqQZ1XLoe8BgDLUgLA1D5G56YeoOSwBYem5IHLIS8CwLCUADCzj620uQecctjw9su+PXA55EUAGJYSAC4poSu3CcApB3h/cd8muXA55EUAGJYCQMHMPsPDuwYGaBmWoqen/MjlLq8BwLKUADCzz0Xi1AOu8j2+eWpkqbBn01ICwNy++BbmHnCRSw5jZfTayF1eBIBhKQGUrZZaZO4BF7mEnCwuu/xaANcDM1u6/cfTsxZdcfzzt7frwZr5OAf+yrM1MCMnQJMRseya4yNbOYmLGMv6uyxUNEuV45tPPlNNfUeYats8LgetMQouFz/io4TRApkaDRshJPSSY6arnbaY6ggNb2nLAp+hhxm5Ci6cOLS8lQJHMtbNNTxT/ft1wxwbdOln4X0b+zpLa9yRjZJuSbaaXJS4x2tEl2KM9Elrivu6teuRWxJumLBFH6vv3daFrXiP5/XGA4opSQh71EOtmNf7W+axo5D2NgquDd/Mt8JZX5P9F+vWQuYhKoaEVkbE9l0z3JcSGx6EBj4uuH1DFTeh+cCjs/hECYXbCWObMbiWC7tGw2s0SrlvvrkIJPHG1YbQUpHx+QrfK4d2oxeWufg0Pt62BuPBTTKnI3gxhX0DC7cb7+Zbf13xevoE3suW+eTUfjAqenSyuu/2+CyFG14FNzW3NozlKSr+Fi6n8HIybkzXMfttbT+pVVP11e87Jngt4FK6rrYX0iYJNy33Zlrupyao46nAp9CrJYM2e3Xctx1iSXjwoCf0plz2y8RjEyLuLDDgNrBz+32NHu9jPmegUxJXZ/uKnecyRfZ84DyaT3vzAb0uJu7poVcG2DFueKCDj96EO1t4JDLuq9/oeRFej7AfZNrU9tWw6lzJ5VaEl1LzWCXgvlktLbMztVJdP8PGm5lbQUe8YQLp8MV9TYH0Ml4g7Ki14FpG2xnv1YgruCUMNCHKwIunJATv8WTiGUDDsKjLmJM317i6wegtx2FpuOsZM3S66+g8JfnDicUN4DPfO8b+SsPTg07Hn8dDKzXmcZ8xkMWIvtMdvhh4aHv3AkJo3BGkXaWMqFDB2IPnCMNIH0/wvIy2MyMIYXDaJ0xucJ2G1uj74c5n5OshQM+xcsNNHsP/rx6btU7Qo0XzNO37Z8/h4xsvOpL7+KsfbNvBqI893Yh+WxPuOf/weHm5t/T80cT//v1//vgX/EufTXxF7oOReeGFORB8iFt4DEcN3FOsNU/xOUq+MFKtyEMuBPaO4wP889rX75PVpzxeWr61OB0gUPJ8N19zZDUkvtsdxo+IR/hFqRF8eoPUCJ+RH6YKzacyrb4o+S348YQuW8PkBS/c16RI+HwEML3aEq5rCstQ8hsQwDx8b00aZmgfQcCnZ1Il+BS2inlg8I0j99vmSviMHe1FI80r+5lz+upfnT/hi1DgJBWdoeUrhVN+IwqFs1iH2TFmefnDIPxXAcE5a2ZUa7mSUPoboeCsPDZOXOBhfDjXgotfhwUX8eAIhTqxOPW3YoGpYsU8EPM/wUz0gyzyc/kX4FHWs8lPyMPwSrhcoPhYj/zXFyg+uLqBuRIcCzhcbYrZ8fhHjK5MMTuTXEPrjt7UyF0+FijWAGFYTBBwVWKO0zH1ST5BmHwWA2FYPCafcFZ9CROIU4a75XOKZeKj5MVAGBYTBNxRuJ1p7hGnHDaR0pdGrnju6mIYDHuBIcmWM32HKwYlhw1TNB/yA51DXguEZTFBcI2pZT/1ByUHvkLcGCEufA55MRCGxQSRufDDddAriFPG91LNfQPnyueQFwNhWEwQ8LKqSJt7xCnHvo7Vl6p1I0peDIRhMUBkt2Gq16aIHy2nLVYZMc66ESWvBcKymCAw+MNhnQ7Ba5kr8RL65oduRMmLgTAsJgjc2VZTihOIU64YDODNyMRHyYuBMCwmiLJVF0OYe8QhM/wru9pjnlQjWl4MhGExQBTHbROZ0gQoGeNjSM733TrNR8lrgbAsJgj4DsJl9gnEIeNp4Dy6b3OoRrS8GAjDYoKA7+Alt7lHHDLPRxWfep5K1YiWFwNhWEwQGP3x/5W5RxxyTy8auKB94aPlxUAYFhMEdwCDz3OPOOSWuHPYxszybETLi4EwLAaICu8hNHc9YH+qPS7A4cLjFc9FXwuEYTE5BEYi1DCDOORuAgMk2hWQlhcDYZhMEvAeksvTOt2h8hiFKyI9ZErz0fpiIB4tJgfubOX48GgcMtOEw1w3no0TkJYXA2GYzF1OeA/ZT6Flp8pQnMK5pEx8tL4WCMNicoDzkEsrU4845UvUkAak5MVAGCaTBF6DDAabQNxVBmE1j7+HmY/SFwPxaDE5MMaubzBfQRwyw9eKZ4blKyAtLwbCMPn9U3A8VJvCdDBfyT1wS6QnI9OAlLwUCNNigvBbgEEyxQSdMuP0mJGwB0ZqQFpfDIVhM1FEfJKfnVAcci8KUrlmOyHS+mIoDJuJAh6E87nOveKQxaVNoi9ZJkRaXwyFYTNRwInA5KjMveKQG/zv4oaPpRrR8mIgDIsBQuBD4NamqU+ccnUbzM1Frny0vBYIy2KCgBPhnYtTjzjlIpv3mFOHKx8tLwbCsJgg4EP4VP3cIw45x02aq61e+Wh5MRCGxQQBJwL/33SsX8mpsjraOL2pGtHyYiAMiwECL8IaSmjXBA9K5qanE+knVzQfJa8FwrKYIHhY8yFKXcmJIdyp9VMMmo+SFwNhWEwQXIGsDPe7gjjlygj9lOuVj5YXA2FYTBCFR2VKmnvEKWce7UkznlNdDINhLwOwGXnouMV/waBk5npw3teJjpLXAmFZTBBwH3IOfuoPSo48+h57SmTdiJIXA2FYTBAM+vDMb3MFccqYLvggMT/wOeTFQBgWE0TeWil1Sgyg5bBlxvbmiY+SFwNhWEwQbfM15FInEKfMZOnRj5fnhc8hLwbCsBggojwWi3t3kVUs4ZXPmiGGpsUEEayyb1qGxQ6jgjzyucuLgTAsJohsVcXTcug55ce6zIXPIS8GwrCYIKpVN0/LKux64rNkNLZpMUDAYzBq6Gk5cElKhu955XOX1wJhWUwQwaqnN8l4UfSgyqmRu7wYCMNigkhWbb1Jvh/NmBp5qxMb+oDUU8+xcftILI85NqbTNQVTH78fyMiYCpY8RreebMAnzA97qjxOBjyDX7oaWYY4ti5XV8dqpO8hdLmnsI8brmTfD0t4kabA1ye8DrTfctijUqNI890ZaUzFNGQPn7U13EFcEKajsHEP3ay1jHQAqTnXixYyjtFFXHVm8gCmP2gjqo/jUwrwcxgej5+Me6xfi4FpRHj9zo+0DD63TZxn/cvEQB+wq3tAHC6RQU/c0a+txREEg/ubCi7rhu/Bkcw9+wKDpbj0kuKt9JMqXcv47cBUJBUNF1z1+GgFBGFpgsb8BDXtcttScExR0jN9VBgzdtQ9wGcufDNBBaOw+szUV/5ODPDgmLXBg1svZejxWzmKi6EnvQ41hD4mcWe+tMbEJExpwKTwu97QKC7N9x17hgDukQ6NUfRMWcL84bmnvPBNeOhEuDMBEEwnKH7XcVuZyIS73T4xzVzXPWPRCxMSk0uLrecboc7IgD3TRrzvC6KPBXTkIUcewx+txI3BRjIScEQ8ICPSvcGJTeiHqSe6hxeHnth19MOAp7B2U/G47eG/0JugX0g/KpiZ6WJYxcWRSsLoGLjDZbgEDg9aTJ471wG/FNCR875TVfDgMbM6HGofQyljDyNwxz/jXdgTnkjyezsJvQ39i9s8uIJ+SH7f3GiC+1xvjYc4q6/3pX4MCQ79ihlucAFjq1BwM0EKTTKBbwtt/Kh4npkueBSZ+sSx/gdV2IF+jCcRjwITnMhYKsUTVdGD+lJpbEVq2BcO8Ur3eBJ5diDyyd2X0TAepNaDhHFjqhura7JVz5UDpvHItda6L7GAYwg9vSa6Te29lysO6GlhrLwUCa0PIMHz+A6X6HpoPqD1M5s8AO6YiaGfaKjofT1rP53Uit7duu/KDjJWtzCUJmLrAxYe5pKGA4N7hYFhjFm4vuL97tfU2o9xUh5ZcjjHL1Wa3PPhjWUSpgoFyj3jNM/BPg74GFt72pBn5Bdk/Hjm0Pdz+SLQsnke/P2zmSfwjRcfLLd//YO/8ZIMIBxG4/4W5OP78SlA/FdJAYIXVV9InkKLE0/PPxYnUfIFkmpFzBQg5wfc9ac++fh0FPR0vLemFCBKnm/nK05PY/zFG7tihG1MxvSiFCDJvUEKkM/Ij8HgmOpPlTiV/Bb8MhOdobWaWvuoBBgPWRk+H4HEmiqY/005eJX8BgQwo9hb89I+KglKcs+kAIl4mYS9k71t/o/P+ZS+ZJh5ZZaVUvTVvzr/xxehwPxsmDJ4f6Vwym9EgbGqmEaHmFgf94Mg5KuA4MyRsy5pVxJKfyMUzD6YIxw24RzpZalQvgwKWp96YscrilN/KxScYWJU8Kwb8SvdInwdFoWJG2vFDPXK4tTfigWrZrQmcPIxzf74rDAqEwq83v1oVW/xEzKhvJLtF11OgktglW3hjMso2zLJeBn1HKVTI3f5WE5aA4RhMUAwa+dj+RYtc0l1LAHoNk51LQyWvcQQrSIuWmbayTrOY0507vJiIAyLCSJbxVy0zJME+8maK59DXgyEYTFBNKuwi5bDhm+NjL5XPoe8GAjDYoBgPsDHAi9aDltyQfpq4JXPIa8FwrKYIIJV6EXLXIaXkh75HPJiIAyLCSJbBV+0HLnC6ftavW5EyYuBMCwmiGoVftEyXKQioZ++u/I55MVAGBYDRHRWARgtc+k+5r6yqxtR8logLIsJIliFYLQME0JfOddNHOJiEAxrCSFZxWC0XLc60ste2Sh5MRCGxQRRrKIwSk7Cs5jSd0ZVI1peDIRhMUHAcXgsDqNkbnkl6Zs2Gs+pLobBsBcYkrdKxCg5wzcf+4gXOlpeC4RlMUFEq1SMkllZomHa4K98tLwYCMNigshWyRglV8GYWOIO4mhEy4uBMCwmiMaSEcnNPeKQWfwlVenhKaoRLS8GwrAYIPisN8dCGxcQpzzqwXBt+Arooq+FwrKZKMJW+LGpT5yyBAdne6RE0oSUvBgIw2KCyAwJmg4unyrLyrrG7YIJj9YXA/FoMTnAcXAlT6kelMzyMakwFvYKSMuLgTBM5o43t8rClKb3VJnko2QZsUyaj9bXAmFYTA69eiC+P4E45EveFw3ISgezBgjDZJKA9+BnDENj/B1a8W5mo/XFIMzWkgCsCfjIDOGQGViY0XoP0TzgaHExCIbB5NBYXW7e2jpUXnKtUvoOraaj9cVAPFoMDtWPMMqpP5wyi2zk5ErftleAtLwWCMtkkoDfEKtM86hDFcc6dKkfKNJ4lLwYhkd7SYGnjtHANI06ZVatREs9EvxsQ6uLYTAMJge4DBjuRCYOh8z6imilp1xVjWh5MRCGxQDR4DHkFNvUIU6ZBxvgT/UMDqoRLa8FwrKYIOAylD4rvII4ZJZAbXGcqFCNaHkxEIbFBJE3VwqrT11BHDKXoqofx5I1HyUvBsKwmCDqhjZrmnvEKTdmgnK94pVuRMmLgTAsfv+U8A7Mj7H5Wmb5YcmxTHyUvBQI02KC6KtL0U9B9kpmpeZS+l6ebkTJi4EwLCaI1M+oTKkdtBzhWPCkzMRHyYuBMCwmCLgOrsfIX0GcMsbHyKPqEx8lLwbCsJggGtNnljL3iFMOuPV7ecArn0NeDIRhMUAIXoNS0pS3WsuB6U1cqQ98DnktEJbFBBFZOz3EqUcoOWwulWbwOeTFQBgWEwQD4xtLWF5BXOSSR5XvqZG7vBgIw2KCaI8VGd/N8gnC5LMYCMNinlSC9/BYg3KSTxAmn7VAWBYTRLBqUE5yEdfP0858dnkxEIbFBJGtGpTPyia2xUAYphFEtWpQTvLZIy6NLNojDIt5hMZZVSifk21sa4GwTCMI/uOhCuUkHz3i2shb9Yi3zHoynaQpzdX78Ysc/F5YlrktZATb40JqqYwLYFR96Lm/emR1jZmBE2GDh+27SxVDZFIKFoGBp+WqL3KPSuYp1tiDcZPHt0cwbsOVpui6g1rFlxFYEjHMYgICS+DAp1hbGqGafkuw1vd0KMHX/cOBR92q6/k+Y6gswTLi+GBJZX4HtyUJYSySoMHMrI++rxYB9B4DxyWDxAIdzGGAkW2P63CcEuPXU91aCGEElSfhOhPTejBBS3Z5rMilXqCYlQyYc6Xhddl/MQVcdWNWB2ZpZrzQkOGJhZJxVaVtFd1o8Es9PQq61a3xVGFNAxR+H1QLu4lDK7Glnjwi4gJqbug66C9+c8GFcS3M6eGYWeUmDHNGh8th34xvnlFsvThLxsMyLjJX3KzgmYUkFx4zDz3jPHV8KDEfSG5bSui94/MNF8FMMD0jSkIrPasG9Yo7FH1PT4J29s8zZMyhe46tYBdq7qlsqKP/NWZugc4Qop7MhmfJE+51kaFH+KlDB3B8mdslhSlG6vDkqRcpzKjCzfWMO+j3XVb4+qGfAWwNFMfFoI+i9TqqT/BUY7nvRaJlJvAhnIDWxiYEbpBjVhjGtOQNH4vjEaiOd6KnheHJk9DqgF9ZRzD3TC9wMzGNHJ2poqP6xJQuTLKSvBuHViqzfrDcHlPjxNRG7h/0XbYI8OTO6JFuEDtFw/jWV8W5OzYWvOImKXCZC52NYViht9zQxfiPHspagH+Xecy5htYfI0zlRvKb2BozDzHXCh+6ElM/IZAckx0F4bOIG5HK2IKh/xxLZfoUnjDpR0x2b9LD3pxGokAeOe8TSP4DA9LIp4Tr7bWR+ssTLtf90E8Ve2ANLj4vvyC7yDNHyp9LRYGWzdPm759NaoFvvPjYuv3rH/yNl2QX4RDWXpRVJH6VrCKJR2Afg3ULM5o/1pVR8gWOakXMrCLHB/gnvurt+8xJ5Mx0Dbn4KSuxkufb+IqDyBg1cTcxsgAAhqMvn1XkM/LjpgU6yBRRo+S34Mf0ar01vL3iq7KKfEYCeEF4loe6zsOV/BYESt5bC8z/9ClZRbLDK4onA3zPjfS2iUU+H+aXjTSvzN3Cqeh59R+dWOQL9jaFgZM8zGLgK1wwnPIbYcCkFP/CXDe5/Gsk0lch0Zi6kPO7K4lTfiMSjWknS3c4MBP6cI6Vr9MnGH7VWp+WXlAo/Y1YwMukb1MFfhXcng/D+DrdghU9c2741wTj1N8KBl1fODWFuTJ/pWf4r9Qz4JsFeAdzxzjkt0IBRxSuBHNNBv9r2XfSM3lW4LBu7WzzE/KsvJLtl13AgsdnFBFKrVhFhCaZgQJ9j/jayF0+FrDWAGFYTBDNKiI0yT2a6JHPXV4MhGEx5pTOW0WEtMzUMk7CzEfJS4EwLSaIuBlFhLTMpdAkffXwyueQFwNhWEwQ2SoipOXAkuclPOC5q4thMOwlhmYVEdIyD3aFnlz5CueuLobBsJerFmKVENJyxFu3ByRf6Sh5LRCWxQQRrBJCWuaj0EbVhyufQ14MhGHxWMcySghpGdMGeEm5TXyUvBgIw2KCqFYJIS1z98e5HcTZiJIXA2FYDBDeWSWEtMw9gj1xvW5EyWuBsCwmCG+VENJyY+WFvoOj2zjVxTAY9hJDsgoIKTnRQ8T0MV7paHkxEIbFBFGsAkJKTmmjX9t30jQfJS8GwrCYIJpVQEjJWTa00XpJCtWIlhcDYVgMEMFbBYSUnDGDYp2TMPFR8logLIsJIloFhJRcekRIL7qh2lDqYhgMe4kBjoNvLbUJwyGzKIxrvk50tLwYCMNigkAHD6nEuT8csri6RRnpzVUjWl4MhGExtzn5EpTkpx5xysL3BCskyQRI62uhsGwmih5PFqaD0kpmkad6oFCItL4YCsNmooD3kIJrc684ZGHmoSKjZpBGpPXFUBg2EwX8B3ynzr3ikCVXFihi/ZYrIq0vhsKwGSgY0JhjzlOvOOVLXhWNyMy3sgQKy2aiwBM/13J6p+UeDpjvU0yNSOmLoTBsJoqEJz776fk4VIY0xnz3vhQgrS8G4tFicmBQo3d+7hKHPHZt86jKpgBpeTEQhskkwYpuZconcKrCLOF+397TfLS+GIhHi8Eh+16huE094pSZtC/X3HYSByAtrwXCMpkk4hZamzJln2orG35xDJVnC0pdDMKjtWQAJ4KVcebecMg1Mdw79TyvZxtaXQyDYTA5NAYXPTwUdxVTBXH39+bZhJYXw/BoLygwakVymTJLKLlHodx9jaMNra6FwTKYHOA6eJ+mxBJKzjx5gEdBJjxKXgyEYTFBwHHwlYWFryAOOTHvkLgJj1IXw2DYSwxwGh7PKyiZh6DY0kxHyYuBMCxm9DVchtCYb+sCQsm9YrLv57F0I0peC4RlMUFwcSXlPPUIJfMlEaWf+NGNKHkxEIbFBAGPIUmMc4845cSCvqGfiNONKHkxEIbFBMHzasWHuUecctxK2MPmdCNKXgyEYTFBwGPIwU1pJbQcefw19oS/Vz6HvBgIw2KAaL6XQZ/SSmg54Nbn0I8W6kaUvBYIy2KCYMnwft70CuKUA0+1ll4w/srnkBcDYVhMEPmx8uO7ixwYNu5DeOBzyIuBMCwmiGrVutRy2DwP9pUHPoe8GAjD4vdPhefXH2tdajlsPMYeH/kc8lIgTIsJIljVLrWsgq0nPkvGYJsWE0Syql1O8j38fmpkyah802KCqFa1y2dlE9tiIAzTeKzIWdUuJ/nsEZdG3qpHvGXGlflMjZQQe7Q5o+dzT2kQNgkS2zhmkDembYi9amUsaeQ/QeM97cF4KZTqU6/JlUGl4mVR+zSTOVRE9hBcZupyPRa5J+Woe0BqcvDVuz+CuUZK9/DVhmkHk7yULTD1RtujFYvkJr0sXPZwZIYctg60x/S5lOMYrD0m9pzYNiZXYZ6MEbbh0VGDOJduCR8AbLnHe2VQA4nEMKdYWtujn5hiKweeFw2MHR6xH7JJTLjNLD/lXU7DnOC3gPdkqbeSerRQz0PBkBn6nK7cKhDXsJsTGGvnYgs8gRlwheNKIrOD4LYG9AHBx8WFe8hBEPHcIaD5OdeeQSMzuDu3xi2ClLdUUxuhfNxB8pU5XST37Cf8JeqZOwohhb4Zjd+o+359Ybg4k70wQYlvzssut4i+MXYpMdLL2JjANSSfQh3JVbyPbv/ZxjXZnhyG2cHxG8NaBpjWiJnlSLoC+4YnlvjQhijSP18K7LpvINfocdtG8hbc/LHah3uMO+la2a+nuLbvIeI1xBAUXDzudc2yywng6zAWXwz7Rhvn+LCr9UIwXrKMvpSYQQvXKb1SDkvOjTWljBdecT01jKCTVYkydIz/Fa33mlPJjfkSukpB0zXf6shuMlytzCGS6RducMMbnpxx5ay4EQNeqew0fIjHleBy8bgEPEiszp7xgX73YLPHY80T0Y4ZXGREpwER2uD53VQ29N02gveYrgbPKy6rZxLCaNS7TMm4Mbjxvdog7m0d2wuloucL0zQw1VAMdTwDFb0Tn2AKRqZqGsl4Mk//4ykJPZa81LyfQmF+gMq8MT2JUhZMEnZ/G7/DVDC90GncH3R0fJjItBusiMuVOr9POF3g2DryofbnAg9hT0hzPzOV+bfHYTj5nvbmGfkF+VmeOZn/XFIPtGwe2n//bHoQZnR56el/+9c/+Bsvyc+C8WLjOZH+50V5WvJXydNSmB7qMdS3NtYXvsK7axc86vtiZmg5PyDXH/nkM8x4hjFiiEy+upLnG/mKQ8yFI2fEOMnsaekrZGj5fPxq4JpuxQvieutP+Q34oR2mB/OYDuSPSk/ycAj+MwLAIB4x65rS6yr5LQDktrfGvCqflKAFr4j+dsOVMr3U2yZo+YzP6ccPMa98Rpl37Lz012dn+SIMCmO+MY1QCA7pjQgw04vH1MfzbfbCvCxfhAEG543Bek13BCW+EYdW+byIg8flXpyW5cuAgL8T4Y5VzeHQ3giDMJereGnwEtKvcfhKHQIuBAYp7jMrEKf4ViQS3DW4NvCR6q/1CO+eyUFSpO0Hm3qbn5CD5JVov+ySDlNxPhb1KfC0jKI+WsZNbGG4YroRJR9LOmuAMCwmiGIV9dEyM262UQrxyueQFwNhWEwQzSrqo+XYCwj3VS7diJIXA2FYTAdErKI+Wr6AMPmsBcKyeHhiRlEfLeNpYMm3OvFR8mIgDIsJIltFfbRcekaeMOE51cUwGPYSQ7VK+iiZR8eZp7xd6Wh5MRCGxQDRxCrpo+QUNinoBXnio+S1QFgWE0SwSvooOSX8rutzYY3nVBfDYNhLDMkq6KPk7Da+LHs2PtWIlhcDYVhMENUq6KPkLCw3MNM5xMUgGNbC/XH82kMxHyVzO6O12vKVjZaXAmFaTBDeqkqj5MK9ozKSEWk+Sl4MhGExQSSrao+SS0YnaLnvTWk+Sl4MhGExQRSrKo2SuT0c8LJsVz5aXgyEYTFBNKtqj5KZ49H5Hpys2lDqYhgMe4GBxRYeS/koWRh7wYxd5Yrnoq+FwrKZKOLGvX6ZesQpC+sB+Zh7qXGNSOuLoTBsJgoGcYi0uVccsoSRz67HT2hEWl8MhWEzUdSt1tzq3CsOGe+HzYdRdudC6JQXA2FYDBBeNmm+TEkWlMyQIHzLT3hOdS0Mlr3EEDBHrCnFCcMhC3zM0Fzrqw4aj9YXQ2HYTBTwH1wMYe4Rh9xLUjGYaEak9cVQGDYTBXwIceLnXnHILKwlyUlqEyKtL4bCsHlEP8S53tM7LUvG66JF38MYL4iUvhYKy2aigB/hJbepV5xyr+Xm9npoGpHWF0Nh2EwUPA7MkNYJxSFfUvFMiB5juddAYdhMFIWbsj7PveKQcd83Fo7oYaIakdYXQ2HYTBTM+NrcFCZ3qAwmFgY+xQmQ1hcD8WgxOLAoR4ws1HkBccosg+JaGpUJFSAtrwXCMpkk8A5IblrXP1Wm4kErYQyYio/WFwPxaDE5wJFIOc6PxikLjxy0XMZ8WwFS8mIgDJNJAq5E9jK9OA5VXNtKKWk45YqP1hcD8WgxOCR4EqxTN/WIU+aKjMtp5OvSgJS8FgjLZJLgGaAwJaA41Za34H3oRzVUE1peDMOjvaSQ0L8fAvSV3CJaqrFd4ZziYhAMc0mBdZpTmFIuKJlBEYGBe1c4Wl4MhGExQPQCzSIyPRWnzBjZhuuXKx8trwXCspggPF+AjFe9gjjkwqLtieexrnyUvBgIw2KCgOPgfK5zjzjk/rfoa7vy0fJiIAyLCQKOg6tM2HcFccjsBDmmHj+u+Sh5MRCGxQTRWM/dp7lHHDJP6DUe2Lzy0fJiIAyLeUAFoz/PvU494pRThK/pW8gTHyWvBcKymCDiY33Edxe5bnhN+B4ppBtR8mIgDIvHkSWjIqSWK54GCb3M65XPIS8GwrCYIKpVEVLLGe2mOCIlVCNKXgyEYTFAVLEqQmo5b7mU+EBnF9eCYFlLCPAbHqtBajmyelPyZWKj5MVAGBYTRLKqQWqZqSbSOFN+5XPIi4EwLCaIatWD1HLYpJU8/AzViJI/FcRbZiK5nqxh3S1f91MpERbhWmJPnTHKJfCwQfGhP+no4h4GjFBr5kfAZ3quQ4k57IHHmFR7J9IzEZQGt2vITDJRS+ul8fZ4GsppS5IrE/nUvpzXjzdUFnYJDFFlKlHAGakIWDE9CSenaYRm9SQHDPGtDGCkp+vF5Xs0cMalwgL4fegN2fs9/rPF5Djl91uEB+Blj4dkxynhljM+gMHtHjRYWxGGSWZu5Lo9Vg50UgJ61iRiGj/Je+SYFz4DjBxz1bnQ+4PLGxqWAgecSf8khNEINwGFx3uZF6akfUNMcCN95RKeMAIrtFz7x4UZGZJvPCfGUL3ihoyZe8asBN3F8UjIyCzJmAxcbIgNemHMUi19tPJM3ZEiJnPCQmOye4QeNyeFmHl8TnoqgrHE6uPWBN1L+kZlSM3VfSs3NoltbNsEVl4Zet4cjw6XvsXrfF+mpo5L8BgZQ9dxzW7E0PCIITps3x8FGnFhXGTbUsyVGVdypTvSbx1M2yr+zsQqxTFrhQzsPPkIi6RXH3fonam3EnAP+Kth6FJK9rue+X+MfCsYsfO4mIBRC9z6/jRzEu62Qi7ZNT6QuJiUnfi8b1HhwQl8btll8NT7saHJjtJ4Vp8nERsud2+nbBl3lflTUsEjX1v0+75GK8n1WJLM+rFu+KY86YVujweDdxac29gH4UOFLsFoG+94QnOs+cVeN40vH5GeF6iN1Z/YNtxdZhQRpopqe5Ajk+200LOcMItIGsgYGR4kjoUTdL0ahpuMYYyPRGXGa5ckurvTGHPGh5nJBRzD3YNCp0roP1xvyYwt7rMF2OBcQ6elPwHPqt29j4qrGzmEYETd5xYgx4GzMSNKBPF2n6JLwjiTWDbRh5G1pBbcCXTGkW43eF8GwMJr5SSVCXa8G5mPMAAxmUXhFgxTzlT0s33MZp0c38ds3LTUs77Uijvr5H4er7n9Oi4DPyzZAwVt+QW5T5459P5cugy0/Hge/r2dcoN5Ul50pN7+0edbf0m+Ew6JLqI39D8vyXdSb8+kOQhM4NETaeDdwwxJuqloZTkoGG+KMGORznLwLz/98te//PR//sZ/XE7ePv0/6R5lvQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjExMTExCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDI0NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkU1yBSEIhPeeoi/wquRXPc+kUllM7r8NzbwkK1qF5gPTAhNH8BJD7ImVEx8yfC/oMny3MjvwOtmZcE+4blzDZcMzYVvgOyrLO15Dd7ZSP52hqu8aOd4uUjV0ZWSfeqGaC8yQiK4RWXQrl3VA05TuUuEabFuCFPVKrCedoDToEcrwd5RrfHUTT6+x5FTNIVrNrRMairBseEHUySQRtQ2LJ5ZzIVH5qhurOi5gkyXi9IDcoJVmfHpSSREwg3ysyWjMAjbQk7tnF8aaSx5Fjlc0mLA7STXwgPfitr73NnGP8xf4hXff/ysOfdcCPn8AS/5dBgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgNjUgL0EgNjggL0QgNzYgL0wgOTcgL2EgL2IgL2MgL2QgL2UgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTE0IC9yCi9zIC90IC91IC92IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQSAxNyAwIFIgL0QgMTggMCBSIC9MIDE5IDAgUiAvYSAyMCAwIFIgL2IgMjEgMCBSIC9jIDIyIDAgUiAvZCAyMyAwIFIKL2UgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZpdmUgMjYgMCBSIC9mb3VyIDI3IDAgUiAvaSAyOCAwIFIgL2wgMjkgMCBSCi9uIDMxIDAgUiAvbyAzMiAwIFIgL29uZSAzMyAwIFIgL3BlcmlvZCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUgovc2l4IDM3IDAgUiAvc3BhY2UgMzggMCBSIC90IDM5IDAgUiAvdGhyZWUgNDAgMCBSIC90d28gNDEgMCBSIC91IDQyIDAgUgovdiA0MyAwIFIgL3kgNDQgMCBSIC96ZXJvIDQ1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAwLjUgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzAgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0NiAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDQ5MDFaKQo+PgplbmRvYmoKeHJlZgowIDQ3CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDIxMjEyIDAwMDAwIG4gCjAwMDAwMjA5NDkgMDAwMDAgbiAKMDAwMDAyMDk4MSAwMDAwMCBuIAowMDAwMDIxMTIxIDAwMDAwIG4gCjAwMDAwMjExNDIgMDAwMDAgbiAKMDAwMDAyMTE2MyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAxMTU0OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMTE1MjcgMDAwMDAgbiAKMDAwMDAxOTU2MiAwMDAwMCBuIAowMDAwMDE5MzU1IDAwMDAwIG4gCjAwMDAwMTg4ODggMDAwMDAgbiAKMDAwMDAyMDYxNSAwMDAwMCBuIAowMDAwMDExNTY5IDAwMDAwIG4gCjAwMDAwMTE3MzIgMDAwMDAgbiAKMDAwMDAxMTk2OSAwMDAwMCBuIAowMDAwMDEyMTAyIDAwMDAwIG4gCjAwMDAwMTI0ODIgMDAwMDAgbiAKMDAwMDAxMjc5OSAwMDAwMCBuIAowMDAwMDEzMTA0IDAwMDAwIG4gCjAwMDAwMTM0MDggMDAwMDAgbiAKMDAwMDAxMzczMCAwMDAwMCBuIAowMDAwMDE0MTk4IDAwMDAwIG4gCjAwMDAwMTQ1MjAgMDAwMDAgbiAKMDAwMDAxNDY4NiAwMDAwMCBuIAowMDAwMDE0ODMwIDAwMDAwIG4gCjAwMDAwMTQ5NDkgMDAwMDAgbiAKMDAwMDAxNTEyMSAwMDAwMCBuIAowMDAwMDE1MzU3IDAwMDAwIG4gCjAwMDAwMTU2NDggMDAwMDAgbiAKMDAwMDAxNTgwMyAwMDAwMCBuIAowMDAwMDE1OTI2IDAwMDAwIG4gCjAwMDAwMTYxNTkgMDAwMDAgbiAKMDAwMDAxNjU2NiAwMDAwMCBuIAowMDAwMDE2OTU5IDAwMDAwIG4gCjAwMDAwMTcwNDkgMDAwMDAgbiAKMDAwMDAxNzI1NSAwMDAwMCBuIAowMDAwMDE3NjY4IDAwMDAwIG4gCjAwMDAwMTc5OTIgMDAwMDAgbiAKMDAwMDAxODIzOSAwMDAwMCBuIAowMDAwMDE4Mzg2IDAwMDAwIG4gCjAwMDAwMTg2MDAgMDAwMDAgbiAKMDAwMDAyMTI3MiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ3IC9Sb290IDEgMCBSIC9JbmZvIDQ2IDAgUiA+PgpzdGFydHhyZWYKMjE0MjMKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:00.528994\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 8.010124206542969\n", "Layer 2 - Variance: 42.5277099609375\n", "Layer 4 - Variance: 107.65530395507812\n", "Layer 6 - Variance: 294.1153564453125\n", "Layer 8 - Variance: 360.99920654296875\n"]}], "source": ["var_init(model, std=0.1)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "fb102a1f", "metadata": {"papermill": {"duration": 0.029627, "end_time": "2025-04-08T10:49:01.348621", "exception": false, "start_time": "2025-04-08T10:49:01.318994", "status": "completed"}, "tags": []}, "source": ["With a higher standard deviation, the activations are likely to explode.\n", "You can play around with the specific standard deviation values, but it will be hard to find one that gives us a good activation distribution across layers and is very specific to our model.\n", "If we would change the hidden sizes or number of layers, you would have\n", "to search all over again, which is neither efficient nor recommended."]}, {"cell_type": "markdown", "id": "157a5bf9", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.02877, "end_time": "2025-04-08T10:49:01.406925", "exception": false, "start_time": "2025-04-08T10:49:01.378155", "status": "completed"}, "tags": []}, "source": ["### How to find appropriate initialization values\n", "\n", "From our experiments above, we have seen that we need to sample the weights from a distribution, but are not sure which one exactly.\n", "As a next step, we will try to find the optimal initialization from the perspective of the activation distribution.\n", "For this, we state two requirements:\n", "\n", "1. The mean of the activations should be zero\n", "2. The variance of the activations should stay the same across every layer\n", "\n", "Suppose we want to design an initialization for the following layer: $y=Wx+b$ with $y\\in\\mathbb{R}^{d_y}$, $x\\in\\mathbb{R}^{d_x}$.\n", "Our goal is that the variance of each element of $y$ is the same as the input, i.e. $\\text{Var}(y_i)=\\text{Var}(x_i)=\\sigma_x^{2}$, and that the mean is zero.\n", "We assume $x$ to also have a mean of zero, because, in deep neural networks, $y$ would be the input of another layer.\n", "This requires the bias and weight to have an expectation of 0.\n", "Actually, as $b$ is a single element per output neuron and is constant across different inputs, we set it to 0 overall.\n", "\n", "Next, we need to calculate the variance with which we need to initialize the weight parameters.\n", "Along the calculation, we will need to following variance rule: given two independent variables, the variance of their product is $\\text{Var}(X\\cdot Y) = \\mathbb{E}(Y)^2\\text{Var}(X) + \\mathbb{E}(X)^2\\text{Var}(Y) + \\text{Var}(X)\\text{Var}(Y) = \\mathbb{E}(Y^2)\\mathbb{E}(X^2)-\\mathbb{E}(Y)^2\\mathbb{E}(X)^2$ ($X$ and $Y$ are not referring to $x$ and $y$, but any random variable).\n", "\n", "The needed variance of the weights, $\\text{Var}(w_{ij})$, is calculated as follows:\n", "\n", "$$\n", "\\begin{split}\n", " y_i & = \\sum_{j} w_{ij}x_{j}\\hspace{10mm}\\text{Calculation of a single output neuron without bias}\\\\\n", " \\text{Var}(y_i) = \\sigma_x^{2} & = \\text{Var}\\left(\\sum_{j} w_{ij}x_{j}\\right)\\\\\n", " & = \\sum_{j} \\text{Var}(w_{ij}x_{j}) \\hspace{10mm}\\text{Inputs and weights are independent of each other}\\\\\n", " & = \\sum_{j} \\text{Var}(w_{ij})\\cdot\\text{Var}(x_{j}) \\hspace{10mm}\\text{Variance rule (see above) with expectations being zero}\\\\\n", " & = d_x \\cdot \\text{Var}(w_{ij})\\cdot\\text{Var}(x_{j}) \\hspace{10mm}\\text{Variance equal for all $d_x$ elements}\\\\\n", " & = \\sigma_x^{2} \\cdot d_x \\cdot \\text{Var}(w_{ij})\\\\\n", " \\Rightarrow \\text{Var}(w_{ij}) = \\sigma_{W}^2 & = \\frac{1}{d_x}\\\\\n", "\\end{split}\n", "$$\n", "\n", "Thus, we should initialize the weight distribution with a variance of the inverse of the input dimension $d_x$.\n", "Let's implement it below and check whether this holds:"]}, {"cell_type": "code", "execution_count": 16, "id": "bb017268", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:01.474419Z", "iopub.status.busy": "2025-04-08T10:49:01.469402Z", "iopub.status.idle": "2025-04-08T10:49:14.976039Z", "shell.execute_reply": "2025-04-08T10:49:14.975060Z"}, "papermill": {"duration": 13.544845, "end_time": "2025-04-08T10:49:14.982209", "exception": false, "start_time": "2025-04-08T10:49:01.437364", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTExLjUyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdS7MkuXGl9/dX5FJaMIiH47UURYlmstlQpI0WY7PgUC2qaVVNI5uUbP79nANERnggPavr3r5VPei2Nqs6nYkM/wKBwMNx8PNffvNf3/7+m3/91S9u//ibl5+ff/v99y/+9kf894ebu/0R//33zd9+hf/+8OJuP3O3jy/N+y2FxL98OP4SfNtiThl//IAPXv76ny8v//Hy839AEd/f3NZ8yVJcqvXhL9Kcb9mVevsLf/1Xlw+8fOrTLy+5bBG/JmFr43c/vvgmm5foa1DyBy37iqu/63sJF61f+p9vD4X7kLfq939RTqxbvv3lm9u/3b67/fwfAiP1t3/Bf3/Ef53gxLhlYHPi/eWKT/VyFS+/efn17c/3gt3mE+7Ovez+11/t6sufcef6ffK3GjefvYupVB9vIW3esbjff3z5xW9ffv7P+A1/++1/vLQt+FxariXhm7/995f/dfs7FPb3t/99++2/vPzTbxG+25xnsU796fcfbyjjZ7/85o+/+59/+83vvvv+Zx+//e5v399++afbr19+3a/3/an56DaJIl6uN/qU34GbD37LFaXF7Hx+Ds4pXO7E9cViz7JFqYJLusR+yu8Re0pbaixN8Ah/Xuxex67Kamlrwafm8C/+thVdSriW8m9/f0sVvxxRCf/um2//8J9/vf3X7z58/+Wpfn6z8TagyW0VX8d1lTrC+wTKrxZuzZtrIiFewz3lt4YbQg8XFbF5KWh6itRPROwd/vlqUfuAti7EEMI1bKX/yLg9HhgnMUVx0sonAg9fN/AStogXyxz3If/YsHPdUFiMgCifquFxDvvPLyzmZyzQ536tuDyRFP210Zmai3/809++++uPxBdHoKFVF9lOFXQwZPQuQsSrcMv3/oX07sgWcog14OJ21pcv3/SXX6Yvv7yUuLnaJMdLS1PSFlsKeER0QzOprcVK9VrCrqJ/8ov//4M3wkTwZSsO3ZN4Df6ios3M8oDkrq4RvBHmx5eKLoPLuLhL8Ff1CN5EskTwVpgIHs0OLtJd7/xVban6RyR3dY3gjTARvGzZ11inO3+qeM7Rn83likSpawRvhIngM7qE4otcgz9VhNkShxgzkru6RvBGmAievQxU4XYN/lTjFmKJMc9IDnWN4I0wOWmwJXQH5XrnlRq3hIGC1BnJoS4RvBUmgo8bhlQpXO+8UgWNnCs+X5EodY3gjTD7nAaHAn6686cqG3+w5BnJoa4RvBEmgq8bOrOuTXf+VPMWak4SrkiUukbwRpgYaji3FXylXm+9ljFuqBL8lckpLhG8GSajx2srS85tiv6Q+9xAzC1coWh5EQBGpASAXntxktIE4JDHZJObsZzqIuEbcTL8suWSw1z572r2G7ry+IkrEy0vEv5jnIy+ba0GF+abf8jFbaniiS8XKlpdJHwjUMTvA9rwUv01/EPFuMaXglfdFYqW1wjfiJPRCydzU5vu/im3sIkTn/OFilYXCd8IlPHjCvsUzTX8u8rnPXsXnFypXPRFADxGyvjRhXfJ5/n+HzIXWXina7uC0fIiAIxQQQCBJDzYE4BD9TFtEqurfuKi9TUAGJEyfnTlfS4xTwAO2aOfk3KMyV/BaHkRAEaoJID+fAgpTK+AU/Y5INTMqK9ktL4IAiNWIkCnPtTo5kpwyB7v+yIx9kGuRqP1RRAYsY6l6RKFK6AXBKfsizxBo/Q1EFixEgG69rHVMtWCU/Zc3HAx5Ac0Sl8EgRErEaB/L3im51pwyFxCczWE3CY0Wl8EgRErEaCLn7zIXAsO2ae6VYdWz09otL4IAiNWIkA/P5UQ51pwyF7Q/0uujV6BQqP1RRAYsQIB/hJydL5cEZyyj+gB4vmXMqHR+hoIrFiJAN39XKubstJO2fu0VZQreUKj9UUQGLESAa6wSKpzLThkjIE2l1uMExklLwLAiJQA2uZRRJnrwCHXtkX80/KVi5YXAWBECgDJb1Izv38BcMolb63VlK9YlLpG+FacDD9upfkm0/0/ZQSFhx6hXqloeREARqQEwFSzUsJ8/w85ta34kGK5ctHyIgCMSAkAHX2HUe5cAw45CQZDJaY6cVHyIgCMSJm3im6+ayjmCuCUE8p1/B8TFyWvAcCKlACY05FcjROAUy4YC6IDGK9ctLwIACNSAkAXP7ia5xpwyuj14l3nJyynukj4RpwMH215yDnN9/+UZcvZ8bV/paLkRQAYkRIAOvcxyDxLruS41RZqk4mLkhcBYEQKAAVdexQaphqg5LhJ4jM/Y7mra4Rvxcnw0a8XcW66/0rmDhbh0GemcsiLADAiJQBcobTS5vt/yog0NLT1j1zu8iIAjEgJAB37lFKZUiSUzFa/9FTnK5a7ukj4RpwIv6Jfn33MU4qAkjn/6Xyoj1Tu8hoArEgJAP36XDC+mwBc5MLezsRFyYsAMCIlAPTrS2hxrgFPZBPXIgCMkAigbrHU4ucacJHPGnAp5MfWgOsGmi3d/vvlaURXHP/6q9t1o820PaM4H7nZpqYtpJRz7o9s8TXtKb/ReyZzQ43FuT6Ya1z5bhjZUM140HMcGZFNUuU+UdliwzioJxCiC1wjE87wA/jdumcVslHgOCujnqRWel4dW41Wx7ihxFDCSDnBszTGkw7FiuxpSGFznHOPt+TxjsU7pu5yZn5CvqWweZDsaZlM2SoIWfpYNUuJ/YoRGD4THN5OHLNwuirvKT6huHLLAiaBP02Ry10t1nzLnOQPcQx2vMeNzLhI7iQLvPq6J0qEEKrPt4YIQ9mHRj7hfrsqzJ8oeDM4GTOnHj1GfLPEG655E18lh321XSLuJiuEA3TEVvYVWGkhuti3QYLl2Gnhg4zJ93bjKCzW4sasBCpXw23oqzcNfXIvI50nFLyoS3Fy88XjI+LDvrSH/+Wk9HUtXH5z9yW/4jCi6St+qG3ZD7ltoSbw6zpG/Ahx1ysup4wVwsyOQN6XzQT/+FFOLNGN2VPOm4dYcug/WxvC7FFF3Eo+zXXfB9ZS9LteMl42vl99clHafbkuivdR+uIshuBtRAu9BURV+loV4NRxnREIUQrqRN+iyi0s91UNjN5S5FI/7meLfqSACZ+9vlstZlxOxcOwT/5GQcDcTIafTbiE/rOozUFSxKPVeNsKt6uOqUI8+ewboOYgMLfPn6BCOTArN8RaWUbe55Uymgawzz3zOI6HA9dVSubONtxvPLY7YVSKFlPCs5gK8zViHpNTzF2LSW4oTUpuUvcJi8othfnWZ++869vsWIFScYG5gg3Pmtsfx+xRIdB+eD6leKLceMIyLrbi1hU+0imWvWzwZK31fSxc+iOxDxHROEVOtQlajb1Z6Jvz0F0aqda4O6jPvTvhOJUqoXcn0M7tqTioIxEXj3vFXmbPyWPDiwJdONb0is9WM93jeipftxgGtrtoCfZXyQ/uyrV256NEc7Pux6d7/PGNV+34ffzVT5btENRnb7V2rOZ9d3Rf667lXtTzfY//43f/95u/4G966+MbjBWGrcMrDRYCU/If01xj4W75mqdEHyVfIKlS/IPRAqvH8QH++9Z3+YtVqQLfUrWmdu2CKHm+nW/ZESt8daH/0EJ6telCeAfThS/HL/qAl2hkG3mpAKf8Dvzw1sKblKWhb/dW84UvyACtJr7l5mfgrr4HAbwLYkVhaDbxzvgsAuGJBQNehBgy3Um8jwfDF3xAX9XCvHXHeh2Z9uPq3+bL8FUQoE5VdPnQObogOOU3I0AnWSHIGUWjx839hvEHLAt+EhAY15SUOAS4gDjldwKB13oqGd3EhgHOJ0DITwWCZaEj7KcaccrvBMIHtOjoLwIDen/PQeSfDETiVCiGbWEicervhYLDY4zfM4aU6VNPR31ubIEHRyN5u8HFG9lynudzJzZ+eJ7nk5NE6CUCWMaQcUp6wogf/UlXpqSnSS4N490uXwq5y8c8zxogjIgJImHcmmXa//9UNrEtBsIIjSAw3kkBPZQp4ot81ohLIYvWCCNigmhbxYA7zbf+iWxiWwyEERpA5LD5HKtMNULJXPcokuvER8lrgbAiJgi8InLLYbr1StYgbD6LgTAiJoi8lZLYL72COOWI0VEaM4tXPoe8GAgjYoJom0Mnvc014pQjJzjHjOSVzyEvBsKIGCAKB8e5TUlTWuZsMDeQPfA55LVAWBETRMQnQ5ncBbQseAZa7OssuhAlLwbCiJggUk8JTjKBOGUOCnxx8YHPIS8GwoiYICqedYlxrhGnzPWLPBbBdCFKXgyEETFAVMdN1H5yXtByQa8aw4uZj5LXAmFFTBD4SzdgnUAcMsdZro51SFWIlhcDYURMEBg9BJ/bXCMOOXFlbF+e13yUvBgII2KCwOghFClzjThk9Kq9C2NWTfNR8mIgjIgJAqOHGEOea8Qhow8VShiL0KoQLS8GwogYIBpGD7FdFjQ+KBWvCbSI0qebVRFaXguDES8pcFJOapwxHDJqgKcpU73Q0epiGIyAyQEjh+TyNEt3qPiD+MAUzAscLS+G4TFeUmBqRpaHh+KQmaCUIsYV4YLnIi8Gwgj540t0GDfkMGXnnWpPgZK9dVB4lLwUBiteUuCadGklTRgOmfuUa2Ge0hWPlhcDYYRMEhgrlDg5OZwq86waOgo9n07z0fpiIB4jJoeKbkDjmvoVxCEzGcvHMKapFSAtLwbCCJnZH8OwbfI0UDKzCz0eh9QmQlpfC4UV80iEqQ3vgOnpOOWesAkENc6IlL4YCiNmokA1b/zshOKQL+42E6I1VzXMmIkCYwcXcp1rxSEzQVNS9zvVgE51MQxGvMSAV6GrUuYacchoCPC6SN7XCY/WF0NhxAwUgUn0EtJUI06Zdi+FBze1CZHW10JhxUwUGEME52SqFafM9HJ/n4vSiLS+GAojZqLgloZUw1wrDpn7FlKIwwdJI9L6YiiMmIkCI4no8+SNoGTmTqOo2AdaGpHWF0NhxAwUEWOJWGK7+mQouQUMNkpr4UpIy2uBsCImCAwmHlP0lczdgS75OvHR8mIgjIgJIvW9HXmuEYeMfjXaheTalY+WFwNhREwQGEokKWmuEYecZfN4BPq5IaoQLS8GwogYIISOqY6eOBcQp9xzhmRYqqtCtLwWCCtigsAwIufrBoUPWk7oNPgmfWOk5qPkxUAYERNE4t43bqy7gjjlxn1Npe+C04UoeTEQRsQEUbjNtU4OC1oumwsSi0x8lLwYCCNigmhbqegR1AnEKSduXvTNT3yUvBgII2KASOHxJL4PF1k2br6e8ZzqWhiseIlBrKMHtRyZXhlGU6kKUfJiIIyICSJbxxBqmfuew5ieueC5q4thMOIlhmYdSKjluPEnS3mgc8iLgTAiBgjuvns8nFDLKsn2ymfN3FszYoKI1kGFWtYgbD6LgTAiJohkHVqo5QsIk8+PBaH3R710q5LbZ2J5tCqZd9fk0PcYBlx548FLw6xEJMpIJkZfIKY63IjwoeHywYxSFEFrdsh4Sfp4zz+trmb2zIXb20v36WO2YZLcjVA4v1+G40YobEcS92vR1I+2nmVPycPPRx4qk3GBPvQTqZmgBjicN6tbibW1kZvDpcVGAxPEhbhdb5RDpeFK5S4rvLxSYWPdZdlC5H7H7lkSZLzJmOmEhp1nNmNQ5AqwDjlzhITbyQSoFrK4uqcD4aJq7rYRMSAE2dNjML6m1Urm/u7ixtaVxmy6lnAvCAcDr5GkzRkadq3irYaN1iEl7FkVjke8hhu+50BYRsoJ979IDJXHqveeyJBpGkBraIdfLCn58YvgExxdVXiySnB9L/pYmMaHmRZPd46AcKvsy5O59N3GNBrN6AG78Xnceu/oC8J1yxYxSEq7Tk8WVH2uUkQXQ8v74l7KqJClW4Q4eo30aSlcXLc7iX3RD+XlcF8BQ1lBxgkAkmJw98XDWhHhsDLxKUU3VkdoAJVaDMMqRdKAw+UjR4Bp6HQM77/rUWFdt4rcyxm9Gd8rbOz+LJG/FOMoRrhun3eDFrzUZEwdeLpp+Nb61aPOuFr3tZoUfOwGLR40o3RDNkS35eoc1//x7ATU6TDm8bsHDQ+zpAuIr/uhnpzfTwWPhAxDFDzCIvsclqftjjDNCPW+1jGjE1jLSZBn4wJ3Nyfh/EZplZFw4ajVYWUSIyoInlhOe2CUh6e+X3pkbRHaSKe6OT7cdR8R47FzaH4S87vA+z5+RoSezwzqbCv9uYt47GlcIRw04v+mfSyZcE2lz+hWNFD9SaOMaoi2grObTJlq+yQ2/hJr6vn5+AAq37gR+GqSWIe/EddIe25ypJGKuNR67nZkYsWQcTtTodsRWyL21nvl6iH0tkyCl3J/XeMZkWFu4jIeudGUBxRc+yImneV46ubUwoN5xSX55/Ir3E2e7HN/Zo2Bks0t8B+fmmzgG6/eS2//+id/4zVuJ2yP2/7a4+L/57udhJ/E7US4B/oxkxivCDzRD8e5KPkCSZXiTbeT8wPu+lM/eru0xLx5PMHTdgklz7fzDbulhQdXFV8aW4X6aruT9A5+J1+QIA9hlnkh4lTfgx8TPwAvt5zxvvg8t5OHPfdfDgE6ZGhbc7kiONV3QJAQdMIrA30u9uE+z+4kPfE7Qb8fdSe8k9PJF6xar2pd3li3mHR2Xv3bnE6+CgKe9eUqJ1svCE75zVY6tC07rz6jN49eO3qWPFr5OQVv+Fp8FRD9DGTv0bW7gDjldwKBMUY3T6Sl4KcMPizLl68Cop8E19DFC1cSSn8nFPQ6cb57Q+ZPur7En4wF+rct4ur8xOLU34sFe/KJx+sU9g8+3wFHmZ1Ejt0vNe2NZidvZPtVZ4yElp714XAboRXn4+E2WsYwI/g+NNJlnOoxX7QEBiteYgjWITdPZRPaYiCM0AgiWYfdPJVNPouBMEIjiGIdejPJaH/6nOlUyF1eDIQRMUE06/AbLUfuExjHAOtClLwYCCNigJBgHYKjZc5F19onMK98DnktEFbEBCHWYThajjRdHvlbVz6HvBgII2KCyNaxOFruNt2le3BPfO7yYiCMiAmiWsfjaFlQCVqVNvFR8mIgjIgBAoN645gcLctWORUfHvgc8logrIgJIloH5mgZwyPnUl8R0IUoeTEQRsQEkayDc7Rc2YfK3XNdF6LkxUAYERNEtQ7QUTLXREMp/awsVYiWFwNhRAwQ2VlH6SgZsdPIM8rER8lrgbAiJohgnRGjZGZqoDPZt0ioQrS8GAgjYoJI1hk6Si5uS158mfhoeTEQRsQEUawjdpRc6uZi6GemaDynuhgGI15iaFuuktxcHw658pyM6PpKsSpEy4uBMCIGCJ5J01yoU304ZR7sE/PYmK0K0fJaIKyICYLHz+BjU404ZZ4glGL146WhAGl9MRRGzESB0YPz0x7lU+WRRhhzjjQfDUjri4F4jJgcMHhwJU++Dkr2PSG+j7wvgLS8GAgjZC5zY/Tg4+TFe6pMFMMwq/aEHc1H62uBMCImBwwePL8/gThknsbUSi/zAkjLi4EwQiYJjB7CjGFoPQGupNpPkdNstL4YhDlaEkBXgD2BGcIhX9wrTjiWpcUaEIyAwaExTzDPy1uHyjRJF2Qc0Hyho/S1QBgRkwMGDYIvTPXhlH3OzCzMPX1VAdLyYiCMkEkicTreTz2pQ+XReTHEMrqUio/WFwPxGDE5YNiQUMDUkTplLz3Zu431jBOQlhcDYYRMEhg38AhSP5E4ZB5YWUMe+7A1Ia0vhsKI+eNLcjwENPVkZJ0zesrM0mcKXG4TIq0vhcKMmSh65hHPq7yiOGQeTIuHoR9mpAkpeTEQRsQEkbdUistznTjkypzZUPpWA1WIlhcDYURMEHXDN2qaa8QhY2zhJY4ke1WIlhcDYUQMEB41/DEzX8m5boEtZLvy0fJaIKyICYILuYKHfQJxyDz5hTuq2pWPlhcDYURMEBg/OBcmFwclJwwsQigznlNdDIMRLzFwAjbRyuiK4ZCT33LJte9h0nSUvBgII2KACPia96VM9UHJPGEc7WO+8tHyWiCsiAkCAwhf0mRTrWVuhkuxznyUvBgII2KCSDzbnRt1ryBOmZu6Wi0zHyUvBsKImCB4TndjqscVxCkzTyj1hf8rnru6GAYjXmJoj4cvfrjIccs1t77xVBei5MVAGBFzh5K3zk3UMjdu59ATKa98DnktEFbEBCHWuZJapo9mP/5m5nPIi4EwIiaIbJ2bqGWVUXrls2aiqRkxQVTrXEktX0CYfBYDYUTMrTTeOm5SyxcQJp+1QFgRE0S0jpuc5Hv6/VTIe2Xlv6fBybQtp0mQkVCLcl0Kue/+97mVFPbM2eJbHKZOhYeitT2PVFKhI4lw9iVJ338nyW2lSJF+nFrAt45kVKAQXByPU6PXwZ556HD9oRuZoMfV+nSFYIRWo+P6GvMRi+92A/ixzdOXsQ9oSggu76lq0eXgKl0Kc+CO9S63je1T64ltFTF15w/mc6GCoJJyf2uU4UghGeVVXFOmCQSIxu6+IDlu6ByHlrplRKlVxqczmOWI+l09x1JeRtE9Zw7fph0FLk7qPX8m+kgjhcbikvNjxRx9zdpoxeC90OSl+U61cH9v8f2U8UJD0rrr4AOIuJ+sGMHnXMu+suxcxJ+5wp5r3JcYS+PZAcxo7UdLSEtuLLk5vL99EDqZsPjiB4EaacjS+toL/S9rOnTcAK7WogsgKbX+oxXdwpIzV3GZDYYhZDcO4dZvlJfLONSAHaZup0E9473ph6FILuhlj3IAqsTYl8Rk863kMe1PPw/0vroKks3nfaFMYnD9V+na2tPyqDfuh+9uLnRP4en0si8n4fIcanm/+lTzqDHNgwH69nW4toRQxe/LLvhlEbq2+A3VuezLUvwx+tBw7R7V0vezIbk2gaec6T5eekcxlFF85TRLN3nBcxbxFPWcQc5RuiJ0VWmZNorD4yU5mow6OnjgnoUgA0FynKwpND3B/cBz4XzdZ3NcoPlN5i1obkx2+YDnOXmEl/n0uZrvUx544krrTqatlWFMwhkAHto2ZkJAv+UxHs54pbvEiQGAALe9bNQkVN/Qh8n4bu4pHBw04sFozBnGTQw0a+kywCWhJwtzqvGDLewjKwAM3UUx4mt+dCtRudCy7KZHuF/d9ChFxEATmdEJjXVEHnFRue/+Y+MkPo8pcNrW4iN0caChUR73fmqb0WJ1w54n8iusSZ5sTH/mY4GSzT3rH586YuAbr978bv/6J3/jNdYkbB5fZ0kiP4klSWoNWB4yfgvtzx/PolHyBY4qxZuWJMcH+K+86QX+ZFMzWoSNjdG00UXJ8218w57m7OjUJQWxs6l5rSXJOziSfEGAmZt8Qp3GNkp+D4BoTGtBaSWhOf9MT5J59/aXY1BcLzlPlsdKfgcGeDOierA0X+NnMghPPEnQGm/carA7/r2LM8mXw/u6RuaNli81jl0H4+rf5kzyVRDQ782n0K0XFIJTfjOC3DQC9r9j4llQ6Gh8gkJ69KD4Khy8Cxh5oq+eryCU/nYSQZNA79Khq8fmRz5lx2F5tHwdFJwj8xhZhQnFqb8TCg6Q0EFGX5FT9p9A8ZPVisyGtm+su6I49fdCkWgUyNFRwHDlFY41ypkkYaCskLzdmeSNbL/qVE92yTpZJ7tqnayjZXqQYKgoXT4LUfIx1bMGCCNigKD16OO5Olq+gDD5rAXCipgggnWujpYRcZVhwTvxucuLgTAiJgixztV5KpvYFgNhhEYQxTpXR8u01Q21G8zqQpS8GAgjYoJo1rk6WuZMTUz7o6H5HPJiIIyIOUD31rk6WqbpeRnzmFc+h7wWCCtighDrXB0t0yK9T/jPfA55MRBGxASRrXN1tBz7icfeP/A55MVAGBETRLXO1dFy2oKvre950YUoeTEQRsQAgeGPca6OlvMW6jD41mWc6loYrHiJIVrn6mi5bJzJ7o7muhAlLwbCiJggknWujpITfsQ5323jVSFaXgyEETFBVOtkHSVjXOrwrX5Qhuaj5MVAGBEDhDjrZB0lZ8djDnINVz5aXguEFTFBBOtkHSVnhOD6Qremc4iLQTCiJQSxTtVRcsGbofnSV95VIVpeDIQRMUFwfblx28IVxCFzO3XI43gYVYiWFwNhREwQGDfEVGSuEYeM2NJITLnw0fJiIIyIASJh3CA+halGnDJ60lttdcxNnYVoeS0QVsQEIcyIitO2YiXz6POAjmSVCZDWF0NhxEwUmecjuTbXiUP2PJQhpJGnohFpfTEURsxEgcEDvlPnWnHIHn3I1PpO+ysirS+GwoiZC/8YP2TJeaoVp+xz2PzO4eRziGtBsKIlBIwd5pOOPmiZaXAxNd/9Ly9wlL4YCiNmouBBbjlMT8ahMq8QfWrX0z81IK0vBuIxYnLgAXXBhblKHPLFk0UDsqxa1gBhhAwSBWXUMu23P1Ua9IgruWcVXvgofS0QRsTkwMxZPOxTjThl5gW7mkeasgKk5cVAGCGThKCT2CZX6VP1POOv8JzPiY/WFwPxGDE5MIs9+TzXiEP2XMcJfmwoV4C0vBgII2SSwAjCu4dH4676yA0v+GOZ+Gh9MRCPEYMDtzv4XCYHBiVzWOFdKrVcAWl5LRBWyCSB4UMIabJgUDKHmlIxvpgJaX0xFEbMRIHhA4aSbq4Uh9zyVmTfCKAK0fJiIIyICYKHLj+k5yu5ol3EP90oVxWi5cVAGBEDRPPcQ1XLVCNOGb3pIr65iY+W1wJhRUwQ3H+Tcp5qxCnTRLnlOh6NsxAtLwbCiJggMH5IXmSuEYfMnG4XXN+jpwrR8mIgjIgJAgOIVEKca8QhJ+4FzGP/luaj5MVAGBFzNwKLjW4yYtAyYnMI7IpHqUthMOMlBgwf0AJONgxa5u7WkPpGXF2IkhcDYURMEDRckVTn+nDKeUs11L7FUhei5MVAGBETRHk8MfHDRU5bKDW0OPFR8mIgjIjHfiXjuEMtM0G9ejfzUfJiIIyIAcJ767hDLceNp/f0GRhdiJLXAmFFTBBiHQepZVq8tdj3C0987vJiIIyICSJbp0RqWSXYXvmsmXdrRkwQ1TolUssq5frKZ81MbDNi7i3y1imRWla7Ea583m2Twns6lEw7a2hGEHvGed58kl6RuYW5r1eFwDyPMhx4ULllJAYF6TvvhlVTDc51lw5mmDrcevYl8aLA2KJ7izDhkpunXE88lRJaN65AZ2vLsaSSuj+Jp01elznVmzIPjqn9LMGxYBQjPUW4SN/oubmP9KMg1tBwscl1j5OR6hrThq/lHOhb4sC3jLS3gg5Nw2DwlvCLobgxlxYbrg8PMY+hcveVW3Fs64W2D7JFMLunSQVUL0AuzI3COLLtiTFJ8I4sdIZtvuYxNUXLP7BBv6HGDdfmpOzZIxIrvVbacFsYmBhYySkNH2JcP8/24Npp2FyJNFChm0lNTYaM5yz6hm6qR1XEDU+jQ4/QEJjz3bSktLTng3Njdc6ZdsYskIvS4+NtQ2c31mFa4gFtFJ8dMCN8Gnm4jbYOI8E+s1a77q2SUdVzv1PUhU6wwpXNwtO83HDmoF55v0I3EAn0viv7shcG5N2LhXYmNEDLu44GVVBFuDAYUhnGMNxmntAvFd91iTGMqXGM5/E0de+WwiOC8ETcl9vo9NKNTiLrUdk/X/HcSB0HBbDOjRvLLbEpdk8Xuq6E6tp9LSb70D1duEDlUj9tJiNE33yqw2U/4AMj2RxlRoyqadJC35vcdyFmXAAaim4Aw32A1Q9Xm1y6e05kzgjPzRTQHKUAbIiOWTWBh85WPoCczkGAqdB/GV0wznruFaryrOKEZ4ITf40OIWP2B/XM49XcblW6xZ6L+6RQQjOFR6IgaIcWakya4ZcinhV/4zokala3C8LTReMf2q/wjjnU1bbPI3DfdO4PDXrJaTxKjRty6A106yv+fNi7nPH7bEd6YmmO+6PeKlsJDL5vPXumxnHdzKkqLdJaxbFGjoYVA7QSWfO6cVEh/S7jmy0XtqXcsdq6e15xfOz7hnEA8Uxa23v0KFdKt09iwzJKQI3IrW8ZwWOMGt8rSvGOFj4p91ayooLmdu/60Ksn9RYRdaYbvKCqoRb4/YRYNOG9nZzeEbG1njD3RH6FU8qTjfLP7DVQsrmH/uNTow56q7x2M77965/8jdc4pTAptw0jg5428PmOKfkncUwppfTaNGUi4yVA288LvLt2waO+702vlPMD/vojP97mAk0EDzOeTkdW8nwj32JzwVV+NIQtJB7h9VqvlPQOZilfjmBFVyPG3hppgkp+B4KVXrIVpTlUwvSZZikPu/W/IISa8Y4X364tiJLfAwLNzQSlxfJJyx33pPJc7FJAkuctyu4f+C52KV/wMf38FuaNjyg7xOelv80r5avEzwMZ5vhP7c3xJ9HxoxvXfjD+8NMA8PSjmwko8Z0QeMfR1w8xkJ+IAU30Hhic4nsxoHH3DzLIz6xAilxQvN0K5I1Mv+6cCr0vH0+gQTNinUCjZeEcxV0+C1HyMaeyBggjYoIo1gk0Ws6bVIOPkhcDYUQMEDQUfTyBRsuXGnEWsmyNsCImiGCdQKPkxF7cIx8tLwbCiJggxDqBRsv60VCFLPtoWBETRLHOoFFydmrYeBai5cVAGBETRLPOoFFy6i7QD3y0vBgII2KMoJy3zqBRckpbqAYfJS8FwoyYIMQ6g0bJOuInfBYDYURMENk6g0bJOdHj/IGPlhcDYURMENU6hUbJRWi2/sBHy4uBMCIGCO+sU2iUXOhVbPBR8logrIgJIlqn0CiZWbLhkY+WFwNhREwQyTqFRsk8I7o+8tHyYiCMiAmiWKfQKNm77gT7AOiiL4bCiBkogrPOoVGyR/Q+GIi0vhYKK2aiCNZJNEqm4XB1BiKtL4bCiJkoMKguSfxcKw7Z44veQqT1xVAYMRNF4YEevs214pB9NwsyEGl9MRRGzETRtlhzq3OtOGR6HMRgINL6YiiMmLmO55l3VCbvAyUzaaZWA5HW10JhxUwUTG2qKcmE4pCZVxQtRFpfDIURM1HwCKN+buEVxSFftvhrRObW/zVQGDETBS7JOx/mWnHI3Ml8jswVIq0vhsKIGSiEeSLTiUMftMyksOwMRFpfC4UVM1HEniXVplpxypfVOo1I64uhMGImCgwqQum5aBcUh3x9mSpE675MrZiJAoOKGEOea8UhM5PViYFI64uhMGIGCiY8Ru7SvZA41J66Ww1AWl8LhBExOWBEIVLjDOKQmRgb3CMgLS8GwgiZJDCgwLVPs3iHyoSMc15X8dH6YiAeIyaHwkR+eXg0DrmFLcgDH60uhsEImBwwlMjBT6+NQ73OXJ1lLDxzZUQMDhnjiFxamerDKXsnqiuhAMmqPQkrZJIYtvZ5AnFXa1IN5VmElhfD8BgvKeQtPKalK1mnA55laHUxDEbA5ICOcuVhbhOHQ74sBJ6FrLsQaEUMEMVttXnvp+filHl4tMWnrTorYUVMEHHDx/DZCcQh6/QIVciyWRNmxASR6HiS61wjDlknzKhCls2jMSMmCAwcHIYPc404ZPYb5JGPlhcDYUTMnQjcXyao5FcQSq6qU6kKqav2Kq2ICSJwJ56TqUYoWYOw+SwGwoiYIOTx6MIPF1nlm+pCVk1DNSMmiGId1qhllWapC1k1+9KMmCCadVjjU9nEthgIIzSAaN46dfCZbPNZC4QVGkFE61TGp7LJZzEQRmgEka3DGrWsG0tVyLKNpRUxQVTrsEYtX0CYfH4siPe0CLnuuJFQubVy37ZT+1+6JVaT4Z2GRo/+FLW/FDz3Rg250eye5+3xvBQpOdPJgVsWqgul+3uAjow98WAVo/jWmJvrafvQd/0zd7mFWhMtOyINIEpPV3R070ujq1ojbVZuI8G3ehcQbaJvghveIfi1jZaPKDF77iEv3VmcWbA+lBwaLT6KH6YElc4K4J1qHwk2Vtk9LzDhTc+8QHoL8NCTPUuuFVpmoHbnmEO+5wbholPJPU0Ko+zaDQiYKJPxT5+ophmGT83vWSPiJMdh+BB9N2ikXjfJznE+F2SjZN/dBphPkH0t9MLlkWVBQrd2qNFtqD3iaDTB9D3B0H5fdAc7ToolQUye9iBDbjHTCMSPhOjWxhJk2ABXaKlLvwoeZiL7grVrUvriFBNnc7vLuQgi6rIAdTeDqFFQz3HRaegIRGTX8RPoSnc90EirI474realjZVPAGnjrkYa8qHa5R6VQ2PaT6rj8iCg1e4P7rmLLpX7WlkKoaGWctkQdb6M6xS6YPjcF5mZeoALafuCEsoamwX7WEe69UWld0Rr3E/u+RCmErsFSkWhqHoZrzYfcSOSi3V8nrcuR2Z5IJTUcKP753FxqOY8nN3zhkZuUN4nqVN03TLFd3edYaNVCQU1hokzjvvF5T6H2U8l65YmqNEu59QPouKkntRAMxK8a1DHhhtPpW9NofdMoDtI7ofaccIn48JKT3hOrvQHmLMfEtE69NmPlBBa3ecCfGHeI60/ShrOOLXwrHlHOxX8MCph7Gf+cLycpdKcBNdZuQXlPnrE73E6IfVdCK7/YKk8IifFcKOzu+DGlX1ggVrS6P3TeK+km7Cwmx0j3h/9pELcElTOvdPpCvPO2OzgoQphfJrWKPim73ZDDU+Z7D2zBNy90WV7Ouoi2qiAaFARpFt50aNkvLRdaN1sJG6oPqUf01G7eyrNfXi4LK65+7/pZh63sUkuc+uv5Fe4fDzZ3/3MGAIlP279/mibS9AR5FW7x+0ffV76a5w98Exuad9zz7X+z3f2qLcnG/mFrbigJaAvAt4K6VqYWDv50cwWPOhotu/b+f/92+//+pdv/8/f/vrtn7677L59+X85jlolCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTEwODAKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCA5MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jcENwDAIA/9MwQgQAsT7VFUf6f7fJhHqBx8G2RhgYbM14MHZwJfS2je9pEWT2ghWtUXdUJ67FKVYXUelTMJPmTt/UnQc7XAO29/W5ThN4+hf99D9AQ9KHgsKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgNjcgL0MgNzYgL0wgODcgL1cgOTcgL2EgL2IgMTAwIC9kIC9lIDEwMyAvZyAvaCAvaSAxMDggL2wgMTEwIC9uIC9vCjExNCAvciAvcyAvdCAvdSAvdiAxMjEgL3kgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0MgMTcgMCBSIC9MIDE4IDAgUiAvVyAxOSAwIFIgL2EgMjAgMCBSIC9iIDIxIDAgUiAvZCAyMiAwIFIgL2UgMjMgMCBSCi9laWdodCAyNCAwIFIgL2ZpdmUgMjUgMCBSIC9mb3VyIDI2IDAgUiAvZyAyNyAwIFIgL2ggMjggMCBSIC9pIDI5IDAgUgovbCAzMCAwIFIgL24gMzIgMCBSIC9vIDMzIDAgUiAvb25lIDM0IDAgUiAvcGVyaW9kIDM1IDAgUiAvciAzNiAwIFIKL3MgMzcgMCBSIC9zaXggMzggMCBSIC9zcGFjZSAzOSAwIFIgL3QgNDAgMCBSIC90aHJlZSA0MSAwIFIgL3R3byA0MiAwIFIKL3UgNDMgMCBSIC92IDQ0IDAgUiAveSA0NSAwIFIgL3plcm8gNDYgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ3IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDkwNlopCj4+CmVuZG9iagp4cmVmCjAgNDgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjE2MTYgMDAwMDAgbiAKMDAwMDAyMTM1MyAwMDAwMCBuIAowMDAwMDIxMzg1IDAwMDAwIG4gCjAwMDAwMjE1MjUgMDAwMDAgbiAKMDAwMDAyMTU0NiAwMDAwMCBuIAowMDAwMDIxNTY3IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDExNTE4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMTQ5NiAwMDAwMCBuIAowMDAwMDE5OTU2IDAwMDAwIG4gCjAwMDAwMTk3NDkgMDAwMDAgbiAKMDAwMDAxOTI3NSAwMDAwMCBuIAowMDAwMDIxMDA5IDAwMDAwIG4gCjAwMDAwMTE1MzggMDAwMDAgbiAKMDAwMDAxMTg0NiAwMDAwMCBuIAowMDAwMDExOTc5IDAwMDAwIG4gCjAwMDAwMTIxNDMgMDAwMDAgbiAKMDAwMDAxMjUyMyAwMDAwMCBuIAowMDAwMDEyODQwIDAwMDAwIG4gCjAwMDAwMTMxNDQgMDAwMDAgbiAKMDAwMDAxMzQ2NiAwMDAwMCBuIAowMDAwMDEzOTM0IDAwMDAwIG4gCjAwMDAwMTQyNTYgMDAwMDAgbiAKMDAwMDAxNDQyMiAwMDAwMCBuIAowMDAwMDE0ODM2IDAwMDAwIG4gCjAwMDAwMTUwNzMgMDAwMDAgbiAKMDAwMDAxNTIxNyAwMDAwMCBuIAowMDAwMDE1MzM2IDAwMDAwIG4gCjAwMDAwMTU1MDggMDAwMDAgbiAKMDAwMDAxNTc0NCAwMDAwMCBuIAowMDAwMDE2MDM1IDAwMDAwIG4gCjAwMDAwMTYxOTAgMDAwMDAgbiAKMDAwMDAxNjMxMyAwMDAwMCBuIAowMDAwMDE2NTQ2IDAwMDAwIG4gCjAwMDAwMTY5NTMgMDAwMDAgbiAKMDAwMDAxNzM0NiAwMDAwMCBuIAowMDAwMDE3NDM2IDAwMDAwIG4gCjAwMDAwMTc2NDIgMDAwMDAgbiAKMDAwMDAxODA1NSAwMDAwMCBuIAowMDAwMDE4Mzc5IDAwMDAwIG4gCjAwMDAwMTg2MjYgMDAwMDAgbiAKMDAwMDAxODc3MyAwMDAwMCBuIAowMDAwMDE4OTg3IDAwMDAwIG4gCjAwMDAwMjE2NzYgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OCAvUm9vdCAxIDAgUiAvSW5mbyA0NyAwIFIgPj4Kc3RhcnR4cmVmCjIxODI3CiUlRU9GCg==", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:05.858499\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdT5Mlx3Xd9/0p3lJasJA3/+eSNG1EKLyhiLAXDi9gCJLBmIGCBEmFvr3PyaxXdSvf7eF0T0/TqRGCmIP38tX9VVZW/j33m9/++Neffvjxn7/9ze2//P7pm/NvP/zyJLc/4J9/u7nbH/DPf9zk9i3++bcnd/uVu318qi1uzif+5cPxFy9tCzll/OsHfPDy1//79PSvT9/8GkX8cnNbk5JjcanWh7/E5qRlV+rtT/z1by8fePrUp5+eYtsqfi36rY3f/fiET285BqleyR+0LFW2dNf3Ei5av/Q/3h4KF5+3KvsflBPqlm9/+vH2P28/3775tWekcvsn/PMH/NMJToxT2YJLqV0u+BAv1/D0+6ff3f54L9ZtknBv7iX3v367q09/xH3rd0l4yaDjJeH/5ebTJo7F/fDx6TffPX3z3+QmcvvuX5/a5iWXlmtJ+OZ3//L0v27/kP7x9r9v3/3T03/9DqG7zQkLderffvh4Qwm/+u2Pf/j+f/zl99///MuvPv70819+uf3232+/e/pdv9q3JyYiW0ixSLne5FN+A2riylZ7aa4k/zw2d8ByJ6yvFnlOW3ShxniN/JTfIvIsW2NpoYUUPifypCNXJWXUqVpLqdE1ubWt6DL8tYxf/yN+eGu+uBr4f7d/+OHPP/31+z//9O8/3/76/Ydfvj7cz283XsfV+14+rqvU1EL5ZF3a3qE27SWWiPahxNauAZ/yFwZc2FyUKlKd5E/GLO8Wszg8MR43IV6DVvoXRi1ONh/RnGZxwX8ybP9+YQdEmsXHOoV96l8advBbrJKyiw6lfSrs8H5hZ7TlLYj3U9in/qVh57AVCTGgU5LjJ8OO18aShfyKxaH1Cyipti0mXFL6RFv52x9//uWnP//nF/ILI07fqgsNfYOCflUcnSof0AfY8r1bFXsvbPPZh+pjTDvsy5dv+stP05efnlLaEnqIOczdnNoSq51uXie1RmG1nErYVXTLfvP/f/BGmB+fMkpwaBzCJfirWqJz4QHJXV0ieCtMBO+35DIu7hr8Ra1Jejt8LeGurhG8ESaCj7g+n9105081bM7F4sMViVLXCN4IE8GXDV2BUKc7f6oIM/j8SGQX1wjdCBKho233kdX3EvqpBnwL7yY/AznUNYI3wvz4VGQrvrXLQPeDVgMGoPhWmZEc6hLBW2Ei+Ij6m0q83nmlBvSakit+RnKoawRvhIng0bOJkvx05081bC1JTHlGcqhrBG+EieBxQbEEme78qUb8W8uhXJEodY3gjTA/PlWHexhcu955pbJP56MrVyRKXSJ4K0wEj6YL36jXO6/UgqYthFSvSJS6RvBGmAge9zDHnKc7f6po4Z2vKVyRKHWN4I0wETx668XFlK7BH2ryW8YQL/oLEq2uEbwR5senhkFyyf5a6w8RAxlpJcQJiFKXCN0IEpFz6sM7f73tp8o5gtJKuwDR4hqhG1Ei9riVWqpcQ7+LBVU7oSMjFx5aXSP0xyARedlcC6lNd/1Q0bqhNClBA9HiGqEbUSL2toXWwnUod4gtb/gKl4o0D62uEfpjkB+fOL2Lr0i+3nYli6AD23zLVTO5qEuEb0ZKAOipi2tz/HdVgrAzG3qgGovWFwHwGCnjR2ddcgl5AnDIgq4cXuhhBqPlRQAYoZIALsn75GUicMicFc+1xVomMlpfBIERK5ec0W/3NbipEpyy4CUXpaUoExqtr4HAipUI0HsPfYH3iuCQBWP6mkqqbUaj9EUQGLESAfrwodUy14JDFk5oiZQ+jaXRaH0RBEasRIC+fEw5z7XgkCXlzcXgXJvQaH0RBEasQOC5OigxTrXglCW0DR2f4vKERutrILBiJQI0aqmgYzshOGTxssWQUskTGq0vgsCIlQjQxc/BXfYmfdAyewIhRunTWxqN1hdBYMRKBOjr51rdtNnulCt6wyXhbXglo+VFABiREgADianOdeCQS0HFz61P9ahCtLwIACNSAEAfP6OIMtWAU84Z5SIQuXLR8hoArEgJAKO8mvn9K4BDTo0L+iL5ykXLiwAwIiWAjDKEVfkK4JBT3LLkOoaHiouSFwFgREoAdUutFD/XgENOgsdeSpCJi5IXAWBECgDRcRdpkqkGKJnf8y2HKxctrwHAipQA0M13iKROAE4ZA+Lk4ugOqkKUvAgAI1ICQCdfkqthAnDKaWOdlzZxUfIiAIxICQBdfO/YmF0BnHLE8A/3uk1clLwIACNSAEjo4Puc01QDlIyGn29+mbgoeQ0AVqQEgO598HGaIddy4E0vzT9wOeRFABiREgB69yjUzzXglANauxb6NvMrl0NeBIARKQGgdx+jc3MNOOWwSW0uhgcuh7wIACNSAkDvPrbS5hpwymp/28RlqW1vZqQ8nCNc5sTDfAWg5LA5/Erf8nHlcshrALAiJQC05hld3DgBOGVEKmj3yyOXu7wIACNSAkDvPheJcw24yLW0XCYuSl4EgBEpAaBPX3wLcw14RjZxLQLACIlnTtxWC/ozUw24yvdt/VMhX7rb/3pOZku3/3h6NqIrjn/+9nY9T/NwCKPyIBHuV2q5ja3b6La0fWNvFXGou3yVx4KmfGzvFM+ThVSLdym0se8RuPFx9nxxZbmvihW2hD75zAFBSDU6GTvlkhM/xkkA4wLHSdVvHuHge+hEhog3Z1fjljjDHogslVoljB1XhZssWx9rhxx6L6sWnrsJvt4Sn7/s+zxsBUnxTuItYVTmsuuDktq2UlyfxBGMWRM/2UDWVdy1W0bv3ZXWwtjsknNBZ/6Ge4r/Df2oUeMnUozxVhJGfSUEsml9JxgusQqKj6Xvhmp1i9lV/Dv/DeTKvp0gS0t91pi33mXf+08ubPi1Rj0gHoRRxvJ7QbfCIbobbgO3oPDg9FiPrOhkSO0rUWB1LtK5iBDjTQpPHaBLGnc9e8ilL97h9uW+N5knb70DyC43DGHkLpeaEN7Qz1UhzyPhrow1QN982leF0Ov1oWRcJqpPE9yZsVSCWuOCONR0PDGhon62Xc98Unn5FbdCxrYKri7ViNJiP8tacpKx/CoFtaChgb31rnasro3P494ALBocfHCLrEm9fI9XUYi4KTd+pPnqRz/do0bjtuMOE7/LuJNjMj9xWRtx3prbwFgGNT6dseIqbqiQLuOujFk/hOLx5KHGcM+nuBb3ycBYQ2h9v1jEzUz3qcPqgKxws1xmlew/GbiQxncEq21FZW95n0/KaDjQGKBLjfuw3280DFxlERltCLqaY+RJ2Jx55jOVvK9jZp6Pc3Ge+/vwyPAAZ/9JPKP4gK99oy7+s+wTGAWPNo8ej4eYl9L7M4J+LG5dbwfSuJ+IIOGqR9cv8ERPb/U8bhVuTxkvflR7eWwjc0vJPy9fD/F5Nnob6txox//mcV/r3D9KNE8Bf3zWPQDfeNFR4sdf/WTZDkF97ulENF81Ndf/oE1AG7eX9PzZwv/+/X/++Cf8TR8ufIVjw/CLeKFzg/dovB93lAaMiqTWPG21UfKFkSpFHhwcWDuOD/DPa9+jT1adwht0E75Ar0MAJc9381VHTjFGSjwcUHk6+90NHb4iPrxE8TJIcl1WVvJb4MNDEXtpglfoq4wdvh6BECtfaU6uHWglvwGBwAnWXhrb/y/wd/B4XVT00QKae/ZQ3tTg4StWsxc1M6+sZc7pq3+t6cO7QEAfrG9IlCuEU34jCHhlY1CVAyf2XmgE8S4c2JnzrXArwgWE0t+IhDj2ykrgPuDyQnOI90GB4UNDVx9vrCuKU38rFOjYlhrQjyzsdr7IMOJ9UGBklD0tbCYUp/5WKGjjE1Eh0FGLrzSRaGGcqRklfoGZxCvZcrblc6cX/vZsyyenatBfDBw/xDZtQGJ3K0YOXS4N+STXFvsodSrkLh+zLWuAMCImCIz7Y47TWftJPkGYfBYDYUQMEBHvVgxsy3URQss0GBDXp6N0IUpeC4QVMUF4TqXhaxOIU0bENdJ67oHPXV4MhBExQaB3k2lyNoE4ZTQL6KrG/MDnkBcDYURMEJnTJ3iTTSBOGREX9FzbI5+7vBgII2KCwIC5pChzjThlTmRnL/GBzyEvBsKIGCASRpgVg+OpRig5cIku9n2qVz6HvBYIK2KCQGeq5jZtYNIyPSrQYYsPfA55MRBGxASRN8HIfTrNr+W4JQxo+kqlLkTJi4EwIiaIusVWUcknEKec8Lu5tTLxUfJiIIyIASK7rboYwlQjlMzTfiH3ncy6ECWvBcKKmCC4TcXJ5Heg5UrrKj+62KoQJS8GwoiYIBI3LTY314hDTo6re7W0Kx8tLwbCiJggMHrwkttcIw45oVXE0D9PeE51MQxGvMBA21df4rTtSck86xAcek4THSWvBcKKmCAwdgjBT9uflJzp/Bl9d7pShWh5MRBGxATBCeXm0sThrpa+97H2NXNVhJYXw/AYLylg4BBjDTOGQ64J3WhxPl/oaHUxDEbA5IBxQ3J5mqM71Fa3lFLoR8FUEVpeDMNjvKDA1byU4/xQnDI3uYR+JOqC5yKvBcIKmSQwash+2iF3quJxyQkDzTbx0fpiIB4jJgcMGnJpZa4Rh8yDItwnJu0KSMuLgTBCJgmMGkqYXBVOVdCZjs35Bz5aXwzEY8Tc/uBoEcYV9guIU+ZmqII+U7zyUepaGKyAyYFz0ClM7gJK5m7CKN1QYOKj9MVQGDETRdpCE5Hp2Thl7tvM7D7WGZHSF0NhxEwUBZ/kZycUh8wtr1L7KugVkdYXQ2HE/PEpOIwd0EOs0z65U5bYuKeDEzFXRFpfCoUZM1Fg/OBqLDKhOGQmqnC1lr7pViPS+mIojJiJgkfq+zjyiuKQ2ZdEwK5n/9CItL4YCiNmouAGNOfiXCsOuXFWrrR+7FAVouXFQBgREwTGET5VP9eJQ2a3MhT0Lq98tLwYCCNigBAMJILkyaVAyaWf1ajSrny0vBYIK2KC6Hc2tDKBOOScmA8t9rUcVYiWFwNhREwQGEg87tNXcqob1zv7vi9ViJYXA2FETBCVu9F4+vAK4pB5UIqNQZz4KHkxEEbEAOF5mCcyC+AFxClzCaOGsSdE81HyWiCsiAkCw4jsUphqhJILN+pL923QhSh5MRBGxASBQUTOPMx3BXHKeeNaTj9GpgtR8mIgjIgJAkOI4ulZdwVxymnzNHOJEx8lLwbCiJgg2tZKqZPLgZZ5KA6j7zbxUfJiIIyIAQLDJ3QPee70AkLJPKdYur2TLuNU18JgxUsM8THf3YeLHJhocu9OXegc8mIgjIgJIlsp/rQctv3A6ZXOLi4GwYiWEJqV6k/L3IPOvC8PbA55MRBGxDzHJlbaPy3jXdly7Id5r3wOeS0QVsQEEawUgFrmzvPcqsHnLi8GwoiYILKVDnCS72cRpkKWPKJgRjyOeBrJASf5BGHy+VIQ+mTUU7cKuX0mlkerkPlcjdB3gdus0Ql0wukH/PeIXlDfKokwSymyvwExkOzGFdxK2pow8SM7SrFPvYyNlcFVpkeD3KSFsYkIQ3AXM+0V6KVHg/HQ5bbhEjMTOOQthnbfesXz5yHU7hnCLtjYeZL9Js5345LuKSH7zj3UvOgcjRYc2iI6VHYZv99qqd24szhA7ded81ZCpqNJwgd4lmR8mmtzEbgSD+YH6R4hngfJQqA3At0q0Op1lwnuBCqt7xDMCRfiJN13xqTgaHVSZHO4qW5snGBKhdp8oadIoWVIXx4uzGeN0MeMXmqpjk8j4swtmbdGn7GU+xyvL3XDaCVz7tfRiy7u60c18riicKUAFaZhaNfTt/jKyZ/EY+2IHiPfOK6cPgMtSGojl3x1rdyXJksSmpkw83Ip0Y9DBTR+DkJ03YYk55F1nCt4GEnXErsfSCk5l7GGIxsuOI1VrtIvp8voRfnS3LAbSZVOwrteXfExX21IuCoWarc8oc4v1vtqGT7U6JbCdISoKN21Bd2yDU+T5xIzUxfhvge/LykBVaaLCl0pQKo7wqCGsFcX6KLCbX7ZuVEfW0ENF4QonDPCDQ7j8hvuhOtnvFFPC+ug7LOvvROAe4U760oKY662Z8+irQ7uAi5LmuxTlA6g062g1se6lyGoSzlzkyWunD0s2SevUE8wMqdnTfLej/6H8FFjEvQbt6vy8RtzfqnfSjxdiS4hrKhdLvTwyKlb+iKiku/TRGg48HjRgYS+OmMq2btuuTNmR/CQ7cH4bnmDYvq+2OrHc46RIiobnvQ+hSCoD72b6HFTaCMxHFTxK+0++q5g2/qgMzYefOxyZTMj+yZ1erLkfegBSn23Pk1ZOEDvXQ46T7rURvJNydXFvSeCx6+vMnHjamp9V97UOONp7Q4pz8gv8CZ55oT6c84WKNk8vP7xWY8MfOPFp+DtX//kb7zEq4RtZtzfWGwhPt+sxP9dzEpwrfjvD9t/UevQhj/kQ1HyBZIqRUyzkvMD7vpTX3zGOfJ+0kbq2hFR8nw7X3HEGe0cKnlfM0loFd/drOQr4sOrFR3zeblVyW+BjzZqvTSfYniVWcnXI5Dog+UdexGXJ+CU34AAmmi6AreKF77/IrcSNMlov0YVe1urkq9YyV7UyLzSDgadQXX1r7UqeRcI6O819Bm6LYWCcMpvBAHd0NJ49YWbpl5kVfIuHJgsBg8YeotXEEp/IxIcCFRHto25il5kVfI+KAL6pejStonEIb8ViEBHS6BFT7t92rPlwajkfUBgTOVcd4i8kjj1t0KBMXLFiIf21P7TKJ4zKgl4scWzxC8wKnkl23ed84k0zqwPaWIwQLXSxEwyiu2j86mQu3zawi4BwoiYINJmpIuZ5BOEyWcxEEbEBFGstDGTzGV1Mfjs8mIgjIgJolnpYyb5rBFXPmvWCCNiDse8lUZGy3RLbSOHpC5EyWuBsCImiGilk9Ey7aeb9Bmvic9dXgyEETFBZCutjJa54aS57mA98bnLi4EwIiaIZqWX0TIn61BmfuBzyIuBMCIGCHpGP6aZ0TJTzkrsHuxXPoe8FggrYoIIVroZLSPi1OfwHvjc5cVAGBETRLbSzmg5bKHxJx74HPJiIIyICaJa6We03D3zk68PfA55MRBGxAARnZWGRssRsdfh6K8LUfJaIKyICYJ/eUhHo+W4hdDE4HPIi4EwIiaIZOVZ0XJE7HGsUl/5HPJiIIyICaJYeWi0zBVW7lyd+Ch5MRBGxATRrDQ1WuZUUgk9J5UuRMmLgTAiBghmzagxualGKLluRVxuMx8lrwXCipggYj9LX6caccppOFn3eVZViJYXA2FETBB5K/zYXCMOOZUtShxbFDUfJS8GwoiYIDB6YFq2icNdzYm7o7q/mypBqYtBeIwWDLIwxVOeHBmUXBITNMUqFzZaXQuDFTA5YNwgYfLQPdVa8VpIqbseqiK0vBiGx3hJIXOmDd+fMBwy83Ih4jI6UkchF3kxEEbIJMH9gzOGoTGZFr5WZWaj9cUgzNFy9wc+FvCRCcIpM9E3NxRWzUZpayGwwiUF7tvL87LWoXLfYxp7ZK5stL4YiMeIx14gH31Ic204ZG4kxUjKh3IFpOXFQBghkwTGCnjxTb2nQ+0bcEsJj3yUvhiIx4jJoXHjd5uMF5TMrcKtpHGOXAHS8mIgjJBBomKEgD6AXLcwKVkwmKq5jN29mpDW10JhxUwUGC3kFNtUKU6ZJneppbFRXCPS+mIojJiJAkOGgrDmWnHIPamo76ler4i0vhgKI2aiaJsrxeW5Vhwyzzswb+lESMuLgTAiZlZO2VAms4ReQJxyqZtPVcYK+FmIltcCYUVMEP2Mz7w1X8mZPqluHMxQhWh5MRBGxATR9/ZFP9eIQ0406skjo64qRMuLgTAiJggMIJzzk/+CkhMPSImM6TnFR8mLgTAi/viUHEdQiRszNQgt02og1X5IShei5KVAmBEThGcuZ277uYI45cKUVq2EiY+SFwNhREwQtBgpKc814pTTFkJljuwrHyUvBsKImCAKEyyEONeIU440mg/9SJsuRMmLgTAiJgieJGkS5hpxyiOFeu8w6EKUvBgII2KAEP+YNvHDRQ5bkDQOHF/5HPJaIKyICQLDh8dEkVoOdJWOOT/wOeTFQBgRE0S2EkVqeaS9a494dnUxDEa8xNCsNJFaDpuLPNr+QOeQFwNhRMwjfGKlidQyIvaxPNIZ4loQrGjHOUYjReQk8zfixEbJi4EwIiYIjBseU0RO8v30wVTIWx1KeEtrkvkkjYj39632ufjxpnMRnxibAtPmxJe7O1dq8b6FEM9+Dd0TAP8zPAG4YczTSbpblkhBO1n27VNMjTgsS3B7xtAU/16zZNf3WlXwSGXfWSOlNs4Ipa3G1Mbuir4VzY3kYaG0msfSO8+lIZbEwQxaZXqAjL0YrfhICxKhHYEfZYQtJfTv+g6NmJ0fO2FT5L6VCDXhzdbSmF1LGVdK55SelKntu2ZTwZihSEo3rmQi1jErSS+LTNONG1e1+CN+X/xunq4ZPKRZfE7dToWLoNE5upE0Pi1t+L1E+lAkBDAMSFB5xknGmMvG5LP050b1wkBWjrUj2n9wMRXxVCmtv5O5koLaVXzbs0F0UxjquFO+ljSsOpJUQO467XxrNzjBV5nedSzd0y+EybjHCoWnC3LYVyjYI6xlWIoEPnRdpwtqlnB1GqGM+4Nf73pAHcv77H5ANet2/R4D8lrucq2x26cUnsUDs7xPgbvoh30KbmOpuR94RT2lTRbtLnBTUHpKYzmp9txi3ZdEaIESuOhMvdLVI+PH8IkmqJW9+MZkv45WOswyA3HUZ9wfXHAJ8YabgIom4440XIHP0bMSBFfb4NgiHqwkrk+1lHR/VFqh80blxAMuBK1D2EfhJeInuxdICzXX0R+XLaM6+z4mxbMt/VbgyjYmc2hjNx6Pl9d9vCLom3Ybj9Jwo8e4Fk1JkjCeK8n41JArDebC2PBdQx1A2MOlVQoz2qHt8jHH8X7HVTma4bDfi4L7CZJEx18XIh+3QL+TbgE9t4X46fK8/AInkGcOgD9nG4GSzbPhH581oMA3XnzI3P71T/7GS5xAYs+f+hIHkPh3cQBJlU3ow77aQpfwx3wtSr7AUaWI6QByfIB/4qtemM8ZONR+WixO+2GVPN/G1xg4oIjSMF5Ahwhty7s7gHw9fOj686yhmzaPKvkN8GW2dr00nyW+ygHk6xEojokRcmrTA3BX3yD+grYmBbp0pYJ3+Bf4f2S8WGhDHX33MHpbC5Cv+ZC+pJV55TOakr7611qAvAsEdOG84C0jVwin/EYQcmPOj5xCwq+8zALkXThw9yAtGDBiuIBQ+huRaCgbvSb0Y6J8msSDA8j7kODxNe/QR51InPobkRDfuEHN1cSl9pd5gLwPihz6qK+2CcWpvxUKdvCbrw4jt/BpFM95gCS+KM8Sv8AD5JVs33dyBcMuIwMNetFWBhot8yA/d7b0zuJZiJKPyZUlQFgRE4S3MtBomdulxfXJkInPXV4MhBExQSQrA42W++xU6EPuic9dXgyEETFB0Cj1IQONlmlgGupYy77yucuLgTAiJohmZaDRMqciYu3Htq98DnkxEEbEGFo5b2Wg0XL3Hgy5PvA55KVAmBETRLQy0Gg5YORVc3/hX/kc8mIgjIgJIlsZaLSMiJsPfX524nOXFwNhREwQ1cpAo2V6WbeaZj5KXgyEETFAiFgZaLTMg/zFt/bA55DXAmFFTBDBykGjZZrDJylt4qPkxUAYERNEsnLQaJlO7XXYv+tClLwYCCNigqhWHhot140Ttb5NfJS8GAgjYoDwzspDo+TkuHbGMi98tLwWCCtigvBWHholJ7SKCU9BnvgoeTEQRsQEkaw8NEpOeWsBwdeJj5IXA2FETBDFykOjZCYpQSnj9XkWouXFQBgRE0TjgaJ2Wdz4oOXM/DDoVvuJj5IXA2FEDBDMiB5SiVONOOWStyAy0TnFtSBY0RJCpK0/LeivEA65It4Sw2goz0K0vBgII2KCwMghliBzbThkjLodfrfPvqhCtLwYCCNigsDIIQXOO15BHDJ33aToe24qVYiWFwNhRMz1bu5eqbVONeKUuWxSigTvJ0BaXwuFFTNRcHol5jzViVNmaqfs8DNlQqT1xVAYMRNFYn6qOHkfKLnvzEPJrUyItL4YCiPmsSEEPQI/Px93lcnNErODtQmQ1hcD8RgxOHD0VL3zU5U45cuuSQ1IyWuBsEImCb+VWqZT7qfKvHaCx6FnJLzwUfpiIB4jJgf6goXU5hpxyEwg2LfgTIC0vBgII2SSKFtobXJwPlVh+8gcjDMfrS8G4jFicuAe9iR5rhGHLMExY2Xfdqv4KHUxDEbA4JAxghA3PxiHSrsLX3aDRU1H62uBMCImBwwgJJfJ80DJTIpZcz/AfRahxMUgGOGSAnqH3qfJ8EDJld7+Ifa0F6oQLS8GwoiYIDB48DW4uToccvGbj6H0kxSqEC0vBsKIGCDQN/SPm/OVzDzGeD/uD8ZRiJbXAmFFTBB4AYZ+dOYK4pA5Q9vzk175aHkxEEbEBNGPijFJ2xXEIaP3xELrhOdUF8NgxEsMGDUkiXGuD6fcmO07j761KkTJi4EwIgaIiq+lQm+wCwgl8/gZs5BPfJS8FggrYoLAqCEHN9kdaJlZH5zraa51IUpeDIQRMUFg2JBrnewOtEy3xX4g8cpHyYuBMCImCGayjqnONeKUIzqStZ/1vOK5q4thMOIlhvaYlfDDRWYSFAwv/URHyYuBMCIGiCZWHkYt8wRoyXsLofkc8logrIgJgoecH/Iwajls3nnpO0qvfA55MRBGxASRrTyMWubIyjFl0sznkBcDYURMENXKwzjJtfky81HyYiCMiHmYRqw8jJOM16SBZ1eXwmDGSwzBysKoZXUuRRfyhsdV3tILZDqWwyPepW+5r0xy1HfQFzdmE1zasssi/exNjrio/l50eB2gERz9pCA1lrGN0DHdoHd9Yyn6Ua7tmwuLoOHsuyxribmND0f8JWVmX8EThIa09tGJlE1AjyM9OhYGGYMWQe0K4lzifjTHw35+353lauOsVxLa+sWx59kLLgTPZN+zVUB3bOWKm8SEe8MMJb5mF+77nfA79DpJbYshhm7VkHE7YjdG4PyBT2m4iWTPjXF0PqI3hDTX9k1BjXYOyXueynTJxzIWfnFVJScatjaMPmvqVkHcK1FDojNKRT/TNdd9FrhzIJXg6XMbeG63jSsJmU4kmVO+juccokjYV5V5IVwtksS1AenB456KizRHkWHj5rpxCJcba/T0QaFnhisRwe2rb84J/T4yrtajE9xLx12RjPqbezbt4FGfxmJd4R2veM65WNcq7pbfddq3pLFkgzuUwn1JK6I1aHX3E2nJj5+lh1KmeQp1VLwy6gV0RCx1d0gHebkvCaGm01WFOkbycczzQC8tdlsSQKt134WB+oCum+++JJ51J9W067yylPvlexqT+H2dJQXPvVySKx9EfLnrqPetf1n6PFK8/yzqSk2up3OgXYjIPu2EqufQBpWemL7goRxdSdqXRBdl3FuhBUmX8Ugk1L16q8LRqBu3vG+oogdK4dCs+jTUtgUaNfaUMzRvGfWan0FtCZ4b0iL9T+7zPrSe4c7FukFr6T5L1NDBbzRERWG1W+dwUkA8XmKZDxKatZpH0ah6QOC60Q6Kjvk+s4AYG+elcHfR5o5nF+PI5l3hvF1G2W5vRGqgTU03cqXjTymp7YOMlPph7sg7m0cw6HIzvxaTz7G+ih+c2O/yRzpLlDB2cPPli2dvPxflfe4PEttg5gHeTcfxTo5xarHZ7nHn2nPqC/xKnjmt/pzJBUo2D7J/fNYugw4nLz0Rb//6J3/jJX4lbGEjS+GfF/mW5L+Lb0nJeFE87gWulQlyr/Du2gWP+r6YjiXnB+T6I19uOIHfw4M0dVJPdb6NrzGcQAOPV3QFtBQ+YThh+ZWg2XwDx5Kvhw9tBt/Hc74WJb8BwCp0hGJpES3pZzmWPFpJfEUGmY1jC+46S6jkt2CAvhZaFvb66ue5tlyqzsW3pKC3xEcZl0rHpbf1LfmKj+rntzKvfFBD0Jf+WtOSdyGAXgndF0JRBE7tjQhkvP8x1ouN/fQXGZa8C4NGv0T0+ppicGpvxKBFWuqhB4rO/Qu9St4FAsvyEcMaURSU+EYY2A3HIAkDqND+hmfLg1HJ+3BAA+loFhs0h1N8Kw5Mzer5LsIo53UuJQVRp7PEL3ApeSXY9532wWDKSEZTcrWS0WgZL32M2PpwVhei5GPaZw0QRsQAgVbbSEbznGxjWwuEFRpBeCsZjZa7PWYYNUIVouTFQBgRE0S0ktFoWT8aFz6LPhpWxARRrGQ0Wo4oqrWeL10XouTFQBgRE0SzktFo+QLC5LMYCCPiMS43ktFouZtblj6trQtR8logrIgJIlrJaLScaJoewyOfQ14MhBExQWQrGY2W25ZkrJfpMk51MQxGvMRQrVQ0Sk54TSC4MYN7FqLlxUAYEQNEEysVjZJT4o+MFSTNR8lrgbAiJoiwGalolMwTL6XFnjdAFaLlxUAYERNEslLRKBmDiyQyngyF51QXw2DESwzVSkWjZK5oFfxIvNLR8mIgjIg/PlXnrFQ0Skb/KTOlRZ74KHkpEGbEBOGtdDRKRqOQ8MN9o4EqRMuLgTAiJgieBn1IR6NkLjbHUKRniFClXPTFUBgxE0Xh+m+UuU4cMicCW8jR1wmR1hdDYcRMFI05RqTNteKQxeNBqCX1HR0XREpfDIURM1CIbLXmNu3RUrIEdJ/yvjtPI9L6WiismIkicgdVmQwZlCyxMMXPXisUIq0vhsKImSjyFunzGCcUhyzM94SmMs2ItL4YCiNmosA4wkUmxL6iOGTu8qohjd15GpHWF0NhxMylf4wkxMlkTqFk3n30p3LP+qkRaX0tFFbMRBFo7ndNg/RByxcfCo3I9KdYA4URM1FgPOElt7lWHLL0BG7oYcqESOuLoTBiJgpu7yt9D94FxSFzjTH5Jn1LrEak9cVQGDEDRXDccunzVCtOWSIeBDQPIjMipa+FwoqZKDCoCM1Nu+UOVULPeJdrmABpfTEQjxGTA25sjHglTiAOWbxDCLlP1Ck+Sl0MgxEwOWA4kdw0v3+q4phDdGz21nCUvBiGx3hJAS1eyvHhsThkZvUsJdW+BVnjUfJiIIyQQSJiIJG9TC+NQ61lcy3y9MUFj5bXwmDESwpMvllamerDKde8FbcbtSg6Sl0MgxEwOWAAUcJkUXGqeqpSFbHuDKYRLylUPOQP+/OVXITWd2PZV9FR6mIYjIDBIdG7LIXJmEHJPDaTnO8GiKoQLa8FwoqYIMIWmvQDdRcQh4zRtkvBd+MBzUfJi4EwIiaIhE/ysxOIQ051C0d38ixEy4uBMCImiMoNoLnONeKQE2596LnYr3yUvBgII2KeRnDMqh3LVCNOmVaILYTuIqz5KHktEFbEBIEhg0QeWr2COOVza4guY9ENI2a8xBB5mtDFuT6cssZgwVkMgxEvMZTHHIofLnJFX5qZpic6Sl4MhBExQTQra6SWC8/bj66UKuNUF8NgxAsM7Bs+5ozUMo/kx35iWJdxqmthsOIlhmhljNQyj9DfpyhVIUpeDIQRMUFg0PCYMVLLPHkeSj/nfeVzyIuBMCImiGpljNTyBYTJZzEQRsQ8WiRWxkgtq/MIVz5vdkzhLf1KrmdraJ1Q92MpDQODXIcV0257wNMGxYf9UY/Rt54VvJREZ7u+QkxLM3E9MSb3HUcJKfbtyC0kP0xcqt9S8d73PGncoV2HHLYSXGNajMKFjthdCLhpt6Iq8ZVLF737BtbsS0Y7k3CdOedjO2cAv1Rpv4D/Kj1nTmlAUANzKxUahkgZO7v8Fr045t2RDfHnEUrDM5yaG/sC8W67f5q5y4pwg2TjaKmNndWNI8dECzeSYXL3uO8a8yTZs9YAWuyeIqXhqyUI56kEPSpA7U8LDRVEvIs3XGmQsK8Su7QJQnPDhLmhKrvx8cy1DxpLirStiJPQm2EhCkffFRSx8Xzarvc54RhyPw+HGGRMBEje0JUTj+pFD4uw22NQLynQjII5uVumC0HXyxaCr64Ot3RUEdlltPiShol6cyA8FrkbPuN4HJXeHq3V0veUVs7UA2+m9QlYg7uXffmThhl9zS9usbG+7DoakoS/UM/41dov3zPrSa7d0x26K2G0PR61uD/4XedZvXzXC++VjDXFkmoeC2z4UI00EuJ1clllPLrQ0eHzufQEEnwM21ioy/TCaHjZS7d89WFfqKv4C+oiDwkm4Mft9/tiDapWBnMu1vDM0uhEBeGKRei7ZxhiHK7KFfcu0guPHie4E7iJ4/rRBEhttIBBNcLzU/ohV072Nl/o6MK9q2mc+eTUZybYcOMzIU26dU+NTGmMouWGhqnySblPCbmAStsdUXiLY68IdDBt/dmihQEqnPRPJ+4ERE3vT0jFe7+OMTVumjjaj3DUlBFs3YeSMWfOLeBm0woo7AMr1HfEQ0eUFvzwBamoQBhq0gEBP4Lfj2MXDe5LoomJdH8iuq30IDNDi90oBe0BbsOo13SewYNKoxQuo9d9cYBGNbGVsFuitH3yg/Y4tZTcrZlKrMUNGQ+2SzKOVcUY3BgBXJt54B43wZZfYHPyzOH255wxUPLjufePtrsGLVFedHTe/tHnS3+JtQmbQLwp2vjzEmuTenvGziBwWru7ZuA1hXpyKSpabgaF9RTjWdR35WbwLz/98uc//fR//sK/XE7aPv0/ciln4QplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjExMDIxCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDYxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1NVcwULC0ABKmpkYK5kaWCimGXEA+iJXLZWhpDmblgFkWxkAGSBmcYQCkwZpzYHpyuDK40gDLFRDMCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDI0NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkU1yBSEIhPeeoi/wquRXPc+kUllM7r8NzbwkK1qF5gPTAhNH8BJD7ImVEx8yfC/oMny3MjvwOtmZcE+4blzDZcMzYVvgOyrLO15Dd7ZSP52hqu8aOd4uUjV0ZWSfeqGaC8yQiK4RWXQrl3VA05TuUuEabFuCFPVKrCedoDToEcrwd5RrfHUTT6+x5FTNIVrNrRMairBseEHUySQRtQ2LJ5ZzIVH5qhurOi5gkyXi9IDcoJVmfHpSSREwg3ysyWjMAjbQk7tnF8aaSx5Fjlc0mLA7STXwgPfitr73NnGP8xf4hXff/ysOfdcCPn8AS/5dBgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgNjUgL0EgNjggL0QgNzYgL0wgOTcgL2EgL2IgL2MgL2QgL2UgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTE0IC9yCi9zIC90IC91IC92IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQSAxNyAwIFIgL0QgMTggMCBSIC9MIDE5IDAgUiAvYSAyMCAwIFIgL2IgMjEgMCBSIC9jIDIyIDAgUiAvZCAyMyAwIFIKL2UgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZpdmUgMjYgMCBSIC9mb3VyIDI3IDAgUiAvaSAyOCAwIFIgL2wgMjkgMCBSCi9uIDMxIDAgUiAvbyAzMiAwIFIgL29uZSAzMyAwIFIgL3BlcmlvZCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUgovc2l4IDM3IDAgUiAvc3BhY2UgMzggMCBSIC90IDM5IDAgUiAvdGhyZWUgNDAgMCBSIC90d28gNDEgMCBSIC91IDQyIDAgUgovdiA0MyAwIFIgL3kgNDQgMCBSIC96ZXJvIDQ1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAwLjUgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzAgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0NiAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDQ5MTRaKQo+PgplbmRvYmoKeHJlZgowIDQ3CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDIxMTIyIDAwMDAwIG4gCjAwMDAwMjA4NTkgMDAwMDAgbiAKMDAwMDAyMDg5MSAwMDAwMCBuIAowMDAwMDIxMDMxIDAwMDAwIG4gCjAwMDAwMjEwNTIgMDAwMDAgbiAKMDAwMDAyMTA3MyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDEgMDAwMDAgbiAKMDAwMDAxMTQ1OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMTE0MzcgMDAwMDAgbiAKMDAwMDAxOTQ3MiAwMDAwMCBuIAowMDAwMDE5MjY1IDAwMDAwIG4gCjAwMDAwMTg3OTggMDAwMDAgbiAKMDAwMDAyMDUyNSAwMDAwMCBuIAowMDAwMDExNDc5IDAwMDAwIG4gCjAwMDAwMTE2NDIgMDAwMDAgbiAKMDAwMDAxMTg3OSAwMDAwMCBuIAowMDAwMDEyMDEyIDAwMDAwIG4gCjAwMDAwMTIzOTIgMDAwMDAgbiAKMDAwMDAxMjcwOSAwMDAwMCBuIAowMDAwMDEzMDE0IDAwMDAwIG4gCjAwMDAwMTMzMTggMDAwMDAgbiAKMDAwMDAxMzY0MCAwMDAwMCBuIAowMDAwMDE0MTA4IDAwMDAwIG4gCjAwMDAwMTQ0MzAgMDAwMDAgbiAKMDAwMDAxNDU5NiAwMDAwMCBuIAowMDAwMDE0NzQwIDAwMDAwIG4gCjAwMDAwMTQ4NTkgMDAwMDAgbiAKMDAwMDAxNTAzMSAwMDAwMCBuIAowMDAwMDE1MjY3IDAwMDAwIG4gCjAwMDAwMTU1NTggMDAwMDAgbiAKMDAwMDAxNTcxMyAwMDAwMCBuIAowMDAwMDE1ODM2IDAwMDAwIG4gCjAwMDAwMTYwNjkgMDAwMDAgbiAKMDAwMDAxNjQ3NiAwMDAwMCBuIAowMDAwMDE2ODY5IDAwMDAwIG4gCjAwMDAwMTY5NTkgMDAwMDAgbiAKMDAwMDAxNzE2NSAwMDAwMCBuIAowMDAwMDE3NTc4IDAwMDAwIG4gCjAwMDAwMTc5MDIgMDAwMDAgbiAKMDAwMDAxODE0OSAwMDAwMCBuIAowMDAwMDE4Mjk2IDAwMDAwIG4gCjAwMDAwMTg1MTAgMDAwMDAgbiAKMDAwMDAyMTE4MiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ3IC9Sb290IDEgMCBSIC9JbmZvIDQ2IDAgUiA+PgpzdGFydHhyZWYKMjEzMzMKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:14.231037\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 1.034169316291809\n", "Layer 2 - Variance: 1.0524311065673828\n", "Layer 4 - Variance: 1.0837327241897583\n", "Layer 6 - Variance: 1.0072245597839355\n", "Layer 8 - Variance: 0.9160612225532532\n"]}], "source": ["def equal_var_init(model):\n", " for name, param in model.named_parameters():\n", " if name.endswith(\".bias\"):\n", " param.data.fill_(0)\n", " else:\n", " param.data.normal_(std=1.0 / math.sqrt(param.shape[1]))\n", "\n", "\n", "equal_var_init(model)\n", "visualize_weight_distribution(model)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "b1353a87", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.042491, "end_time": "2025-04-08T10:49:15.065475", "exception": false, "start_time": "2025-04-08T10:49:15.022984", "status": "completed"}, "tags": []}, "source": ["As we expected, the variance stays indeed constant across layers.\n", "Note that our initialization does not restrict us to a normal distribution, but allows any other distribution with a mean of 0 and variance of $1/d_x$.\n", "You often see that a uniform distribution is used for initialization.\n", "A small benefit of using a uniform instead of a normal distribution is that we can exclude the chance of initializing very large or small weights.\n", "\n", "Besides the variance of the activations, another variance we would like to stabilize is the one of the gradients.\n", "This ensures a stable optimization for deep networks.\n", "It turns out that we can do the same calculation as above starting from $\\Delta x=W\\Delta y$, and come to the conclusion that we should initialize our layers with $1/d_y$ where $d_y$ is the number of output neurons.\n", "You can do the calculation as a practice, or check a thorough explanation in [this blog post](https://pouannes.github.io/blog/initialization).\n", "As a compromise between both constraints, [Glorot and Bengio (2010)](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi) proposed to use the harmonic mean of both values.\n", "This leads us to the well-known Xavier initialization:\n", "\n", "$$W\\sim \\mathcal{N}\\left(0,\\frac{2}{d_x+d_y}\\right)$$\n", "\n", "If we use a uniform distribution, we would initialize the weights with:\n", "\n", "$$W\\sim U\\left[-\\frac{\\sqrt{6}}{\\sqrt{d_x+d_y}}, \\frac{\\sqrt{6}}{\\sqrt{d_x+d_y}}\\right]$$\n", "\n", "Let's shortly implement it and validate its effectiveness:"]}, {"cell_type": "code", "execution_count": 17, "id": "22fbe7d7", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:15.150553Z", "iopub.status.busy": "2025-04-08T10:49:15.149347Z", "iopub.status.idle": "2025-04-08T10:49:29.157548Z", "shell.execute_reply": "2025-04-08T10:49:29.156709Z"}, "papermill": {"duration": 14.048934, "end_time": "2025-04-08T10:49:29.159141", "exception": false, "start_time": "2025-04-08T10:49:15.110207", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTExLjUyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdS5Mkt5Wl9/krYjmzkAsXbyxbrW6a9U4t2cyibRYcia2mrIoy8TGy+fdzDuDhfh1xM8XMyioOKKOp6jAC4fdzOByPi4Nf//ab//PtH7/5969+c/vn3z/9+vzbH394kttf8O+fb+72F/z795vcvsK/f35yt1+528enJrIln/iXD8dfvLQt5JTxxw/44OWv//X09J9Pv/4nFPHDzW1NSo7FpVof/hKbk5Zdqbfv+etfXT7w9NKnn55y2QJ+Lfqtjd/9+CQtbhKDVK/kD1qWiqu/63sJF61f+t9uD4WLz1uV/X8oJ9Qt377/5vY/b9/dfv1PnpHK7d/w71/wbyc4MS5tSyHmJJcrPtXLVTz9/ul3t7/dC3abJNyde9n9r1/t6tPfcOf6fZJbzpuU5EuqPuabT5s4FvfHj0+/+cPTr/8VvyG3P/znU9u85NJyLQnf/MOfnv7j9t9Q2H+//a/bH/7t6V/+gPDd5oTFOvWnP368oYxf/fabv3z9P376/dff/fCrj99+99MPt9/+9fa7p9/1631/auLbFkNK5YpNye/ATbzbckVpLqUqz4NzCpc7cX222FE5QsixXUM/1PeIvLgtVRTmfJMXqoyzK8rvdFm4mhJbkdRck1vbii7FX0v56vuv/3T7+PWfv/v2x5/+9M3nR/nz24q3cUxuq/g6rqvU1EJ5keAXC7eULbuacrmGe8pvDdf7Hm4JW/S1luacKy9ELPjvXy5qEb/5JMnVa9hK/8S4xdXNFZTpkpPwQuD+ywYeUU6Lcardp/ypYeOSi8SSEZZ/IerwZaNmKxhKQJvz8eFNP/RPjRsPTEiluJCcf6mexznwvz2xmF+xQMn9anF9uBNBrm3s1Dr+819/+u7HTwQYRqC+VReal1TQm4qjK+UD3vtbvnemYu97bT77gH5DTDvty5dv+stP05efntAQOFSxHK59m7SFlnyslwb2qqIX4iLVSwl3FZ2x3/z/H7wRJoIvW3HiQrgGf6oIOEoN7YpEqWsEb4T58amif+QyLu4SvFLDJj62GmYkh7pE8FaYCN5veL6zu955pQa0JiH7PCM51DWCN8JE8HHLqL91uvOnGjb0sVHQjORQ1wjeCBPB5635KCVegz/VsNUgubUZyaGuEbwRJoLHsNK3lto1+FON6H2V6soViVLXCN4IkzMk6GukEq93XqlxK01C73pekBzqEsFbYSJ4VOAoyV/vvFITnu6AXs8ViVLXCN4IE8FndDhLkOnOn2pGwC7UeEWi1DWCN8JE8HXDDXRtuvOnind7izXJFYlS1wjeCBNjDee2gq/U663XctukupTbFYpSlwjfDJTxo7OaY85tiv+Qk2w+cDh2xaLlRQAYkRIA+u3FxZQmAIecwtaq7+27xnKqi4RvxMnwy5ZL9nP1v6sJf8B7Dhd/ZaLkRcJ/jJPRt34X/XzzDzn7DWHXKxQlLhK8ESai51xaLVWuwR8qQmriXe/WaSRKXiN8I05GH7fUQmrTvT9ljOhjzDWWCxWtLhK+ESjj54xiC3UK/65WdO2Kb6VdoWh5kfAf42T06MC7JHm++4fc8IaP2fWJjLMMrS4SvhEo197Qh8dDPYV/qIzYC76cr1Qu+hoAjEgZP7rxkkvIE4BDlpA2J+jqtCsYLS8CwAiVBNCX9z75qfk/ZUEnt7WIej+R0foiCIxYiaBy7Su4uRIcMgLeSvRo8SY0Wl8EgRErEAT06EPkYu8FwSlLiTYara+BwIqVCNCpD62WqRacsuS2pRzHq1CRUfIiAIxICQD9+phynuvAIQuXxrO4nCcwWl8EgRErEaBvnwQduwnBIUvwW/G19QkPjUbriyAwYiUCtOpo0MJcCw5ZJKHRC0nKhEbriyAwYgUC/MXn4BDIBcEpt4reT8nJX8loeQ0AVqQEgH5+rtVNqXenXPMWq+Mg+MJFy4sAMCIlAFxhianONeCQS96YNBLDlYuWFwFgREoAfWIzlLkGHDJeeq4x8/DKRcuLADAiBYAkqMqZ378AOOUctphDTWHiouQ1AFiREkDgglaLUw045VS2hG5wbVcuWl4EgBEpAWRU5VL8XAMOOcVNxPnUJi5KXgSAESkBoJPv8D6fa8AhJ6baujzmxBUXJS8CwIgUADL6+K6hmCsAJeN7xXHh/8JFy2sAsCIlAHTxmWQZJgCnjIededYzFyUvAsCIlADQwfeu5rkGnHJmqg8KnrgoeREARqQEwBWenNNcA045bUxyizMXJS8CwIiUANC7D+jQzTXglCO+J6jtExclLwLAiJRbFNC7R6F+qgFKxvvO1Rr9A5dDXgOAFSkBoHcfo3NTDVBy2DD8KT0JQBei5EUAGJESAK4wttLmGnDKYcPLzu8ANJdDXgSAEenYpYMnOZUpOULJYcN19wygK5a7ukj4RpwIv6JvnyXkKTlAyXjvpSZZHqgc8hoArEgJAH37XCRO91/JfPFHsbjc5UUAGJESAPr2xbcw14CLXLKTOnFR8iIAjEgJoG6h1CJzDbjIJwCTy1sBXLfPbOn296dnI7ri+PevbtdtNtPWjFJS7vsb6oZv13uTlQPf2TVtPqWcM0W8xUqf1WO2bwuZy6iRldsXhtbw0nOlcPsdeoDJ5b4g1iI3F0vqiZO+puL9njwWpKaRU1dS3RNLPBqLjOeGKWW4hDAWGVzYPLMs2y35LdUmrr9kXNy4Hagmjra9hFZGXlrG0NvjsjgL4VLBZ/aMHV/wMxihtdRiuSf34CWF28Q8nti8H0vcbkMnLmLkknskodyTYWKNhRN/guY9ROltveAVj7/gV9DqR/5w2dMEUuTq8K3hTnnOhnQZmFNJqd369TfQ7aV4tyX8BR/nR1B9fQ/G+y0Ag5S+uBBKq2EsP6JnmVyrKAbjrIxxdsz7smSojXVNEJErMe1r1rhluQYuUiCmit8YV+kxSIuluAgdFS7X7Py+tof/5vAh7ijFg7ynffnWb2II0MMW+d1drrieMpYCE+9R3hfIIv7Bs0G9lOjGZQbZnA8l+15MKGgo/K5nF8Sl/rOx4R3aZY/Kh5eK9KhiSP5Yd2ioPKh+XJRHhUljEBrdhpuaUJd7RQOccZmo7yjd47XUOFMTxh46Tt2GWLlnu6IO+xzzfaIXwxiMYwqegua54k8V9Sgm1kzUAlT9PJbEMdzHvcH95KZtVEqOfzgfgMtFbcNYAPUOOEq4T6BlPOcBNTrzTYnHsctklLlFDX8KtezL7fhMwg+knmmZcW9i3OcafPKVI82GKujDGICmhlGXMB0V15RjzGN+GgPzVJxnzl/dODM1JizAs1bciMLns0nbl7czHmy0ENJHsYjSZb+P7Qprfn/GuTO27QOehM4ut3T3deCQxvAIP19xL0sfB/Fd0MvgjZUGsn2vQN2zitBlRjuG6+7bJ5J3owygRzOAStI7kriMvX+JgCvq4Xi94tZ1IBW3xrv73qUS3KhUUwPt3PPqdVuhZ3sLxvsr5B/uQLbsB1CiuTH5cWuj+sardjc//uqLZTsE9XP3S+JxKCWgto41bvDdS3p+q+OHr//vN9//sLnt7998++f/+vGmdz2+wUBi2Fe80kgC7308/w/5raigrDV5yvNR8oWVKkUeDCVYS44P8H9vfZU/WXXL44kPGEFPEzFKnu/qWzbD7g9JQxvmwmvdJfw7uEt8PoBoaNHGoTN07cIp+T0AcqkX/R2aN6Bf9DaXic/IAN2fMiU537V3iD7wjYfuV+NG15/pNOGfcZrA2whv2CSDwydZTXzGh/JVrcpbN6jXkVY/rv5t9hNfBAFTn9GNRE/kguCU34wAz6hCgKIDutS4/uJecmZIhkXBFwHBgUVrGCKFKwmlvx2F0yg4DqqCQVhy0eXX2nN8GRjoeSf0xatMME79vWCE8S5sAdXtJRa/XMXgONuXMpG4q+/FAb3sGqsTjC9fZ12ivSy4kfEs8+2eFm8Ey+mdnzuf8Y+nd16cG0LvkEvTIbYp3wlDKfQjXZnynSa5eAy/unwp5C4f0ztrgDAiJggMdzFqnLb8T3JNEuIjn7u8GAgjYoLgCrb3JUwgLnLBYy2PfO7yYiCMiAmiYUhe8bUJxEVuVaI88rnLi4EwIgYI7vbLocapRlzlE4TJZy0QVsQEgVdEbtlPNeIqHyBsPouBMCImiLyVkqLMNeKU6QAUcp8/04UoeTEQRsQE0TaHrliba8Qp92UH6UuhE5+7vBgII2KA4Iil5jblS2k54Gmg3dwDn0NeC4QVMUEEfJIT5BOIUw5b4NRSeOBzyIuBMCImiMRGL6U4gTjlsEWJobuEXfkc8mIgjIgJomIw3wO6gjjlnkCbpD3wOeTFQBgRA0TFJwVjtqlGKDmyM8kdllc+Sl4LhBUxQeAv3WB2AnHKccNLsoVHPoe8GAgjYoLA6MFLbnONOOW0QQt9oVAXouTFQBgREwQXE0ssc4045bIJ993PfJS8GAgjYoLA6CEEn+caccoNb8wofR1XF6LkxUAYEQNEw+ghNHe1JzjV5NEoZD8G4WcRWl4LgxEvKXBSLtYwYzjkVLkPdeQuKDpKXQyDETA5YOSQmI5wxXBXObDILvZsFVWElhfD8BgvKTRmSsWHh+KQS/dl4D4MTUeri2EwAuaCLtN+/JSSd6pM/4k0oy1XOhd9KRBWxOSAQQOGTCVNIA6ZGV0p+VbiFZCWFwNhhEwSicvSk4HDqUqWTaJzPdNP89H6YiAeIyYHJic0LqdfQRzyxbRDATK9PNYAYYQMEsIjMVKYzAyUzEy6hOglTIS0vhYKK2ai8FttIjI9HacsPnEbu+tZoxqR1hdDYcRMFGnDx/DZCcUht8KtnNIzk1UhWl4MhBExQWDkgGavznXikEvl7Ivvqd+qEC0vBsKImCAwdmCq8FwjDpmdSPwplSsfLS8GwogYILznUNqnqUaccipbD+yKR6lrYbDiJYbIdH4Xp/pwylz6drX2bQeajpIXA2FETBCo4D5VP9eHU24bd1+0iY+WFwNhREwQjfsH8mSGoOWySc3SZ+x1IUpeDIQRMUAEjB+49+Zqi6HltOVSorSJj5LXAmFFTBB988+cla9lbtTBn/3ER8mLgTAiJgiMH2Jtea4Rp8ytYt7ic8iLgTAiJgjuyoklzTXilMOG33Rh5qPkxUAYEQMEUz6zS2GqEUoOW4i+ukc+h7wWCCtigsDYIWd0ECYQp4yIPVrJ/MjnLi8GwoiYIDB2KJ5DpyuIUw74UxibTK98DnkxEEbEBIGecil1MlPQMk/O2o8Qmvj4+WShNUAYERNE20oNudQJxCnTX9ThPzzwOeTFQBgRc1+Ofzxw78NFVvliE58l08jMiAkiWmcMTnKT3Gfup0Lu8mIgjIgJIlvnDU7yPd16KmTJLGwzYoJo1tmDk3xPt54KWTIL24wYILJY5xBO8n0nwsxnxQ0KZsQEEawzCZ+VTWyLgTBCI4hknU84yUcbcS3kvdoIvSnqqTuT3H4mlkdnknlXTaCHCHOL0QOSSv+A/uKvqZuI+OK4BezuvYTPjiTr4jG4bHTh7pmkJfTdiL4MS4X9ZE4vte25dTFi9NG9CxwdW/ZEs4KLHBZuMSd8ostCi4Q4EvHQHx2T374CbCpxON6FVEIecuR2vd36RBz6bSNTJ28p0ReP00K+hbandJVNMBwcs0UobpwrQrng0R1uDpJpr9rlintFi6Xu/SA+da9Z32STWhv9NwHKtTzCgUxbie5WihC9hD1HBF2q7rZCo74SRgpNCxtzBei2QkPbFPZPJ4xPcUP6WUA1Jdf8nlqAQSvdVnjyfPZu3JpGqwDcxsL/D2Oeg/uli8fty/SIpu3KoNraxiPHcatRWAWDngLNNWqUAG43kcIDd4Y1SXA0JUi0YaEvCF2mxgJm3FCjK9eweCJVwW0q+8ImakbCd7lVDl2lVsfSb+bh4bUvhHrGWcZ8tuM1CNOnuBKKN4nbF0jR+RSMy6Rv4atRWr3rrbaKh016CrO7X35F5I1GJZLz1jimG59H380j3HCj3Qc6s2MzBNfaas20zO0PWM27jB5OTL6v4OPmJudiL17CBpSNhi6u287QeJl65Mp+joW7+DxqRq77sg2qfABw1MrCPQhhX8SgTQozQ/BQ0JRjFFJp3Mhfyn1Of5/m5GkHiea2CM1jaNZ50XiFZ4gHWpngmQjdmoUyOma4NlYuVAc3ftDTDw8X0tO2eHRMLPucMZBUL/SNxfPU3Ci7HzImI9ctoXaFUQi3PGbPkSG9Vnj8ZJ9C4GolrlW68WTDvRozC6jm+OwwaeRCxX0GKlY8IN2FJAS6IO3zMWwZWrchwbNex5ow7ojQnqT7+eG2xqG2Da0KbkJvUtDgSL9lUTilRWi9pdm94MM4H6GvMnALKGrQ6LBwcFvvW0KcSy7sr++UJO6LdTS5yUbT7iRZLf4uv8LN5JnN7c95YKBkc9/7x2fdNPCNV2+gt3/9xd94jbsJ+gQ0oUI7P1b7X2Fv4n9JexO8dvB4PqQQJzwj/vH4FiVfYKlSxLQ3OT/grj/1yZukY4iori5O/Tolz7f1DfukI49pyuLobpJecOf4fPYmnxFgpc1XkSkLTMnvARDvboynhV5N8QV/mBftTT4fgxTYDQl1an+U/A4Mkm/sAtSAl0+QTzM5iYGmoP3rn2Jw8hlr1avalTdWKuaZnVf/NoOTL4KA9nbooSV/RXDKbzbOQQ9MIcgsGp2EyGWgf+Df8IuA6LYj6MNgmHUhofR3QtHo6pZSQ3cSg4vnUcRfDAXeUOhKs1d7RXHq74SCzonoJaMXjmFle4FF/sVYZPTZMc4OYWJx6u/FIvc0RM95ifpSQ1GfdzgJHOermvZmh5M3sv2i00WR7p314TibSDfOx+NsJpnljP7hpZC7fEwXLQHCipggvHWszSRXVw08u7oYBiNeYkjW4TaTfNSHayGL1gcjYoIo1iE3k3zUh0sZa9YHI15iaNZRN1rmaqOUGc6pLobBiBcY8BfjwBst09K9TwxNbOS6U2AJCFa0hBCtQ2+0zCn3MOylr2wOeTEQRsQEka3Db7RMu/TgWnvkc5cXA2FETBDVOgRHy0zcyr7PT1/5HPJiIIyIASKJdRiOljFGpB+2f+BzyGuBsCImiGAdiqNlzpa70j3fr3wOeTEQRsQEkazDcbQctpYwgokPfA55MRBGxARRrUNytMxVuppynvgoeTEQRsQAgSGrcVyOlrmk7UOoEx8lrwXCipggvHVsjpYzOgw8U2Lio+TFQBgRE0Syjs/RcmEOQ3Ey8VHyYiCMiAmiWMfoaJlnaYe+Sq/LONXFMBjxEgMnO2Nyc3045OT5I+MEFFWIlhcDYUQMEEW21pyvU304ZVqY+JJ6AoHmo+S1QFgRE0REGfjYVCNOGZWg3WdWVSFaXgyEETFBYOzgZNqQfKqlcl0yjQfjLELLi2F4jJcUMHBwJU8GDkpuPF00jMSVswytLobBCJiL2sLDvSbL3VPlQVs1jZQ2VYSW18JgxEsKGDQIvz9hOGSeQBVcrqP/cOLR8mIgjJBJgomIM4ahMQMv0pRgQqPkxRDMsTL+cZBYnREc8sXB5URj2bqsAcEIGBwavhbyvJh1qFw1DIHuXxMdra8FwoiYHDBUiD6kqT6csoSw9UMa6xWQlhcDYYRMEhgsoOWb+k+HykRZul7lmY/WFwPxGDE5FB483ya/BiUzT8zzQMULH60uhsEImBwwVkB/UGTicMh4L6QSfE8UV4VoeTEQRsQfn5IT/iW2a4VQcsafXIpSrny0vBQIM2KCwGiB2ymmFNlTTmlDvLGnn6tCtLwYCCNigsio4jxOcwJxyMxW37vPGo9bs1NtxksM49DjNNeHU+5bVnI/SFQXouTFQBgRA4T0jUNzDr6W81Zqcf2kZ12IktcCYUVMEIHHDkc/1Qglp7PXpAtJi3amzIgJAuMG5/xk1qBl5vntvSZdiJIXA2FETBAYOrjUmp9AnDK3iZXYt/Fd+RzyYiCMiAHCOx4sXcpUI5TMfXFjC5ku41TXwmDFSwwYOEhJkwO1lnmAR479APcrnUNeDIQRMUEkHuIe4lwfTjlsydfWt/hd+RzyYiCMiAmCJ3A3CXONOGWVC3Tls2aKkBkxQbTHkxU/XGSVHTbxWTJpzIyYm5DEOktSy4HrmrLXCM3nkNcCYUVMENE6S1LLZ/LohGfFlFIzXmLI1kmSk7ynEk9lrJhgbMZLDNU6R1LL3Bmd0wMdJS8GwoiY22XEOkdyko/6cCljyfpgxUsMwTpFcpLvGEw4n4rhPd1Lph0zVWhuMPLJcw5tvPDpydFPf0a5Wy34eD/eDN2A2M1EYvfzyG5YfoWcZGRYp4QSa9/tiuYBD0UYKXRtY1MxzofC3eneEzELRuXe5z5s95zAG7kT7Hg5T3ODsjkMXEdiZo64qpaZoUq3B1x/2FNOEvprnP0Smozdy+65auBDucYWyl0uIaKGdPtjXHe7p2vUxvVHTqGVVsLI8yooMQkdNxAAvrb/ZAl0w8SXaCaSw36sFdf40VmoMlwqSkupIymp22S0eqvcIEZDmy4jCE/LjBsNTnxu5b40nCqtJ27ioOewEyxtK5GWDzeRyFm+1O4rqPhvDZWQR40LDy8f62m4m6FmrifQrSaVPKbRa+jx3VBH6ZDuB9saccE5cyE20+Gy1e4NQ51h1NwXJ2sqMrI6atoS4vZtuIyUmOq4mtxPtyrSF/IyZ2frrme8M3k1Xfc1jsXPsrGOcJkH5eAK3Ei5rNwd7Uv/1eSquLqvjsXgXb/Kwsqax0xwbX1PA68yk1nxacygox7n3C1YuMxeyvCwwVh3o2vIcMlnDkK7r8CgetGCBT/kaqjlvh5RnNBRpbCldzGPBSo0d9nROAWVB3VHupF2ctx7X+mbkukK0XyTfY4WoyvapmS3NTxEY/jJWxwybVN4GjHX+8aMbp+moGtKAi23L3ZwgjPjdYMnlNlVyQ2HxeQwlmcyZuC8JypjLmGfBmz0pRlHbaGV2D/dNo8HlNukaVcTU+4XKMzkw8+P3E6eLBH2CZPmA41QOGHS0NwMGbVR0HB17xD6oNS2D55cCG2YguYxJ00Zdx+PQO2+JGjfWrewweAKbQU9RLss3F3c3yO9UxXHeYoupNZ5c8N8Lvl+Qqu0frLBQxucnNk0D/kVRiPPbDJ/zo0CJZv7zz8+62uBb7x6I7v96y/+xmuMRrhXCs993/r/GpeR+Eu6jKSGp+8xobfQ1fzxXBklX0ipUsR0GTk+wP/FN723n9mrjCqN4fV8mtypznf0DRuV8Ywh6sCuaXjBIePzWYx8Rnrcxh1cmbpsSn4Pfr1Xg9J89XjJvM1i5PMxQCOPDkStU0aakt+BAV6B6GexNPRafqbNynMWI5nuX3dDo0+zGfl8VF/XsLzRt6WGsZFgXP3bbEa+CILCjhoegXxFcMpvRoAem0JQOPSg+SN9DV+gIIafxBcBIYLnoDl0Xq4klP5OKGRY+VWe9oaO8+ssV74MC3QVGwZq3XJFszj192KBUXWhybygCX7JcyX8YiwwuMNQPIYJxSG/FwkMQhytBDFe9i85rszuM8plJPF9dhb5dpeRN5L9opM6vfPzeEhOdtU6JGeS8U9Pr5oKucvHtM4aIIyI2dN01iE5z8k2trVAWKERhLcOyXlWNvksBsIIjSCidUiOljmxUlP3MdaFKHkxEEbEBFGsQ3K0HNAN9mOi6MrnkBcDYUQ8RqPGITlaps9vquIf+BzyYiCMiAGCfsGPh+RoGRFHJxafu7wWCCtigojWITlaDltw+5NxwXNXF8NgxEsM2ToiR8t0sy97U3mhc8iLgTAiJohqHZGjZR4cFmJfzbjyOeTFQBgRA0QQ64gcLQcebt/6bPyVzyGvBcKKmCCCdUSOlrno5PcaoQpR8mIgjIgJIllH5Gg54XfjWC7UhSh5MRBGxARRrSNytJy7K3z1Ex8lLwbCiBggorPOetFy2ZJv0hdVdSFKXguEFTFBeOssHC1z6ZLnLE58lLwYCCNigojWETlKTuhA+jRO1VCFaHkxEEbEBIGxg28ttQnEIafCI+5TP3ZE81HyYiCMiAmiMcWixLlGHHL2aAzwpvRXPlpeDIQRMUD0/B1Bu3cFcco8Fyen5OXKR8trgbAiJgiMHmIJ08ZhJde4JYyzRmN5FqLlxUAYERNEZv4XE9KvIA65ocMQ2jjnRhWi5cVAGBETBEYP+E6da8Qhi/AMJMl9/UGVctEXQ2HEzAV/jB9yzHmqE6cs6D1g7D2yoDQira+FwoqZKJh9OJ1f9EHLkhr3+KQaJ0RaXwyFETNR8FS17Kfn41AvbiMakOlCsgaIx4jJgae/eR4RdwVxyDz8DSNNV+IVkJYXA2GEDBLF8Yy+aWf9qQoNHWOQnoaq+Wh9LRBGxOSAbmILqU014pTFe+avhp7urQBpeTEQRsgkweMN2+QXfari8H7AWLNOeJS8GIbHeEmhcKWG+6GvGA6ZKd/oRvVNAWcZWl0MgxEwOWD8IO7hsbirqABVmO5+haPlxTA8xgsKVXgmbJl8FpSM9wJ/ox+uepah1bUwWAGTA8YO3qfJZkHJ6Edm8dIPw1SFaHkxEEbEBMHDW2twc4U45Mv8lOKz7PyUFTFB9A1Ec3K+kvtuG+HGmysfJS8GwogYIBqGDaHxvNcLCCVXJvm20USoQpS8FggrYoLgwREJw6gJxCnzLME89sLoQpS8GAgjYoJIrOIxzjXilPEnV/IYdl74HPJiIIyICQLDhlR8mGvEKccNZYyderoQJS8Gwoj441NxLJZb4y4gtBy36NCbrA98DnkpEGbEBIFxA9rAyWhByyoNQheyanaEGTFBxLFbdK4RpxyYjDzSIK58DnkxEEbEBFEezz78cJEvIEw+i4EwIiaIZp32qGWVQ3jls2ZqoRkxt2uJddqjlsMmRR7p7OJaEKxoCSFaZz1O8j39fipkyax8M2KCyNZZj5N8gjD5LAbCiJggqnXa4ySfIEw+i4EwIuamIrHOe5zkE4TJ51NBvKcPybynhju6x+YD7nEvMrYTiBtzK8L8DrqCjBbP0Y+B+ZMOXebacwYCfSt8twUAfW5PFcnjWL/mu5sBkwy9YAjWcw8FvzEWAwN+PsXufBK3XL0fK+ihO1W0MVSLtZSRxBtoSuI48xu7r4HzZc/SQoeVM6G0J3GRtqOUG4966D4plcm/w5whRy66pRK7OYOUOtwjmNjjUW0Aj1YOKKPbRGQGUYNwPgU9olBaG4XQqUHQ+Ke8OXSTursFU0FiqMl7Wk0EvBvayBmquOxSc+p2yfW+ENp/PidcLCfv2MXohSTuuud8ZkHLEpi53lV0R0XozILxPFCHds9AaBjRV7lhLFPA1+d9uVl8zQhBHFMZnYx+PlcZXSysbCHjZ1BXZF+IDNHTbUUSDcZc977PTGjBV2M395C4v+24WpdRpKfpB96G+F43A+HObx8azVloHoLQnPO7jhrN/oJwthbjrRz2tS6Mx6Wv+vktluC62Qh1tKi0bRG6vIi0MHSuiGGwKt2EJIaSXNzXinBl3bSEs3/J7ZOCvLgU8JWbdF+dxGM/OGkqqIHCk8KFVnv4p1urcImBHiS0UOHOGvxxLMAEGqE0OqWgV4w49qpR6KeT6dDSgI++v2NqmimTuIZE05niXRgXWSpXsXhKF+4ra8k+nd+24NBidS+TFIIbc1qOGw9xl3vV8GV/LKqARitMNaIzP57EMcMTNrQxErhjccOTV8eFVB5DjG5a4VQgBvk53SfGfIoJiGhlEoP0gz9yxRCQD6tn/Q+xlO7Dg6dwy/j9+6RJHA7XnELwDtWme5bglvh+ZmVu+H3ADHF3ux0Wjhxe4q6FkWGcUNG7Dw8HWyVUNj4x9qmZXjaHHrHkPVU/NcQT9o64F5bSO+I1hZ6LWWi5HNgK9/YGZfZcVe7Ad67wvMDuoVhrP+5mbrK9c1ZLvsuvMC15Zsv6c+YWKNnczf7xWZsM2py8dlu8/esv/sZrTEvQCUZr2/Dwj5X7V/iW5F/St6QUXOhjanBzPJn3CvGuXTCp74vpWHJ+QK4/8ul+E3zuBE/HVAVOeb6hb/GbQJtUE56vRpex15qWpHcwLfl8AGtgp8nNlr1KfgeAFc1JiizNJf9Gz5LPiIAnBeY8nUd6qu8BoC/C4ZXXWsS74GcRSM84lmCUibcbuiWx2/Z9imPJZ3wuf36T8sZnkqli56W/za7ki8RPpzh69WQV/6m9OX50dFX8NM1zQTj+QH/8eQTpl2EggVfr6J13QlDimynQlfG8eAwHtupdZJoUeqEvWrb8Mhx6ekLBKFBzOMX34oCeeKCJomCE+JIxh6TnfDlKdBrH23053sj1y05zYMBgHPlSmFH0eOSLlmk4Oc7P1GWc6jHJsQYGI15iKNaRL1rWGCw4i2Ew4mWf0lkHvmhZY7DgrIXBipcYvHXci5YVBhPOYhiMeIkhWoe9PCub0BYDYYRGEMU67EXLuj6cZSxbH4x4iaFZR708K5vQFgNhhIZxkxPrsBctJ+7syH0vuS5EyUuBMCMmiGgd9qLl8xHQZSz6YJjxEkO2jnrRsrrxupB164MRMUFU66gXLTf02vkjEx8lLwbCiBggxFlHvSg5+c2hrL48pQrR8logrIgJIlhHvSg5VZQrsZaJj5IXA2FETBDJOuxFyZmrEMH37bKqEC0vBsKImCCKddyLkrn56f7OOMtQ6mIYjHiBwTvrsBclN66eh+bkSkfLa4GwIiYIbx33omQuzEqS2hc+VSkXfTEURsxEEbdSUpS5ThwyV/BLEIl+QqT1xVAYMRNF2VwVaXOtOGRJiSdIhp7HrhFpfTEURsxE0foWjjrXikO+7J/WiMx91WugMGLmkp0wR6hMtgNKZnJKcj3/44pI62uhsGImChrY1ZTihOKQUfSWjy6mQqT1xVAYMRMFxhEuhjDXikNmgpPclx8uiJS+GAojZqLgIqwTP9eKQ8Zoa5PSxrFdGpHWF0NhxAwUkRkh03E/H7TMzC45BqMKkdbXQmHFTBTcFoomcKoVp8yMtKNSnIVoeTEQRsQEkXhmXCxznTjknDkSH4e9qUK0vBgII2KCwHgiTMcgfdByPyDt3tE8C9HyYiCMiAEiYTiB0dQ1X+NUMw+S88n7Kx0tr4XBiJcUMJKI6DTPGE45c9Oo68maqgylLobBCJgcMIzAtU+zdqfKHaM5yAxHyYtheIyXFDCCSDk+PBSnXM5sDlWGUhfDYARMDnj9ZS/Ty+JULxRMOItheIyXSYIYOeTSylQblHx5Ko4yln0orIDJAcOGEiYDBqWqlS5VwqorXUa0ZJA3/5h2rmW90HWWsew6lxUwOfDY4BQmywEt6/elKmTZF6YVMUAURx/gvvNLg1DypUKchSxbI6yICaKf78xp+SuIZ2QT22IgjNAIAmMF53Oda8QzsslnMRBGaASB0YLDmGG+9c/IJp/FQBihAUR1PKXcp+nWPyPbfNYCYYVGEBgxeDT+061/Tjb5LAbCCI0g4uMZgR+el00+i4EwQiOIYh3v96xs8lkMhBEaQTTreL9nZZPPYiCM0ACiiXX84XOyzWctEFZoBBGsUxGflU0+i4EwQiOIbJ2K+Kxs8lkMhBEaQVTrVEQtqyG4KuP9huDv6cdx3UyTAp3o7htyas1pnGWXy0ghxnjB+dJtN3J1Mnaw417n1roLe9gCXe36NviW6JMQa/90zDEOU6tWttI9LjqRiqelL3K4QOcLX/tQTVCc3JNUi8ut9NzVRhOMkcObNlxbTv1wJJqFjDLQHvsYaAvCER7ue93TGgvqQQm3JIg11u7oUV3bgMvxcBkevlXakEU2h1/BKJkZHMmlMvLCutdvQeyZmT9lT/gQzi3kmOmKkKorR7qYBHCATPsBxDKKplFuYKIQfR1QF8I9qSomn7i3UDY6ToxlH2ng4FB56K/hY2UlYjIBLck9bSyYYuJxZ8dymS9bcML5PjpmxJSHoyB19OEyrkBy2nj3ZJRTcVNAbrjAl5iH0QOTFVCPQqnd6QJX2brDBnUUWfzugNEkdM8Qbl8WVL08bONzFDduKHTicqX/Lr6T92Vv7qnNrjEZgnYoqNt+Xw7PvDbfl8OzuOhGxkDcQIy+EoJ7ndEj7+4VNaA+NIltnOWAau/GUjLqQ3J9I6TjVvKYwr6sWvE8cLmVVjOo5/30etR2+oklmph4VAL80wvHkxgyKJcben30o+hHZnAlLnmPakgjjcSaNmT6x0gOrd/ulEKu+3JVRRB4nHFDSsJgogPjuWatkVJqfQEjDLkyCFR1Ommk5rt9BWf3PSJp/Uwsj18aZbDGAgSfrZ6Rl/ZPozYmEX93oyluTIZyE3SjCQp/26fkwz5HilvjpR+1RoOXcp9RxYNIi5L+JOZuVYpnhveWBiU8fSl3V/gxt1YQTepJ5M75lMZUU8GDlmlEwhkW72K5T7wAGo1I6K2TfRlJIUyKaYFGJCwkoCKGfVCOehtjGg0I2sReUehC7kocrZA4YPf7gE3wlOyunKV1nw920XA/zmzg7rZSG+6eS7ufBy4ujyp4acL5Fu+ONs/Ir3DoeGaL9nNmDij5cff2R9sQgm4er9oAbv/o86W/xpWDe69oqVT2xIZXuHJUy5VDFY1Hk20U/R68wxVey4yPW/G//ea7H29/+vaHH7//9n//9OO3f/3uslv26f8BK3Fn9AplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEwOTczCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMjM1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW4AMQi75xX+QKWwJ++Zquqh/f+1hlEvAwPY2CTvwUYkPsSQ7ihXfMrqNMvwO1nkxc9K4eS9iAqkKsIKaQfPclYzDJ4bmQKXM/FZZj6ZFjsWUE3EcXbkNINBiGlcR8vpMNM86Am5PhhxY6dZrmJI691Svb7X8p8qykfW3Sy3TtnUSt2iZ+xJXHZeT21pXxh1FDcFkQ4fO7wH+SLmLC46kW72mymHlaQhOC2AH4mhVM8OrxEmfmYkeMqeTu+jNLz2QdP1vXtBR24mZCq3UEYqnqw0xoyh+o1oJqnv/4Ge9b2+/gBDTVS5CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAyNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDM5Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFkM7jSABXzCnwKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDE2MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDE3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0xlbmd0aCA4OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNgDAMRHtP4RHiv9kHIQrYv8VJcGPf3ZNeUuJA5ToRjqaBJ0H1mV4g2ekBVkXiUUnM/029qUVTz6btq00EJzOO9XUcqJrTetBaKG2TFt5wfQCcHe0KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgNjcgL0MgNzEgL0cgOTcgL2EgL2IgMTAwIC9kIC9lIDEwMyAvZyAvaCAvaSAxMDggL2wgL20gL24gL28gMTE0IC9yCi9zIC90IC91IDExOSAvdyAxMjEgL3kgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0MgMTcgMCBSIC9HIDE4IDAgUiAvYSAxOSAwIFIgL2IgMjAgMCBSIC9kIDIxIDAgUiAvZSAyMiAwIFIKL2VpZ2h0IDIzIDAgUiAvZml2ZSAyNCAwIFIgL2ZvdXIgMjUgMCBSIC9nIDI2IDAgUiAvaCAyNyAwIFIgL2kgMjggMCBSCi9sIDI5IDAgUiAvbSAzMCAwIFIgL24gMzIgMCBSIC9vIDMzIDAgUiAvb25lIDM0IDAgUiAvcGVyaW9kIDM1IDAgUgovciAzNiAwIFIgL3MgMzcgMCBSIC9zaXggMzggMCBSIC9zcGFjZSAzOSAwIFIgL3QgNDAgMCBSIC90aHJlZSA0MSAwIFIKL3R3byA0MiAwIFIgL3UgNDMgMCBSIC93IDQ0IDAgUiAveSA0NSAwIFIgL3plcm8gNDYgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ3IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDkyMFopCj4+CmVuZG9iagp4cmVmCjAgNDgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjE4NzQgMDAwMDAgbiAKMDAwMDAyMTYxMSAwMDAwMCBuIAowMDAwMDIxNjQzIDAwMDAwIG4gCjAwMDAwMjE3ODMgMDAwMDAgbiAKMDAwMDAyMTgwNCAwMDAwMCBuIAowMDAwMDIxODI1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDExNDExIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMTM4OSAwMDAwMCBuIAowMDAwMDIwMjE0IDAwMDAwIG4gCjAwMDAwMjAwMDcgMDAwMDAgbiAKMDAwMDAxOTUzNiAwMDAwMCBuIAowMDAwMDIxMjY3IDAwMDAwIG4gCjAwMDAwMTE0MzEgMDAwMDAgbiAKMDAwMDAxMTczOSAwMDAwMCBuIAowMDAwMDEyMDU5IDAwMDAwIG4gCjAwMDAwMTI0MzkgMDAwMDAgbiAKMDAwMDAxMjc1NiAwMDAwMCBuIAowMDAwMDEzMDYwIDAwMDAwIG4gCjAwMDAwMTMzODIgMDAwMDAgbiAKMDAwMDAxMzg1MCAwMDAwMCBuIAowMDAwMDE0MTcyIDAwMDAwIG4gCjAwMDAwMTQzMzggMDAwMDAgbiAKMDAwMDAxNDc1MiAwMDAwMCBuIAowMDAwMDE0OTg5IDAwMDAwIG4gCjAwMDAwMTUxMzMgMDAwMDAgbiAKMDAwMDAxNTI1MiAwMDAwMCBuIAowMDAwMDE1NTgzIDAwMDAwIG4gCjAwMDAwMTU3NTUgMDAwMDAgbiAKMDAwMDAxNTk5MSAwMDAwMCBuIAowMDAwMDE2MjgyIDAwMDAwIG4gCjAwMDAwMTY0MzcgMDAwMDAgbiAKMDAwMDAxNjU2MCAwMDAwMCBuIAowMDAwMDE2NzkzIDAwMDAwIG4gCjAwMDAwMTcyMDAgMDAwMDAgbiAKMDAwMDAxNzU5MyAwMDAwMCBuIAowMDAwMDE3NjgzIDAwMDAwIG4gCjAwMDAwMTc4ODkgMDAwMDAgbiAKMDAwMDAxODMwMiAwMDAwMCBuIAowMDAwMDE4NjI2IDAwMDAwIG4gCjAwMDAwMTg4NzMgMDAwMDAgbiAKMDAwMDAxOTAzNCAwMDAwMCBuIAowMDAwMDE5MjQ4IDAwMDAwIG4gCjAwMDAwMjE5MzQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OCAvUm9vdCAxIDAgUiAvSW5mbyA0NyAwIFIgPj4Kc3RhcnR4cmVmCjIyMDg1CiUlRU9GCg==", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:19.685251\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["layers.0.weight - Variance: 0.0005894455825909972\n", "layers.2.weight - Variance: 0.0009689269936643541\n", "layers.4.weight - Variance: 0.0011539047118276358\n", "layers.6.weight - Variance: 0.001938404282554984\n", "layers.8.weight - Variance: 0.01793084293603897\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdTZM0t5Wd9/0rajmzUAoX31hKls2ICW80YtgLhxc0hzOmgi8nJEqamH/vc4CszJuo2y12v/02DTEYwT6qQuV5EonEx8XFr3/33d++//a7f/7qt7f/8oenX59/ffvTk9z+iH//7eZuf8S//3GT21f499+e3O1X7vbpqba4OZ/4xw/HH17aFnLK+M8f8MHLn//36elfn379GxTx081tTUqOxaVaH/6IzUnLrtTbn/nrX10+8PTSp5+eYtsqfi36rY3f/fSET285BqleyT9oWaps6a7vJVy0ful/uj0ULj5vVfZ/UE6oW779+bvb/7z9ePv1bzydyu2f8O8f8W8nODHOboOT2OLlik/1chVPf3j6/e1P94LdJgl35152//OrXX36E+5cv09ySx63QERqCRJuPm3iWNy3n55++/XTr/+b3ERuX//rU9u85NJyLQnf/Ppfnv7X7R/SP97+9+3rf3r6r1/DvNucsFCn/uvbTzeU8KvffffHb/7HX//wzY8//erT9z/+9afb7/799vun3/erfX9m8LJFX5NcoSn5HaiJK1vrpcVS0/PY3AHLnbC+mPOMe1lzClMFP+X3cJ7qVntp3qf6c5wn7VyVlFGnai2lRtfk1raiy/DXMn7zjzfJIF5cDfzf7R++/cv3f/vmL9//+4+3v33zw09fHu7PbznextX7Xj6uCxWqhfJiXdo+oDbtJcIj2lCf2tXwKX+m4eK3klsqElN92bN8mGcRvDiCry1cTSv9M13jmdlKCt6lKEVetO0/znaMeHnm5Mtk+9Q/13Z0Wwm5Blbw/KLt8HG2S92ac5Jlsn3qn2u7xK14FwtaruhftB2vjSUL+RWLQ+sXUFJtW0xBru3t1Fb+7rsff/r+L//5mfzC8OlbdaF5SQU9qzi6VR5vErfle8cq9n7Y5rMP1ceYdtiXL9/0l5+mLz89pbQl9BFzuLSvqWy1JR/rpXmd1BrZBE0FDBHdst/+/2/dMNm7eN6JC+FifVJ36xaPJaxbJmHdb8llXNzV+kUtrT3y2MU1rBsmYT3i+nx2010/1bA5l0qYgCh1DfOGTZgvG0YhoU73/VRhM/f+xhXI0NYwbliEcbTpHt2AeDV+qgHvFakPNO7iGtYNk5+eiuC9iMe2XawrNWwYZ4TWZiCHuoR5yybMx82FVOL1vis1YKxWPAxPSA51DfOGTZhHfyZK8tOdP9WwwS0GhzOSQ13DvGET5nFB6AzKdOdPNW45wadckSh1DfOGzU9PFWOoFFy73nmlJlR1PObtikSpS5i3bMJ82Dy+Ua93Xqll8+jSxCuRU1zDumES1tFFzzHn6b6fattCKbFeeZziGtYNk7COLnpxMaWr9UNN6Mb4mKVcgGh1DfOGzU9PDcPikv21xh8iRy815DgBUeoS1g2TcO63WL3z19t+qujHNl9zjhqIFtewbriE97iVWqpcrd9FvNGjC9LKhYdW17D+aBLOy+ZaSG2664da8+aDLylqIFpcw7rhEt7RXLcWrkO4QxTntppqilcgF3kN8482Pz2JQx/dJcnXG69kkbIFwavcX6hodQn7plMCQD9dXJv931UJccPF++onLFpfBMCjU/pHV11yCXkCcMjoxm8epfgrF6UuYt8wSv+4JO+Tl8n/IeNuby4HF2cuWl8EgeGVi8yOb+/gpipwylLClkt1dSKj5DUAWE4JAF330Bd0rwAOmWshUqvrI7kLGKUvgsDwSgTowYdWy1wHDlly3STFUMKERuuLIDC8EgH67zHlPNeCQ5aUN2n72ppGo/VFEBhegcBzNVBinGrBKUtoW8JrsExklLwGAMspAaBfn4oPUx04ZfGcx0XRYQKj9UUQGF6JAN17vNZwL68IDllcwgCgSZ/K1mi0vggCwysRoJuf0axPwXWnjIFvRS8ghisZLS8CwHBKAJzBiqnOdeCQS4VnV5O/ctHyIgAMpwAQZMsookw14JRz45M/ZjxUIVpeA4DllADC1mrm968ADjnLFnMpowYoLkpeBIDhlAAyypAW5xpwyHjpF1dbq1cuWl4EgOGUAOrGVSs/14BDxgjQlSa5TVyUvAgAwykARHTzXUgy1QAlNwyBU6pXLEpdw77lk/bRxXcNxUz2TzlvDVW95omKkhcBYDglAHTwJbkaJgCnnLjQN8JJdSFKXgSA4ZQA0L/3rua5BpxyxPd88TJxUfIiAAynAJDQvfc5p6kGKJnNfo2+TlyUvAYAyykBoHMffJzmxrUctpScq/GByyEvAsBwSgDo26NQP9eAU8awz4exxH/lcsiLADCcEgD69jHiVk4ATpntHt538YHLIS8CwHBKAOjbx1baXANOOWwOYx+DyyEvAsBwyo04wgieVK4hEFrmkn/FH49c7vIaACynBIDWPKODGycAF7mmXCcsp7qIfcMn7aNnn4vE+f5f5LqvhM5UVlogNZ0SALr2xbcw3/+LXCQkg8tdXgSA4ZS7S9xWSy0y1YBJHjH8cxmfF9l/3Q+zpdt/PD3r5wrjn7+6XffNPOy2aMKtM7hdTkoOZQ/LjpVz2AzbbSFzrRTvseJ98yOkU3yNoTd5JXkMc0esI3BXlIZ+b3A+97mPwnbQJ585HIgJl0S1snVodR88CbcRUvVEkEYkXUFJOY94sn1AWbfaWglhBFoJ4w/yDZ2t0KJ0EQhLQGPD6CuuTvqu1s0FVsUbnUdcdv+ttklDERi+1761tOyRTRi6BIzZ8Pzm7OI9yAXjOMdZncJI3txDWBuIxFwwwC1+y6HluAeFtBpRHW7wKAlvvv7ZjO/5KrlPjQJD7OXilzM6h4yi4IYAn0X21XVCd6gGvmyhRid1X3T2KTJ6mIOMvv7cexsOZAWXdRP4bvgvn/cl2lQkc1I+41dxsf1Xufu1BBeC70u3qER+TOI73OxcA5cx4Ahwmy/7Mp+LpbjYl/nQlykh7nr2kMvYIlVdav13RdDlAZAuq/Uj4eZI3r7+cVzkmDEQ7mFOruyriMlLLbveYozS+voquhJhDDAFfWp0KTP3eAn6mbjL4/P4sguAAVt9c2obS/WCesntW7hMRqaFHKrsqzaJ8zO4HtQh8JAeqSjcFMtdsf7W0lZwh+OY20TliniNyw11L3OP2fg0apeDqXJDTS8ZBvvFBNRKj0eycSa0oUaMaw+44BoCnieQx+shjaXkgAqEa8R1ZY9Hy9X902GrKDyjjuIp8n3T+JhiErQSAIxuZozNlSEXPKGZrQp3hfvcxt0IDTUl4v3DJ4VLNPU+e4Mnt3KUWjeAzGMxD00CCmxj+iLjyR5s8ZzniArRB/UthejCPtLjVvbWw5tRNetYD+Pvh8bpf3wvCt79Ye8S+SZ1hME71Nj+eD40n208BLZ83cnn2SLih/cm/u/u+bW2/6NEcyvwp2eTCOAbr9pP/PirL5btYOrnblFE2waerv+Dx7aWe0nPbzD879/853d/xl96h+EbEjeMtBGvTODg2Zw9BpmG1KMH8hR7o+QLI1WKPCRyYO04PsB/3vqSfbLqlMe9xGuhTFHxSp7v5lv2nUYUkfD0V4yb28dndfiC+PDOjGleaT3V94CHF3tDYQ5dTjThb8nt8OX8B7bR6IBMcTdKfgcCAa+NwtJSf3V9Ro4H9Bjwvow++Mbhy/smefiCtexVrcwbq5lz+urfmvjhQyCgWx2ckyuCu/hOAEplvwXv9MoFj1clgvgQBuIx4gjoeOcrBqW/Ewn2K/Ff4OAxanldcoiPQYHBQMPoIk01QunvhYJrwBVDmZDZ1//ZCSN05gS8G+pZ4mdkUHgjW048/Nyx9t+feHhx1gL9IzTdEmKb4nDwWXzNlSkOZ5JR33qHeirkLh9TD2uAMBwTROGILE7bzCe5YDwVH/nc5cVAGI7Z4cTLJHkO3C8grjLGnd4/8rnLa4GwHBME3mOp4msTiIt8PBrXQtZ8NCzHBBExBAk1zjXilAPjUbLMfJS8GAjDMUFkvsayn2vEKaN9zElceeBzyIuBMByPQSk3pclcI04ZjtEUOIPPXV4MhOEYIBLGVFVkiuDRMqeLa2vhgc8hrwXCckwQgdn/2hTJo2WMxDlJWx/4HPJiIAzHBMGNCr5M29m1zKnXNmaEr3wOeTEQhmOCqFtsleEJVxCnjPFBy6Wvr+hClLwYCMMxQHCFxMUQphqh5LQ5l12c8JzqWhgsv8QQuPgh04Z/LefNxTY2++lClLwYCMMxQXBNjVPrE4hTZp96BDbpMk51MQyGX2LggqfkNteHQ06OS3BcZLzQ0fJiIAzHAFEwcvC4tVN9OOXEPaCx9dkTzUfJa4GwHBMEF/eCn6KAlJw4Fyq5L+JqPkpeDIThmCAiV/1dmjjcVT4Lee9AnCUodTEIj27JgImEYw0zhEMegQHSYzbOMrS6GAbDMDlgzJBcnubnDrWmrYn4HgiuitDyYhge/YIC165SjvMjccpMFpLxoqxXPBd5LRCWZZLAOCH7KVDsVEUqk7rXvjdI89H6YiAeHZMDBgy5tDLXiENmMEt1JfXIFgVIy4uBMCyTBIYMJUxpBU6VEeNJUq1x4qP1xUA8OuZav9tK6cvJFxCnzMDRiv5SaldAWl4LhGV5RD24msK0xV7Jl/A5TUjri6EwPBNF2gLehDI9HafMgES596Y0oVNeDIThmCAKPsnPTiAOWZhEOEkOMyCtL4bC8PzpKaBP4JzHu/AaE3bKXF3O6DSMV4dCpPWlUJieiYKxGjUWmVAcMqM58324rRFpfTEUhmeiwBBCok9zrThk5uEoGFqUPCHS+mIoDM9EwWgr5+JcKw6ZceFy701qRFpfDIXhmSgwkvCp+rlWHDK7ETmm2q6EtLwYCMMxQAiGEgFvxOtAVMlMSH2fhVGFaHktEJZjgsBIIpTQygTikHPiJuXUd0SoQrS8GAjDMUFgKPEYla5kRuWXkvq2HFWIlhcDYTgmCDzrsbY814hD5kyt54GGEx8lLwbCcAwQnjs/IjPTXEAouUG+N5aqECWvBcJyTBDc6OZSmGqEkssWXUp9fk4XouTFQBiOCQLDiJyDn2vEKadz7K0LSYsOyU3HBIFBRPEMAbqCOGVOXO99S1XGqS6GwfBLDI07Luu01V/LcfPOj02XVzqHvBgIwzH3ZfjN18DtnhcQSg49sLJvw9SFKHktEJZjgoiPR7z9cJHDlqKMjaRXPoe8GAjDMUFk61Q7LYctBP7GA59DXgyE4ZggmnXGnZbDJq2FHhpz5XPIi4EwHAMEN+s9nninZbwvUx5bY698DnktEJZjggjW+Xda7olQgrRHPnd5MRCGY4LI1ll4Wg7cjjnWfSc+Sy4Hm44Jolpn401y40bwiY+SPxeE3hv11DNn3H4mlsfMGdPOmpJCqnvoPY+3Kj13hkgeWTIYP5tL2PsDocVx7JtPCUPLxoigfuuz9C32jK2stbSeTM7hKsbOjcQk89m5cYAYk1uMQCs4ARA/jtZCy1pHHJrf8EhxdixvCc1s/70ctyitZ+so9+ScI1YrlcqtVJG5Wl0bATs59zN+RRjClaqEfrKFz1yHi7XHM0mtYaw/5LZl/KfPTK3BDBTjMgoIi+f8Ikz56mvpZRTBDZTEE4Lahvtcat2jQlC8LzcmUI8Sh/GSUEkyE3ww+UOoaRgvlfnEmMyjFqYtkFz2UILIO1huLfZd0SOCuQrP3mI6DybDYKKLNPSI21SEiwXotMWCa7yvu8YQmbtaUEmLb25fly5baoEDHVz+VkOTfjHcaiwYCY1lmRpzCmMtQjBCQvUqI5EGczLkXc+xpj3RBbrMoeNq6C7BgRuJMdBdaOPqoTPpSByfR3nR5X39iyfC15FgAz/TytDR24jJc9UYP4u3jPd5XyUq+Cnm9cANw7tYRvRmy1xtZ1IQ5gGJPKBtXH5FgyzcwtvzhqCYntOCOmpi7qvVqEn4qvRb1RpGxi0wkGMkYxnpKzj5jifUMfGG50wjKmHd519x4yJMtsK2L+xyP0BKcuQuv5prGs2Ca3w91HTr54qlkU+FM3YNf+XUMw2j6Yr3+T1XI548nsTEJCf9vL0gcave45uoeHjCo2v7HA8uLzBaMfUs/nV8uODyKo+jTbgBEdXnPhFSS8GTwQej5uDGHKpn6pAcxvxI5InTQ0b7gA5fHXk0QhgVL3g+21LyyKOB62hjCIV6x7ByPuQ1Ac5Q+TwUGdHW6Dm4Me5EI4Rb2JcD2Lu+T92hZ1HgYZy+6GoSGa1qwdOV7lu/as49lczUBtcY+kaoZ+RXJN14Zu/1cykbULK5LfvTs8kf8I1X7++2f/3F33hNEg62mXF/MXF5/udn4fC/SBYOXCv+/4dYX7RjvQZNp38o+QJJlSJmFo7zA+76U5+9mRlvUnQeY51Wz5U838437GXGOxNtWeobSMsLiSS+VBaOL4gPL2IXUpqSmCj5PfDhjZh6aWiry5vycHw5Argq+Mt+2iim5HcggBYY3QCUhvc+3r2fkYcDTTLar1HF3jcJxxesZK9qZN6Y6aQUffVvTcLxIRBqz1qG9+8Vwim/E4Sebw9vcLy7y8spFx4ScXwIB54Sgm4Rp4svIJT+TiQEDXjjdDRrxMtV4iERx8egQB81o38Z64Ti1N8LBfrxMaMxcoFB929JxBGYa+8s8TMScbyR7YfOaETmNqwPp4FE8dZpIJNcSugDjKmQu3zmAF0ChOGYINJmnAoyyScIk89iIAzHBFGs00G0zNyVOfVhly5EyYuBMBwTRLNOCdEyJ7z3GZWJz11eDIThmKMQb50XomWOz2voKTQnPnd5LRCWY4KI1rkhWg7oEqeRSPXK55AXA2E4JohsnR+iZa4OhpEP98rnkBcDYTgmiGadI6JldIcllhQe+BzyYiAMxwDBPMCP54loOWxcAenLpFc+h7wWCMsxQQTrXBEtM9EEfjVMfJS8GAjDMUFk63wRLcetlL2JuOC5q4thMPwSQ7VOGdFy4spD7AcL6kKUvBgIwzFAcOfG42kjWi5cAvR9kUQXouS1QFiOCYJ/PJw6omXmRpfYV1J0IUpeDIThmCCSdf6Iknvadedk4qPlxUAYjgmiWOeQKDllPg1jaVjzUfJiIAzHBNGs80iUzDCBllyb+Gh5MRCGY4BAFZcak5tqxCnnujW0Cv1EEs1HyWuBsBwTROQaNKNBriAOucB7crnJlY+WFwNhOCaIvBV+bK4Rh8zt1JUBaFc+Wl4MhOGYIDB2cDLtoj1V7gVM0lKPvlNlXPTFQDw6Bgeex+xKnvIOKJmZwFuqYUzUnYC0vBYIyzJJYPAgYcoTe6pMvZHRJoyOpeKj9cVAPDomB554xe9PIA65n+JYm4w24gSk5cVAGJZJgkF1M4ahMWKsommUCY2SF0Mwe2XgA3fJ4yMTglNmnF2IMs5wPNBocS0IlmFyYNBanhe3DpWGGdaY/SOdQ18MxKNjcsCQIfqQ5vpwyAz3RK9RZAKk5cVAGJZJAmOGWGXqRR0q40B50F8PhdR8tL4YiEfH5MD+cWhTggEl85oL3KdyBaTlxUAYlkGiYsyQWpFr/I6SGXZRcfNbmQhpfS0UlmeiwKghp9imSnHK/VRHdBnGZKVCpPXFUBieiQIDhyK+zrXikGvhNoXUA9JVIVpeDIThmCDa5kpxea4Th1w4ZV3GIYyqEC0vBsJwzJMWZUOZNU014pSZzy3iSQhXPlpeC4TlmCDClh+j0pWcuHcl+xEpcxai5cVAGI4JInFXV/RzjTjk1Hc5pDE3pfgoeTEQhmOCqDx6zU9ZBpScUJTUsXdF81HyYiAMx5+eEtO+utTaNWRIy/1w3f3JOMs41aUwmH6JwTMNcN8+eMFwynmTUvsBvbqMU10Mg+GXGBL3sqU814ZTTtwAlnuEsC5EyYuBMBwTBJdwQ4hzfTjluKUUU99lqgtR8mIgDMcEwYOTm4S5Rpxy5I6a0LdFXvkc8mIgDMfcl+IfjwX84SKHLZUgRSY+Sl4LhOV4bNAxDkLUcsBbIsZ+AMeVzyEvBsJwTBDZOghRy2Hznmt6D3wOeTEQhmOCaNZBiFpW0aRXPmsGmZqOAcKLdRCillXE+ZXPmoHopmOCCNZBiFpmng0U2R753OXFQBiOCYIxcQ8HIU7yfTPGVMh77dF4z/Qb834aYYYJRhU7vPib3zOoVEZ99ajZtEkOLfbW35c4pmZ95d4qxwMbYDj6kfM0Brc1vCrL6Dz4XPa4Oo9LSsy7wNxmJXo3Pp1YVZhkghv2xdVa93BEvGsZhBh7Yu5xfAGD83gcNMfDTELh4ojqjQKEkWmqY9tSwGi3j3PYMHkmFsFwr9XqxjwqfydLdv2cIQwCxrQJ03y0hrvG2KYURMYyPg+hSpWn3aaKMlrPPhExbMKr0MktMykykxP0hW5h6gPUvRuP6qk19rQBDA0JDT2oeiuwgs5UDnuAAMqJ4N6YMSKN3AhAi0EJU3vcxLE58a2nOuHqcb8fAbWkMGvBfSHRo4ciPrK6NB4kN5J1x5y2IqX1pRTca+/aWGvipFDJmYuvGeXU0PqGSe4xjikxJwoXJFuTPU44V+5kDp4ZMoRJNOJYqWGuiBYdJ+ZLYA1CC7jrqPDhvsaFq+kJPrjGFZIv14z7VFvwLo58HZWp//qv4qcSSNWRryMHlyTs60N4Zoof+Tr4H8Xvei6Om8uZr6NmPv9dDxtzpqAKSOaW1jjyfkReRC2oCtBx9fBdh85cpZmQmZajMf/FvggR9t3wqEoiWe5rFg5Pwb6iL9ybPCZlUR0Dq4qg25QFlTruc7WouUwq0jyD8H2I+8xlKpFpvCrk0moY83gYpKP24o/CLkdiqDbH7jx21zFDCO8Y6sF46JrAHbOpMCIt57LHXuCH8NQybwiqb3IY5PayW+Qbu6AiMgcLKkftFBuqpA+C5gNVuYDaeM5bYfaaOqZN4MXtcsMFNi58Vm7HHmlDOKjm+ZZ8QgtIeenPBn6a2dMZS4sHjfnsesZsjrhwm/14+D2Tavc3qnC+zt03MYRx2DS7Xni4ytjEwGQrdbS2aE6YUGa0pLWEZjTNfu/Q2/IrsnI8sxn7uRQOKNncp/3p2WQQ+MarN3zbv/7ib7wmKwcb0vaqbBzxF8nGgT4ojwSbw30Lk3M/HpSi5AscVYqY2TiOD/Cf+Kb39zM7mvFSYjwEE+ZoA0qeb+MbNjRnPIteMp56NLbx47NxfEF87LTgfTxlJ1bye+AL7GKwtMBcYm/JxvEFCRTmHItlajmU/B4E8Fb1vTSOfz8nGwerYvN8FfaMQu+bkOPLUX5dO/PGlCfMH3Ve/c9NyPGBdU1RyEz/1Vq5QjjUd2LAzjZDi9ld+TsY0i+CAX0zdEsD+sQXDqf8TiBqX8fKPueMQe6LiUl+mfqAPh36jzWndiWh9HdCISgcvXeOP9B5f5nFL1MpJPRhlsOY+sri1N+LRUC7jNGoYMDqXq4X/heqF9n1HnpP06JZnPp7sUj91MOcHXNmv8wiPZOnJfVphfOpe3ueljfC/dipLww4jXNwMKiwzsGZ5JIljb7zpZC7fEx9LQHCckwQ3joHZ5IPEDafxUAYjgkiWefgTHLNuc96TIXc5cVAGI4JomzGOTiTzEmG+MjnLi8GwnBMEM06B0fL/aCT0AOPdCFKXgyE4ZgDdW+dg6PlnvbatfrA55CXAmE6JohonYOj5bAFCfJAZxcXg2C4JYRsnYGjZfgteeSEntjc5cVAGI4Jolqn4Gg5bInHKNYHPoe8GAjDMUCIWKfgaDlsDDfp0/RXPoe8FgjLMUEE6xQcLcctOd96Qn9diJIXA2E4JohknYKj5YRhh0tt5qPkxUAYjgmiWqfgaLkwT1Hs70hdiJIXA2E4BgiuwT+egqNlDET9WLbWZZzqWhgsv8TgrTNwlJz6ASFjUV8VouXFQBiOCSJZZ+AoOfWjQ3rchMZzqothMPwSQ7FOwFEy91FzVViudLS8GAjDMUE0HqfSUptAHDK9BRdmPlpeDIThGCCCZ2gKT1q5gDjlxmihUnO58tHyWiAsxwTRd88nP9WIU+aGUXQk02gjzlIu+mIoDM9EgbFDLEHmOnHIvGgUHNOMSOuLoTA8EwUzMgXX5lpxyJwjT1xEqhMirS+GwvDMAACG89Rap1pxyox58z75/QE5EWl9LRSW5xELkXLMeaoVp8xwvlTxm3lCpPXFUBieiSLxlKw45aZQMi0HcaUvS02IDn0xFIZnoqiblOzn5+OuShZ2K2ObAWl9MRCPjsEhOR5+5/xUJU5ZGI4cI9dXL4C0vBYIyzJJ+K2gkyQTiLsqvm5pT9yk8Sh5MQyPfkkhba6F1Ob6cMiMP0BJtS9qKTxaXgyEYZkkyhZam7Jsn2oLW03oVcsVj5YXw/DolxTQX3Z4Bc714ZBLYw0Ykf9nGVpdDINhGBxyPxRzfiwOlbH2UZpvVzhaXguD4ZcUMHqQXKZ8FErG6xEXPzbAKDpKXQyDYZgcMHRgL3l6WZxy4gmdaAjCFY+WFwNhOCYIDBx85W7pK4hDTsJDY3PfhKL5KHkxEIZjxhv3rVDzTgUtVx4Xyr0wFz5aXguE5ZggMGgIrZapRig586y2MMbgqhAlLwbCcEwQGDTElPNcI045MiimPvBR8mIgDMcEgSqeJMa5Rpxy3PCybD33xJXPIS8GwnAMEBVfS8WHqUYoOWw9F2aY+Ch5LRCWY4LAqCEHN6Wk0DKehpR8aQ98DnkxEIZjgsC4Idc6paTQMnNPjAyQVzx3dTEMhl9i4BHbkRk/rxhOOeAtmUt8pHPIi4EwHBNEezw58oeLzI1ILfSDSa58DnkxEIZjgGhinZWpZabg8Mm1Bz6HvBYIyzFBxM04K1PLXP0Pru8Bnvjc5cVAGI4JIltnZWo5bM73ZmHmc8iLgTAcE0S1zsrUMnORVN/zCkx87vJiIAzH3E0j1lmZk3zfhzAVsuT2BNMxQQTrrMxJvoffT4W8V1T+e+ZqmffUpBx8D7rHL6Y4Dn0NqNk9YjQw+YUb78CA4WNPHoKSMcAOe66mHCW6EUTneCpkz/bSM7VEkT3IsAgaz5GVAT0KGZF4TNCRsuspWbJv95DEvHU+gWPW1lwLIzCtbIW91H66WvHOjVhvQb0L0nPGVPBjZpc9fMvVxkNzksNbPPhxgR43J1amkulJVErrxwsxyIkpuEb6ClAN3bvHACniXedvmVlsnA91jwRCw88EM5kJZpiko8sZ97Wfcsfs+zVxrEm54rJ7iZVIyh6SHFAiM0QmJmupJZTRBw2y5ZJTkn7IS0lxzHiGABC406HXElwBM+mNdWUXG7NZML1IRTvc811wRzkMu3FceWpunGFPueC30kjVEn0YsyXRMU6cN5yr0+j6pZ4eg3qL3E3RM7XwtNMRV45KIy4WP9YzS24lxl3PNTIvTc+xglue477O6XNgXbjkaqGO64XJrkcXqozP4w/vGXDH3CvMmTIGKqglzgmjTEC4Jnyum43cit6Y90Yys7bUMCbLUU1qqz3xDVPjwN/o30am18KF4nKYrVRQ8cZai7C71xPi4O7gZre+kzL3+D/fE+KgDnqYHfUgRZ7L5MvIGc52Z9xx/JhD3cMNxa2FPU5Uj7n7gouovSIwzZGMyWy2mymjb8Vj4WMaWxYzapwDoFRvQMBdnX1LC4bteHKZLY/JWpKvInWfCQY8vHpyYEXNu4o/omO6HB4xnzjW7zIqXEL1razsAr/j0chceuRifOrNhx/3DhUCN75ylAxsvvko+7ySK8JEDoyWzf2EBcoe3OCmTzehx+xGtDXuboqFzzFvYSoyABZ8pqY2smOGhv+4D8zxqLXWx6MNd0ruw1TUoZB77Hpm63bvpNfi69jkIMC7v44c/gDi3pyhDozWrDEpTGzjDFeQCX1dcW7Jve+5gZ6RX5Ha5Zlt/c/lA0HJ5o7/T89mFmEymNemDrB//cXfeE1qFzaxkaXwn1eleMm/SIqXwiftMVoYb6mtTqv2d+2CR31fzOQu5wfk+iOfvQ+6VDbzuU49WCXPN/IN26ALikBTjA5VKngkPzy5y5fDV/v7Ha3SNYpHye+AD90hNPYoDVxcflNyly9IIKFNR7dsSouv5PcggLcMIzjYkUIr/RnJXdCP2vgY40KZmOp9k7t8wcf057cwb3xEfdaX/ubMLh+CgGn7fOJJpyeCU3snBLln3UNnnFHJr0zs8iEUWkFXOTMj4knh1N6JQmM2Sp64jCHoyxkrHrO6fAgFQWPgIq7QKwxKfCcOgjaYaQLQ6cZo/JUpXT4GROIAFFeoORzae2GIHPYXjKmaby8/FY/ZXD4GA8OaOG5smsMpvheIgjdSLbFKH42/KZVLkbbvD+tFfkYqlzeS/diZMSZ/fTxRqTCX6+OJSloOG3uOMuSzECUfM2NrgDAcAwTfYI8nKmmZeapS7KPnK59DXguE5ZggvHWikpYxpg9lpFm+8jnkxUAYjgkiWicqaZmzGCGW+sDnkBcDYTgmiGKdqKTliN+V0KdzdSFKXgyE4ZggmnWikpa5S6pWmfkoeTEQhmPOT4h1ppKWLyBMPmuBsBwTRLROVVJywug7ttzXXFQhWl4MhOGYILJ1qpKSuSFEMEL0Ex8lLwbCcEwQ1TpVScnMoy6S+7y65qPkxUAYjgGiiXWqkpJ58qBjDv2Jj5LXAmE5Jgh0lR9PVVIyHLfkWt8oduVzyIuBMBwTRLJOVVJy4ukWJfT5E81HyYuBMBwTRLVOVVJy4gnXfqyCaj5KXgyE4fjTU3XOOlVJyaltkqX11WnNR8lLgTAdE4S3TlVScuLx3q30FDZXPoe8GAjDMUEwvODhVCUlc2LYY5glVz5aXgyE4ZggGKiQosw14pB5Tk5NI8ZZFaLlxUAYjgmi8agZaXONOGSMs6CNnfeaj5IXA2E4BggRRl61KYhNyWgfBT2GHr+oCtHyWiAsxwQRYciXKV+FkgVfLK21HhuiSrnoi6EwPBNF3iIe9xQnFIdMD1w8cjMirS+GwvBMFBhBuHiNBfhByz1WDK/KMCPS+mIoDM+Mf8AYQpxMuTuUzJPPYi0jI55GpPW1UFieiSL0+QU31YpTvgQ0akRaXwyF4ZkoMI7wkttcKw6ZMaLl6FtpREpfDIXhmSgYoFhimWvFIdNydD4GA9GhL4bC8AwUwTE81OepVpzyCEC+v0wVIq2vhcLyTBQYTYTmppDBQ+WJJFz87GG1F0BKXwzEo2NyQMsXYw0ziEPmsaKRcb35CkjLi4EwLJMERhPJTbP7p8pjV/HV0CdtNR+tLwbi0TE5YDCRcnx4NA65NViL44zdswytLobBMAwOUXg0qkyvjUOt3JAeQprgaHktDIZfUmDaAXSYp9pwynhJtlRc34NzlqHVxTAYhskBQ4gSpjwep3qZqTqLWHemyvBLCn171LxNQcl960rJE5xTXAyCYZcB1zyLO4Upc4WSE8bbMed+wrkqRMtrgbAcE0Tg2ewi01NxyjwwunnnZj5KXgyE4ZggEj7Jz04gTrmhIXDe5ysfLS8GwnBMEJVn1rNXeAVxyrCQMKjwEx8lLwbCcAwQuPTgKtPOX0AoGeNMqa1v8tOFKHktEJZjgsCIQaJPU41QckRj0EJPx64LUfJiIAzHBIEhA9q8ONeIU1axhLqQVUMMTccEUR4PmvzhIqsw2yufNaNvTccE0ayjNbUcNl8b95fPfA55MRCGY4DAaME4WlPLAe/Jkmp94HPIa4GwHBNEtI7W1LIGYfNZDIThmCAwdng8WlPLFxAmn8VAGI4JolpHaz4rm9gWA2FY4/4isY7W1PKlRlR9tOZ71Yj3TOty3V/jc2y+9E06DYPE0pf58OIvSXqfuJSe5K70BAmtcbc4Re69c32hmBk5XN23J2Se6lJaPzwOvamWx/aNuiUZ+89zh5Z7MCYcpFjZ0WA4hZM9fJlZentWPUbtZidhBOpx9yHzyjBQrwRffNwDGXnPGa2FblvOIeY9rC8V7kYfgZ4+5xH7FvHVGjkQjGjBMCiMe+wbD3JnNCTQ1Jj3SLC2teSTjACo6t3oMjuu3mHwFJlPObie+GVECfncamNuDRf64YlUwxZ9TZyL6LnJS/F7JE2qBVc+8nNIjKNoBuGlFnuATRJc34i7yVtzEd5uzH/ie24Tyui75xA8s3znJMH5PSTDe/Rb8q1i1N9S8WWPT0gBv19vAgOVGRzKvlgfQ8aVoQb6DQOAOiYPpGwoGr9xEybjibn1g+6qtM1xr3TpqWRSqWN63uNm4seYeYZplrOL6a6jDOaVYSoZhwdiX/cDuo6055KRnt1lyGhDuKeTuVsKRqg9gU3FpaWYK/Pe892z99A8nzA+8T0BDCDLmCOHjochMR0+E8OgFvb0ONyx71Ep/ThTBBeU411Hb8/nMnTgO1bkYuQcGoupWZgmhDIqMc2GroccSo+VpJ75f+R+kfjPknod8IVpt3PPj4Pbiv9jRBH5uoXYz8UiG+7+H8VzfaMx9QG+g+rIMwb3taCcmEUH5HETYml5rIzwKIwcGHnCFDSpZ4MZKyaNyQRaPySipuZS21cQCioLbiceLa6zJVf3qWS0BII2g09P6mmOxswqnh7mNKmoHwU1dUw1gghz37RbzxTbxqGxlY0EuNW+WRvX7mpHE3kEtTAHTkYz15/AMU/nMeBERaTRVnLf1sV5KzxAzIADnw0X1POpVDQHIIR2gi1Ak/vcjudjFWqPbUdjUsbTiI/45BmOlNjMMMVTl1HbxRUe6AWEeFzHLybuA69MdYOmKEMuo2xiTsn1fDQ54lfaPlQsNaTQ89Hg02M3GurH1qL3I3uVZ2M8OtVMheiaGw2o9FTbHFtUlBZ6kppCA91irmiI8Dv9syHKSGnF7hYaOhfbOK4Zo9Tw8AYCsTSqoS2/Ih3NM4kInstggpIfcxR8srOgMHXNq9Ic2D/6fOmvSUHDBh5vsTb+eU0Kmnp7JvVEYDxgz22CVhoN+6WoaGWeKKyPeNWitqvME//y/U9/+fP3/+ev/OOyEfjp/wHj3aiQCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTExOTEKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2Ci9laWdodCA2NSAvQSA2OCAvRCA3NiAvTCA5NyAvYSAvYiAvYyAvZCAvZSAxMDUgL2kgMTA4IC9sIDExMCAvbiAvbyAxMTQgL3IKL3MgL3QgL3UgL3YgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9BIDE3IDAgUiAvRCAxOCAwIFIgL0wgMTkgMCBSIC9hIDIwIDAgUiAvYiAyMSAwIFIgL2MgMjIgMCBSIC9kIDIzIDAgUgovZSAyNCAwIFIgL2VpZ2h0IDI1IDAgUiAvZml2ZSAyNiAwIFIgL2ZvdXIgMjcgMCBSIC9pIDI4IDAgUiAvbCAyOSAwIFIKL24gMzEgMCBSIC9vIDMyIDAgUiAvb25lIDMzIDAgUiAvcGVyaW9kIDM0IDAgUiAvciAzNSAwIFIgL3MgMzYgMCBSCi9zaXggMzcgMCBSIC9zcGFjZSAzOCAwIFIgL3QgMzkgMCBSIC90aHJlZSA0MCAwIFIgL3R3byA0MSAwIFIgL3UgNDIgMCBSCi92IDQzIDAgUiAveSA0NCAwIFIgL3plcm8gNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDkyOFopCj4+CmVuZG9iagp4cmVmCjAgNDcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjEyOTIgMDAwMDAgbiAKMDAwMDAyMTAyOSAwMDAwMCBuIAowMDAwMDIxMDYxIDAwMDAwIG4gCjAwMDAwMjEyMDEgMDAwMDAgbiAKMDAwMDAyMTIyMiAwMDAwMCBuIAowMDAwMDIxMjQzIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDExNjI5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMTYwNyAwMDAwMCBuIAowMDAwMDE5NjQyIDAwMDAwIG4gCjAwMDAwMTk0MzUgMDAwMDAgbiAKMDAwMDAxODk2OCAwMDAwMCBuIAowMDAwMDIwNjk1IDAwMDAwIG4gCjAwMDAwMTE2NDkgMDAwMDAgbiAKMDAwMDAxMTgxMiAwMDAwMCBuIAowMDAwMDEyMDQ5IDAwMDAwIG4gCjAwMDAwMTIxODIgMDAwMDAgbiAKMDAwMDAxMjU2MiAwMDAwMCBuIAowMDAwMDEyODc5IDAwMDAwIG4gCjAwMDAwMTMxODQgMDAwMDAgbiAKMDAwMDAxMzQ4OCAwMDAwMCBuIAowMDAwMDEzODEwIDAwMDAwIG4gCjAwMDAwMTQyNzggMDAwMDAgbiAKMDAwMDAxNDYwMCAwMDAwMCBuIAowMDAwMDE0NzY2IDAwMDAwIG4gCjAwMDAwMTQ5MTAgMDAwMDAgbiAKMDAwMDAxNTAyOSAwMDAwMCBuIAowMDAwMDE1MjAxIDAwMDAwIG4gCjAwMDAwMTU0MzcgMDAwMDAgbiAKMDAwMDAxNTcyOCAwMDAwMCBuIAowMDAwMDE1ODgzIDAwMDAwIG4gCjAwMDAwMTYwMDYgMDAwMDAgbiAKMDAwMDAxNjIzOSAwMDAwMCBuIAowMDAwMDE2NjQ2IDAwMDAwIG4gCjAwMDAwMTcwMzkgMDAwMDAgbiAKMDAwMDAxNzEyOSAwMDAwMCBuIAowMDAwMDE3MzM1IDAwMDAwIG4gCjAwMDAwMTc3NDggMDAwMDAgbiAKMDAwMDAxODA3MiAwMDAwMCBuIAowMDAwMDE4MzE5IDAwMDAwIG4gCjAwMDAwMTg0NjYgMDAwMDAgbiAKMDAwMDAxODY4MCAwMDAwMCBuIAowMDAwMDIxMzUyIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDcgL1Jvb3QgMSAwIFIgL0luZm8gNDYgMCBSID4+CnN0YXJ0eHJlZgoyMTUwMwolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:28.392795\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 1.2016416788101196\n", "Layer 2 - Variance: 1.5907800197601318\n", "Layer 4 - Variance: 1.728979468345642\n", "Layer 6 - Variance: 2.3041787147521973\n", "Layer 8 - Variance: 3.7488739490509033\n"]}], "source": ["def xavier_init(model):\n", " for name, param in model.named_parameters():\n", " if name.endswith(\".bias\"):\n", " param.data.fill_(0)\n", " else:\n", " bound = math.sqrt(6) / math.sqrt(param.shape[0] + param.shape[1])\n", " param.data.uniform_(-bound, bound)\n", "\n", "\n", "xavier_init(model)\n", "visualize_gradients(model, print_variance=True)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "73e270dc", "metadata": {"papermill": {"duration": 0.051171, "end_time": "2025-04-08T10:49:29.263850", "exception": false, "start_time": "2025-04-08T10:49:29.212679", "status": "completed"}, "tags": []}, "source": ["We see that the Xavier initialization balances the variance of gradients and activations.\n", "Note that the significantly higher variance for the output layer is due to the large difference of input and output dimension ($128$ vs $10$).\n", "However, we currently assumed the activation function to be linear.\n", "So what happens if we add a non-linearity?\n", "In a tanh-based network, a common assumption is that for small values during the initial steps in training, the $\\tanh$ works as a linear function such that we don't have to adjust our calculation.\n", "We can check if that is the case for us as well:"]}, {"cell_type": "code", "execution_count": 18, "id": "e5da2aff", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:29.364927Z", "iopub.status.busy": "2025-04-08T10:49:29.364459Z", "iopub.status.idle": "2025-04-08T10:49:42.378406Z", "shell.execute_reply": "2025-04-08T10:49:42.377699Z"}, "papermill": {"duration": 13.0662, "end_time": "2025-04-08T10:49:42.379597", "exception": false, "start_time": "2025-04-08T10:49:29.313397", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTExLjUyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdTY8kuZGm7/kr4rh7kIvfRh5Ho5kG5qaRsHsY7KFX6tG0UNWC1K0V9t/v+5Ie7uYMy1RnVlbVEo0Cqt6OYLg9zm8azX756+/+z/e//+7fv/nV7Z9/+/TL81+///HJ3/6EP3+8uduf8OfvN3/7Bn/++ORuv3C3j0/N+y2HzH98OP4RfNtiyQV//YAPXv75X09P//n0y39CET/e3Na8lCQu1/rwj9Scb8VJvf2Vv/7N5QNPL3366anIFvFrKWxt/O7HJ9/S5lP0NSj5g5Z9xdPf9b2Ei9Yf/S+3h8J9KFv1+38oJ9at3P763e1/3n64/fKfAi31t3/Dnz/hTyc4MZa8iatS5fLEp3p5iqffPv3m9pd7wW7zGW/nXnb/5ze7+vQXvLn+nvwt5y2mlrzPIfhbyJt3LO73H59+9bunX/6rv3l/+91/PrUt+CKtVMn45u/+8PQft//mNhfyf7/9r9vv/u3pX34HABA8C3bqb7//eEMpv/j1d3/69n/87bff/vDjLz5+/8Pffrz9+s+33zz9pj/x+3PzIW65SQj1+qpP+R3IeSdbTSgN1a3G59E5Dcy5E9hns178lmoupV2tP+X3sB4VRyJKqyIp/0zrdXX5jS4NzyOpic/NNX9rm+hywrWcb/767R9uH7/94w/f//S3P3z3+XH+/D7jjS3QbRVfx3NJzS3Kiwy/mLmlbXi3sU7mnvJbzQ2hm1syKmMtTWBwesFi775Im9lLbGWL4n2arD7lT7S6hc03lCMhu/qC1eGLWs1+0UlsbjJb6Z9ot/d1qy0F9EGhhBcMj1/W8ISuRkops+Gn/qmGp4whB9VcnPPlBcPTlzVcypYELyRNhp/6pxouYQsNzZsDxAt259nuvzyxlF+wPF9Go0xbSjn66+gyjQr//Oe//fDTJ/KLw87Qqost+CyYTaYxlQwR856t3CeTqc89N9TlWAMebod9+fJNf/lp+vLTk6BtoUmUOM/tYssh1cvAolR8y2XMxKieJSgVk9Ff/f9vvGEmjBdMbL2L8Wr8qcLMHCWlByR3dQ3jDTM/PlXODgse7mK8UuPmSwyPSA51CeMtM2F82NC+i7u+eaXGLSRXUNUnJIe6hvGGmTA+bcVjTjW9+VONWyohtDIjOdQ1jDfMhPFlayF5SVfjTzWiqmPhGWYkh7qG8YaZMB7LagySuV2NP9W4VYHJbUZyqGsYb5jJHaItx8x+WxuvVMxKsudi/YJEqUsYb5kJ4/EOk8/h+uaVmrbsmksPSA51DeMNM2F8wXxTop/e/KnmDaXFciVyimuYbhgJ0+uGqaxr03s/VXzLl4wfvABR6hrGG2ZioeHcJvhKvb54LQssSDWVKxSlLmG+aSjtx1S1pOvG3IeL3LZaQkt1wqLkRQAYlhIAZu2C/itPAA45Yz6L9Wf0Vy5aXgSAYSkByFakhLkB3NWMJ3YBg/tERcmLmP9oJ61vW6vBhfn1H3JJW60Zv3ChotVFzDcMhf0+bKFK9VfzD1XSlmqoLVyhaHkN8w07aT1mLy3mNr39U+YsL7oa5EJFq4uYbxhK+/GErcU6mX9XvatbEwxzcqVy0RcB8Ggp7ceLdBnzmAnAIftYML/NscUrGC0vAsAwleePmMmjYU8ADtVntPnQXE4TF62vAcCwdJy/Vl8Ek/grgEP27OuKK31XQ4HR8iIADFNJADP5EHKYhoBTxnfY78PYiYzWF0Fg2EoEmNeHGt1cCQ7ZZ7fFVmtsExqtL4LAsBUIImb2MfGo+4LglH3IG2Y+ztcJjdbXQGDZSgSY2+NlylQLTpmzf/HiJE1otL4IAsNWIqDrTS5lrgWHXPGyc45jPnQWouVFABiWEgAm+NmnNNeBQxZPj5ma45WLlhcBYFhKABjXs4Q414BDLmGrEZPgduWi5UUAGJYCAP4RSnRergBOOdOo5tIVi1LXMN+yk+Zjkl9qdZPr4SnniBlQzblMVJS8CADDUgLAE0rKdX7/h5zpYJDQ2CcuSl4EgGEpAbTNowiZa8Ap1y16n8dEQBWi5EUAGJYCQKZTYuH3LwCUjMWf95LDxEXJawCwLCUATGeab2mqAUrO/F3Xzzp1IUpeBIBhKQGUzTWRMNeAU04Y91wubeKi5EUAGJYSAKb3LmY/14BTTptv9HZ54HLIiwAwLAWAgsm9ayjmCkDJXAZLSnHiouQ1AFiWEgDm9ljd1jgBOOWIui4hlAcuh7wIAMNSAsDcPrha5hpwynFDsdHJA5dDXgSAYSkBYG4fSslzDTjliNWPpLEavnA55EUAGJYSACb3MaR5d1zJEUO/b14euBzyIgAMS3k7A7N7FBqmGqBkWOow+2mPXO7yGgAsSwkAs/vU5/RXAKeMZh+8OP/A5ZAXAWBYSgB4wtSkzTXglNnvle4CM2HZ1UXMN+yk+Zjb55xlco5QMr2cXRzbwlcqd3kRAIalAFAxty8+lsk5QMkXACaXNQBYlhIA5vZFsMibAFzkmuIYA66F3OVFABiWEgDm9hJanGvARZbapDxyucuLADAsJYC6Rani5xpwkSXufeDEJX5aJ3i9PbPl29+fnrXoiuPfv7ldb9lMlzswP8Eq9eMTamxwLvBUOG4hVyessQ0Flyacy/Aejku+O/9hfMP/r331lxwmuVzmtbzx9l13kUypuMr9nyZbCoAxvAdLaf0qRKsbfiHTAQlWlxTKcCoLm+MmeuQemkMvsnub4IHoZtluGaZjapmHC04C+Nhqd8zKbd+GcnnLMaDq8fYw8GcZcgEUH4EqNxRNTMOLp2bnsEgrYUv8wba7t2DwwtvrNwFdDuPAEzII463y7eHTbvcFwJInFcn1hnE/CyD2p/Z+46k47EVvGESKu/tOVEwJcru1thWHB2y7Q0Hm0Vm9ec+qIdGF/aA9RbxO1AhurxSeuvdjN0eTeY/cFzqjtCTjRDJsMcaC7sbjPYcSR22E3Dz98Tk2Xw63UwvRxa7zLHc8ZEiovL6k0q9K1Yz/k3a9ZNdqu3GSh/fuBwLU3VgbT/5QGVHbURNH+QKrRFy6+QRkpaaxWxw9pkVRCqwipsDTs64HTJjRbOlw4jGElCD3Y6eCIvEaMLTiZ8ZiO7LFoOH1m59A0eL9KCLCRLxhvCb8TOoVkQ0KFY4XybFEyyXuh3eJ7YhNMfeXvj94AusM48oto+JUcTXtm7wojvUvo6qmeN/5Q51zEmPfEk4eH277jmgpxXEa2PqrGM+H9xidQ+/IhlJh/Ki4qMQFbT92/+paZPczwGPxAnwZDvdoS7F/WvhDDW2hz7GjyAArwsugwYUx8OIt+cc+Co1wH6VM+Xq1LrDTQYew96P/8PqxFYMAJZq3kj8+G8kA33jV1ebHX32xbAejfu6dwRo2kYjXM054q9xLev6+34dv/+93f/1xc9vfv/v+j//1001f/XtDFIkRw+KV0SQCa9GjkydqB+pzLZObi5IvrFQp/iGqBGvJ8QH+99bx7MmqW+gCsY52fqoDSp7f6lsuhGZ2kugKMJTiLX6VEBOfD2HE0FTQw05+/kp+D4SN3RVLQ4fc3hxq4jNSwNCDXthPN9uU/A4UIoa0mlla4vb3J4acCOj1A2Y0g8cnxZz4jA30VT3MWy9s1+FnPp7+bXEovgiCSlcwh17kiuCU34zAiUaAqsqIOB5TCP8ShfxF25geJwKnu5kLvgsJpb8dhdMo6HDmWgkVM0PM1V8Zp+PLwMD0OfEwPEwwTv29YJSKWRrmnAnrmReDlsw1Qwc14JW2s8y3Bzd4I1yu83/uwvYfr/Nf3CTADAmT9RJTmxxfAqb2jYva6yRzkiWFPuOeCrnLxzp/DRCGxQSRt4D6NN39flY2sS0GwjCNIDDnx8pR4mTxRW67x8tUSJsdYdYAYVhMEA2TnIqvTSAuckWHLI987vJiIAyLAaIEhrbgPsQFhJJ58FNcChMfJa8FwrKYIHj5gWPwBOKUIzdKYveHnPjc5cVAGBYTRNlEMtZAE4hThsUtu74hM/G5y4uBMCwmiLa56n2ba8Qpc8kt4v0Dn0NeDIRhMTcq/BZraZPjjJa50d66n+iEZ1fXwmDZu+/XtCDTvXItR3yv5n6D/krnkBcDYVhMEBmzgZpzmkCccvecdqNhXPgc8mIgDIsJAmt6dv5zjTjliO+hKtQHPoe8GAjDYoCo3Idzfrpxr+WE361trxFnIUpeC4RlMUHweIrxVScQp4yVvgu5n6voQpS8GAjDYoLA2iH40uYaccqFYSd8kYmPkhcDYVhMEFg7BEky14hTlo3xOlua+Ch5MRCGxQSBtUOMocw14pTbliSmBz5KXgyEYTFAMDxtD/d64XCo3H5oWHTXKx0tr4XBsJcUuCWXapwxHHK/fiZldBAnHaUuhsEwmBywbsi8YHLFcFd7BOfY+hG6KkLLi2F4tJcUGh1m0kOjOGQR/AavpV/oaHUxDIbBH5+iw6qhhMkz61TRDNAZZD/B0fJSGCx7SQFLhiJN8oThkL3nmqr0AMpnGVpdDINhMDlkOtxNt/dPlY+MaXR2aaKj9cVAPFpMDnUL0niAfAVxyHQukhT7XXXFR6mLYTAMHu4OueY43WRXMk/jMlbbPYad5qP1tVBYNhNF2Lhu9FPbOOXuu08XsjQjUvpiKAybiSJvdH11c604ZN5lC841mRFpfTEUhs1EgVWDC6XOteKQ6VPZsvOlTIi0vhgKw2aiwMrB1SRzrThkOvAKpg01TIi0vhgKw2agCFg8+H6efUFxyo0upjX2RYUqRMtrgbAsJgisH9Dg01QnTplet6W2HgFUFaLlxUAYFhMEFhAh1zDXiEMuPaGI7170qhAtLwbCsJggsIaIvky34pWM9baEVNrER8uLgTAsBoiIRQQvYVzjIyg5Y9iE5d19XvNR8logLIsJAsuIR890LTd6/Vc38dHyYiAMiwkCy4hUW5lrxClzizJUHyY+Sl4MhGExQdAfL/GGyBXEKedNSugHvbqMU10Mg2EvvayxhCjMgXPFoOS8of6H0B7oHPJaICyLCQJdXmE6nAnEKdMnRNIDHyUvBsKwmCCwfJDg3VwjTjluNfTrd1c+Sl4MhGHxuICQROp0p17LceOtsu42d+VzyIuBMCwmiLYJFwx1AnHKkd7SI4zClc8hLwbCsBggeKtwzrv24SLHLXKQrA98DnktEJbFBJGsVHNaZnotPv8Dn0NeDIRhMUEUK+2clplkLfl+tfTK55AXA2FYTBDNSkGnZSbk4PXxBz6HvBgIw2KAKN5KR6dl5Vo78VnS49a0mCCilZpOyww+IyNkwcTnLi8GwrCYILKVpm6S7/cQpkLe63qCvhb11ANU3H4mlscAFQ93akqu3bOY55TunlMUq+ceX5IuxDWXHsqdgSIS7+EPj1ovcZ8mhBRCT8UYhNemfRvzyZj8OPcMwnt6xbnufCg+OT8+LQxP4RjKKm2u+Trct4WhG4IrfXaOxdvwvWFC4trvKzM5TnS7nLYQ0QL9iIDRvLu7LPXEGVz4ojrsj1G7+1IPl1G5ZzbSpoaKZREe2fdtBPx/72R3c0kZI1+9dWJMR9RPuP3ma22hx+KNjcmJdmeQBip5xDRoZcRiCC1udApgdI2KsmNNu89EKYnBNdBwGmpsGYfnGXPwyOgaoJ77WLN7FjS+WWEIDB/xgSHXTQLgFV6idy2G8ditoYY1xtFoPEnJLt0PpB0DGVRGxmBQ/dq7cse01IVxNBhpw0U23f3gtkVUqnhjDPrYXGv3c97CFNbMlIzHanvIkegYswMrKt8jZngMEYfegBBP7AvDVxbpwct5DMizP0bSYFWC1WNocfgHU9XfmLMedW1koKaML7YeSoObW77G+ykjfiKkcbTmEt5d2fVaUbHbCMnhcqvj84zykcHqGqqD509olIyHwcAeqH0jtSh11J3C0Bvietb71pu5j5wcsrvv5la0vLYf3gBtxMhIPPi5KOOorwIPWhcDkKB6oHvsAUhi8EyOzYeuhb5lLfSfDXgG/D/YKIz1it+t+54vGFQG2cA7vF/5iYHbGy3j9ZfUM+eU8WnZvKuMIVJ4v7Gl7uyNmSxKLKgirKiSy74ACqjtIaOl3zDNCS6gZu17aVgdtxF8A2xyr+0x0rmDqRjRYjKDtfSiY2GYbjdcR9FC8tiYZF/WmMaFMmpb6AFGIpfetabhjM4bPH7I6HAY4SSPGJd7I+3TcRdyX5+lkNo+E2HdDOLzGIDplvbYOePdyAvyKyJyPHMp+7k4DijZvK/98dmIEPjGqy9+27/+4m+8JkIH+m1U5IrhZJzavyJER/iaITowJqHNPTgBZ0aLeczAoeQLLFWKN0N0nB9w15/65IvOmCKgZ2GUJv38pzq/1DfccsZovtXIOEpo4f7rBOj4jAArA1B5P636lPweCDkmO5aGfviFGCf/IEDH56OQey6lgLH/2g5O+R0ooHfnxnpkVDoMfp8YoCMx9lTqBXxKcI7PWLNe1be8sWLRZex8+rcF5/giCDCNd8VxjnBBcMpvDvuC2b1CMGZ+GPtjw1TmeQrhi7YvPUL4EVYttSsJpb8TCkbcwwotF9+zQz7PIn01FsxSkGG1n1ic+nuxSJ7x9KpELrxfYFG+GgusaDGvxRNOLE79vVhgvYCR2lesBupLPUV9PkxJlKqRvD1MyRvZftFdn4TlkJGcJEVnJSeZ5MqlWZ8kXgq5y8euzxIgLIsJIlhJSp6VTWyLgTBMI4hsJSuZ5KNGXAtZtEYYFhOEWElLJrmNtfVUxq4uhsGwlxialbpkkg8MFpzFMBj2AgP+YSQwmeQDgwVnLQyWvcSQrDQmWuameqy+THSUvBgIw2KCKFY6Ey33pAXS9ygnPnd5MRCGxQRRrbQmWo68Vt1DP1/x3NXFMBj2crvKW8lNtBw37/cM11c6h7wWCMtigohWkhMtM6ORjHOtK59DXgyEYTFBZCvZiZbjhuVJv0Z8xXNXF8Ng2EsM1Up6ouW4NRdDKg90DnkxEIbFAFGclfxEy4kncmGic4hrQbCsJYRgJUDRMivAfhimC1HyYiAMiwkiW4lQtCwYICXHNvFR8mIgDIsJQqyEKFpuW6nMCD/xUfJiIAyLCYIGJV4cv4I4ZIwRLaXoJz5aXgyEYTFAiMeayYU61YhTzkz84kPPyaL5KHktEJbFBJFQRnGTS5aSS9no4NI9dlUhWl4MhGExQWDZ4Px0s/hUpTE/3sg7oorQ8mIYHu0lBSwanJQpEoOSW9pclnSFo8TFIBjm8lQbKwasG6dZ9aHS74iR2nvSZFXGRV8LhGExOTCgI78/gThkPjN+c3gyKUBaXgyEYTJJ0J1wxjA0JtJlFqQxeVBstL4YhNlaEsByIfaTsCuEQ754AR5wtLgYBMNgcGCiuVjmw6xD3VOqzmju4loIDFtJINCPMeapJpwys6vngH7QX9FoeTEQhskkkbuf7DR3OlRmiWt0v/YTH60vBuLRYnLAQgHLxSncgpKZkdC3vO9Un4C0vBgIw2SSwEohN8YGv5I45NogF9dvj6tCtLwYCMPij0/Zef4jtWuVULLkLUnObuKj5aVAmBYTBNYKvCkx+ciecuG5TYl9eFCFaHkxEIbFBIHeX8SVuUYcMoYHxhHPEx8tLwbCsJggKkOK1DzXiEPOAeNk6/lQNZ5TXQyDYS8w+H75Z3bC13LFgJmkXuEodS0Mlr3EwMy2KYWpNihZNudy822io+TFQBgWE0TmoVSYoi1oud/fcblNfJS8GAjDYoLAugHmtDCBOGW6EVYRP/FR8mIgDIvpVu+YUVhkqhFKjlvLKdY28VHyWiAsiwkCSwcveQoireW4lepLvw945XPIi4EwLCaIzDzZMc014pTRLTh0kOmBzyEvBsKwmCAYJr1hITmBOGUm50EjeORzyIuBMCwmiPaYGvHDRWZYBRkpSK58DnkxEIbFABG9ldVQyxH9I7dfHvgc8logLIsJIllZH7Ws/ASvfNZ0HzQtJohiJYOc5N1xdCpjRXdS015iqFYqyEm+e5VPhSzpbG5azMsy3koF+ZxsY1sLhGUaQUQrFaSWlQOtLuQd/WrfMwzJfGcGj+u72yzDiWC8Gw+Od1l2d8iYk2v3uCKu3yqkdyC9f0rPXlbwqT40Ju7ZYw5596ELPgyZ8WFLLbmHG8G0u4fXoE9ZrTlzmY7FiAvD8bBE7vuHlvui1Qdxw6si4Rdrq31N70tpPeBAKj0WBqP6Z7fViBl9L7p0dzXgoTMK5nKptd0jwWVM8tItNwxkkocTMA9cPMN1dK+mHuuEKgwuzTP+rzByhJP7cT5mBozoyYAVwkAP+/F2KLkmf6vci5M0HM6lwuBY5dbKhpfvcwci+PXCoA/9PiH+1nrG7MQ7ZTk3xt0uGW9pD0zP87EMG/FymA+7uRplnJsVBmVm3BJG7cDPh+h3vWCg4qY5HzIwlnnXZUNnFfvJE3g2PL3seoVRXRWaIfuRFCqE4xGtxP6BHpoi1cZr5ox/wqOqmECp7Xpm/JPWY3YEvI18P9OBwMAoaA8MLF6HayV0wbJ8P/2UkkYGG0w0aKJnIHZGemEItLafBKBlofXcsGDhG5Fx5acJo2IxBAogB1TLUXUbqldxjHTSw88wdnffHHJ4SkZ+uQmbnEi476Vi8s9axXgjju+1y33noBV/wyPC3FDLvuFY0PtjjsxIVGggPfUtL2OjYjAKCVqCw9sbw6VjBBrAzrfMC991BGnKjrFEauSlZaamaC6OpelozVyR1Y3X5e97OcVlYZQgMASHXtG5oHfsMcbOhoshj3W+bE1q5s4Pg4rgTYR9jVMwn+19FnowN7aJMM+tqBZlTO+C9CO33GOWYvY/Nl6Aqb+cqd9zrYdZsdVXxPd45l73c0EgULJ55fvjs+Ek8I1X3x23f/3F33hNfA/eTWIUpt79vyK4R/qawT3QwYLRgxutMBj4Y1IWJV9IqVK8Gdzj+AD/S28aJ5+5HYwZAl5qmarNqc5v9A1Xgws6DTTVzJw79SsF9/iMAJnk2aHLvy4plfweCNH1oQSuLNKbQ3t8PgZoHFvk6Dm1glN+DwYYT9kOK31p66eG9ig+MR3WCCb0aeE9Ph/X1/Uub4yYUuPw4R9P/7bwHl8EAWPRVSmYQ1wQnPKbEZSmEWDWm1AvKqa2GO2fp5C/ZBNTHHo4vUbP8guHU347h6A5YNbsImbrvmEh9QIH/0X7Gj1WekaNwugsVxJKfycU9LUpWIYxLl6IL7H4WpWCOZqwDKVj0JXFqb8Xi4iVMdZzAZ0x/vm68DdfhkVhIJZce8gXzeLU34sF1jUVvypRgnupxwz52TAnWFRoJG8Pc/JGtl90V6kwPtdjqp2CJaGRakfL3IXpIVM/XApR8rGrtAYIw2KAYCDRx1Q7z8k2trVAWKYRRLBS7WgZi/Ochoe4LkTJi4EwLCaIZKXa0XKPfe571NIrn0NeDIRhMUGIlWpHy9ySjbm7N135HPJiIAyLCaJZyXa0jBHa+Zoe+RzyYiAMi7lL4a1kO1qOvGsW+7b2xOcurwXCspggkpVsR8uMa95SzwWuC1HyYiAMiwmiWMl2tMzI1GPD/Yrnri6GwbCXGKqVakfL6B2xVuznUVc6h7wYCMNigIjeSrWj5czA59IdIHUhSl4LhGUxQUQr1Y6WMZXEAreHRNeFKHkxEIbFBJGtVDtabjChjLMgXYiSFwNhWEwQ1Uq1o+QctoCZQz+xV4VoeTEQhsUAkZyVakfJPLw8Bk/Fp6w6eFoWE0SwUu0oufAwDH/zVz5aXgyEYTFBJCvVjpJL2WL2qZ8iaz5KXgyEYTFBMJhNa7lNIA5ZmAMnu36+rQrR8mIgDIsJotHjRNJcIw65ZrUbcRai5cVAGBYDRMbaIfkcphpxyq0yVZK4dOWj5bVAWBYTBBYPSeJ0f1nJzGPUUqvdTUqVctEXQ2HYTBSFRwwYCycUh+yDbFma9JxFGpHWF0Nh2EwUWEHgO3WuFYfMsPMti3S/JI1I64uhMGymAwTWEMxVNtWKU/b8YnFt9JkKkdbXQmHZTBRYRcyZlD5omW6MVZila0Kk9cVQGDYTBfO2MQ3elcRdvYQ80YDMUChrgHi0mByYjy64MFeJQ+arj62W7maoAGl5MRCGySDRfWNluuJ/qj5jDgGrXZn4aH0tEIbF5BC23GJuU404ZY8VV3MMa3AFpOXFQBgmk0TaamtTwOpT9XRODCH2jKaaj9YXA/FoMTkI82b6MteIQ/ZMFwmrerpSBUjLi4EwTCYJtnX30DTuKhYXLuPNtyseLS+G4dFeUKieW5AyBX1QMq9aHEPGUYZW18JgGUwOWECEkKeoD0rmZY5SUg8IpArR8mIgDIsJgpdoanRzhThkDpfe5Z6QVxWi5cVAGBYTBFYMj3cWlFy82p5RfPyq2zOWxQDRmF25VZlqxCljxXluz5yFaHktEJbFBEGnj4yl1ATikHPYvPTEBlc+Sl4MhGExQWDlkD1zLl9BnHJTezOqkLbq1oxlMUEIN1h4I/AK4pQFM8mch2+AKkTJi4EwLOatDBYb3RT1Qct5kxxdj3yiC1HyUiBMiwki8PZhnaI+aFlZ/AyfxUAYFhMEE3cnXnO9gjjlhM7Aj3vKuhAlLwbCsJgg5DEJ44eLzIu5VWTmo+TFQBgWE0Sz8idqGRaHfsn4gc9dXgyEYTFAeG/ll9QyPURc7RlgrnwOeS0QlsUEkay0k1pmwAReDp7x3NXFMBj2EkOxkk5qWWOw4CyGwbCXGKqVdFLL6mLGlc6a9zVMi3m7yFtpJ7Ws3PAnPu/lnf+e4VCmCzot4Znu1zFE9hbt+PXhXF6wgoxxxHcJvrZ0d7Xm9gITATCNYBgRHkpwm9TafQrilmL0hx9uKGmfUAQnsd29VWNwwXUnTfqV9DtsJaCPRSm1p6ISet70QiIMi5LxWIkXQmOtw4EvbZ5Au19fykmGq0rMW82+lMAQFKgSJY9CGGLFxdSd3yS4sSiKjLDSIN9y4i3mNjaWYmPuClfiLQt3XlsPB0J3IBjMKHEFzILE3VWEoTsiXWt5llNzGEg4hUoYPOVWunu66+FdSmLkjkbTBG2n8iIq1YqlCB6r8m4m/neRcXTKyy85RLlh1dLw8nqovgITwDIURlXJ3PkaRDLeSPSMsMJ7knxlPYZHgRGhCkPHeJiQ0FhKN7PgpQEjHpdhSTyq1X4U47FUDAwew+AsDYX5XW6BF1H7URWgubFPDxjZYUEFuW2F55thP+JzsL7GHiQFPUXos0nqPaR36aFc8DsjaT2v1YfYI6BQlxxGgEbqaBoMQ9NDv0i4l8Mr6NX3I0TGIirBy66jZ054wT04C2pwG59nCCuGJBlnr3itWfaDJ1Qjz+Pp/teahztgYSyV3IPFFB5Rxn2PqR/cpoD2zYMq/Gio+6mNi6HywD/3CDUy4EsEncrfYlPHujvL2MxG1UtRUGarKB3Ljn1L0yXHkDqVEUoApH+4Brye5tGOhAFs6m4SPhOzoMn0CD3J1dJ/sjIjcq7AgWfF2wj5vmeWmcQ+M5RLQI0dx021oaG7XPpWkeB5RztqeDcoqccV4n3QONbUveIHbqegNmTUzf6uW9oiqp/L3Zm2jCA/pTHvC/uQHsmoYV3V9nUn3kKkCzJ+EFXHjU83hjZwTLTWQ8rE3oVwceYza2/vFOJ4ycDG25ky0tPF2kdiypHx+2T4u7N9+jGLpdNaqONahPdAGe+TW+969OTI6Mmxu2iId+hlSo+ewmOnMrI5cchHDxD9uGxTkxjDAdpX7yafkV8RJ+aZAAHPxRNByWbsgI/PRiZhZJnXBiGwf/3F33hNnBhMrzGbaNnvngGvCBVTvmaoGBEGe3pwP26O8bGuEO/aBZP6vjeDxJwf8Ncf+fT4Huh8Mvqi6fxByfMLfcPVakERPboHiJX86jAx7xEl5vMRrAndBWYMU7puJb8DwcoZk48MvMiZw8+MEzNfI/+MECp3jvok4ALhlN8DgtAvnaUFrL9/JoTnosQIY69Fn3lIgp7+U6LEfMbW+fM7lje2TDqknY/+thAxX8R+JlHDUqJp+0/tzfbnpO3HzzlMejj1zy/FRQlfhwEmLlgxCIffE4IS34mCxzAc0VMLpurupTAg6SthYJTNhCXvBcMpvhcGJgbHDDgV5mJ6AUN5Lv6HpAuNt8f/eCPWL7uNUqOV30YY0fMxv42WudeOlUufZKtClHxso6wBwrCYIMTKb/OsbGJbDIRhGueWzspw85xs81kLhGUaQQQrx42WuWHgpW9K6UKUvBgIw2KCSFaOGy1zd5UJ0CY+Sl4MhGExQYiV40bLFxAmn8VAGBYTRLNy3CiZab8i1pThykfLi4EwLMYKitGaH3PcKDlzVhFr32zUfJS8FAjTYoJIVo4bJWuLn+GzGAjDYoIoVo4bJeeK322thwzXfJS8GAjDYoKoVo4bJZfQz7PKFY9SF8Ng2AsM/dLpQ4YbJetlsipEy2uBsCwmiGhluFEyj2IkxR4DRxWi5cVAGBYTRLYy3CjZM7qga74fa6pSLvpiKAybiUKsdC1K5llZ5qn4lZCWFwNhWAwQwVnpbJTMXZ9SfOiX11UpF30tFJbNRBGsPDdK9t4zw0oPCHQhdMqLgTAsJoi0ieTk5zpxyD46G5DWF0Nh2EwUwuwivs114pA9/TaOWZVCpPXFUBg2E0Vj+PxW51pxyN2J5Jhpa0Rh1am2ZTNQRI9PBpkCHSjZx3IuvDUira+FwrKZKOLWWs05TSgOma5CybnUvZw0Iq0vhsKwmSiwlHApxrlWHDL9iKKPqbuTXBApfTEUhs1EgUfyzoe5Vhzy5VhGI9L6YigMm8d5f5tzLn3Q8oTCRrQWCstmoqBnqC9tqhWnfIn5oRGZsUDWQGHYTBSZOfSSzLXikK+DqUK07mBq2UwUWFLEGMpcKw7Z53xOuxUhJS8GwrAYIDJWFLG5q//GqdIX9zjQ13i0vhYIw2JyYA1PNc4gDvm6/DgBrbv6sEwmiUQ/2HmP/1A9TD82MhUeJS+G4dFeUsBKIpf00DAO+eLqovBoeTEQhskkgYVECX4aNA7VO7fFjPl1m/hofTEQjxaDQ8EqotBl/grilJke9dzSPQFpeS0QlskkgUWExCn4w6nWejrLqCK0vBiGR3tJod+dmR3TlVyLSaesOl5YBpND3XLNcQp4oORrD3GWsnAPYdkMFOK22rz3U8s4Zd4ZOra1z0K0vBYIy2KC4A0ufnYCcciXk46zkHVPOiyLCSIz83apc404ZPztnEWchWh5MRCGxQSBpQPvKc014pAvjgJnIes6ClgW8xaCY/L4kKcaccqYSBcv0u/aaT5KXguEZfG4jpGCc2mqEUpWfmS6kFXdy0yLCSI95ir8cJEvIEw+i4EwLCYIsdIMKvniVXUWsq5XlWUxQTQrDaOStWeh5rOqw6FpMUA0b2Vn1LLyPtaFrOqUbFpMENHKzqhldUNBF7LqxQXTYoIoVnZGLesaoQpZt0YYFhNEtbIzavlSI85C3rFGvGdEEH3bJm7FpVDi/coOuvbcL6+3GvHfbdzEYMyJUcUTI4Z0n2N0Aa5gutTDyAVGkbhf56guMO0MODjXenwDaYxq4Dx7X2FGttwDGQhYOY+ShXMu/m2/8sDUIsljAsaIFyH3eL8Va1jHKBCVoQkYYaL2mbzzW4iu+XTLmXE6Rlw/PMMW8S5uPZ9zdWkUEbecahiTXXRiMY8iML650iQwfCgqz4izDIM20Ci53rilUKH3xaQTMIul9jALeL/ZDxldIkOa9Ki0QWKS/hw+4PEqughG7Q0t7P6YHo8l0XMvCwb4VMr4eHBbCzXjH54fCW531gtA71KJTLHR+JHaoydU3sAPgQE8mBccv+rr8ElgBAjnuF3MKoaHGQvA6HrAD54rpL5ZJj0sBQ/uWyyuxR7GgglexrZzRAVhanDuRqM6YxHdE8fViH/EgAlzz5hdREZQZrzZreFdtJH0weNLefyubD67fr2ubajhQe4nxhhFGb+COkqX0Yhiw+NjvoWfLZyOMobMfmZYehPvn0dVbHEcoHm8idT6sSrfQ6sDc7c9Ft+fJmbB2+xy2rwLoZV+Cgt67jifC4DA5ofKFFFN/TiNKRuqI1sybwdGNDR/P6XJrM2pU2PQizYek2FYGXvV42+pyf4wsJCRF0vPDZIxs0zdWHzV5cQoxnxXrsTo9x1/gUUMXBLRTkoWN3RegG49MAq7jIKC+o/mvsmBaslo4c253GPJVPCLAMYAJY49TCu97VX6Qxff6NaFGpg9jA379hmWPrz6iNYJS0ZydW4meS+R+YDQRgpey33DBV0d3w6WDaGGHl+Hq2u0J/TCdLJtLbk45Mr4I5m+6o2dQ9w/jZedQhgJ2ErpkTnGOgQ1uLkepKcEcT3+S2VQgdxGgBKHB+2RpzhXb+g2R7xXx4xd95mrEzqv9ahAgDNqI3q6ikra+lov4S3X8Yt4bTDS9RCqvjKOyH2M51RvBBRFHYxjxEt4h+DWL2a51O69fw0hu55wkoGPxuLyMlYkRq9+QX5FuJBnboo/F1kCJT9eIv9oR6dgaJFX3UO3f/T50l8TIoSXv1pGS9odBl4RIqRaIUJU0XhFm6QefCKwIVzLTI8RAb7/7oefbn/4/sef/vr9//7bT9//+YfLtd2n/we143WVCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTA5NDIKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDI0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUluxDAMu/sV/MAAlqzFeU+KQQ/t/68lHRTtwRAjS1zi7sREFl62UNdCh+PDRl4Jm4Hvg9ac+Bqx4j/aRqSVP1RbIBMxUSR0UTca90g3vArRfqSCV6r3WPMRdyvNWzp2sb/3wbTmkSqrQjzk2BzZSFrXRNHxPbTec0N0yiCBPjchB0Rpjl6FpL/2w3VtNLu1NrMnqoNHpoTySbMamtMpZshsqMdtKlYyCjeqjIr7VEZaD/I2zjKAk+OEMlpPdqwmovzUJ5eQFxNxwi47OxZiEwsbh7QflT6x/Hzrzfibaa2lkHFBIjTFpd9nvMfneP8AlU9cJgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyNDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFNcgUhCIT3nqIv8KrkVz3PpFJZTO6/Dc28JCtaheYD0wITR/ASQ+yJlRMfMnwv6DJ8tzI78DrZmXBPuG5cw2XDM2Fb4DsqyzteQ3e2Uj+doarvGjneLlI1dGVkn3qhmgvMkIiuEVl0K5d1QNOU7lLhGmxbghT1SqwnnaA06BHK8HeUa3x1E0+vseRUzSFaza0TGoqwbHhB1MkkEbUNiyeWcyFR+aobqzouYJMl4vSA3KCVZnx6UkkRMIN8rMlozAI20JO7ZxfGmkseRY5XNJiwO0k18ID34ra+9zZxj/MX+IV33/8rDn3XAj5/AEv+XQYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDg5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw2AMAxEe0/hEeK/2QchCti/xUlwY9/dk15S4kDlOhGOpoEnQfWZXiDZ6QFWReJRScz/Tb2pRVPPpu2rTQQnM471dRyomtN60FoobZMW3nB9AJwd7QplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2Ci9laWdodCA2NyAvQyA3MSAvRyA5NyAvYSAvYiAxMDAgL2QgL2UgMTAzIC9nIC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAxMTQgL3IKL3MgL3QgL3UgMTE5IC93IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQyAxNyAwIFIgL0cgMTggMCBSIC9hIDE5IDAgUiAvYiAyMCAwIFIgL2QgMjEgMCBSIC9lIDIyIDAgUgovZWlnaHQgMjMgMCBSIC9maXZlIDI0IDAgUiAvZm91ciAyNSAwIFIgL2cgMjYgMCBSIC9oIDI3IDAgUiAvaSAyOCAwIFIKL2wgMjkgMCBSIC9tIDMwIDAgUiAvbiAzMiAwIFIgL28gMzMgMCBSIC9vbmUgMzQgMCBSIC9wZXJpb2QgMzUgMCBSCi9yIDM2IDAgUiAvcyAzNyAwIFIgL3NpeCAzOCAwIFIgL3NwYWNlIDM5IDAgUiAvdCA0MCAwIFIgL3RocmVlIDQxIDAgUgovdHdvIDQyIDAgUiAvdSA0MyAwIFIgL3cgNDQgMCBSIC95IDQ1IDAgUiAvemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMC41ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMxIDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNDcgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuOS4yLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuOS4yKSAvQ3JlYXRpb25EYXRlIChEOjIwMjUwNDA4MTA0OTM0WikKPj4KZW5kb2JqCnhyZWYKMCA0OAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyMTg0MyAwMDAwMCBuIAowMDAwMDIxNTgwIDAwMDAwIG4gCjAwMDAwMjE2MTIgMDAwMDAgbiAKMDAwMDAyMTc1MiAwMDAwMCBuIAowMDAwMDIxNzczIDAwMDAwIG4gCjAwMDAwMjE3OTQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQxIDAwMDAwIG4gCjAwMDAwMTEzODAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDExMzU4IDAwMDAwIG4gCjAwMDAwMjAxODMgMDAwMDAgbiAKMDAwMDAxOTk3NiAwMDAwMCBuIAowMDAwMDE5NTA1IDAwMDAwIG4gCjAwMDAwMjEyMzYgMDAwMDAgbiAKMDAwMDAxMTQwMCAwMDAwMCBuIAowMDAwMDExNzA4IDAwMDAwIG4gCjAwMDAwMTIwMjggMDAwMDAgbiAKMDAwMDAxMjQwOCAwMDAwMCBuIAowMDAwMDEyNzI1IDAwMDAwIG4gCjAwMDAwMTMwMjkgMDAwMDAgbiAKMDAwMDAxMzM1MSAwMDAwMCBuIAowMDAwMDEzODE5IDAwMDAwIG4gCjAwMDAwMTQxNDEgMDAwMDAgbiAKMDAwMDAxNDMwNyAwMDAwMCBuIAowMDAwMDE0NzIxIDAwMDAwIG4gCjAwMDAwMTQ5NTggMDAwMDAgbiAKMDAwMDAxNTEwMiAwMDAwMCBuIAowMDAwMDE1MjIxIDAwMDAwIG4gCjAwMDAwMTU1NTIgMDAwMDAgbiAKMDAwMDAxNTcyNCAwMDAwMCBuIAowMDAwMDE1OTYwIDAwMDAwIG4gCjAwMDAwMTYyNTEgMDAwMDAgbiAKMDAwMDAxNjQwNiAwMDAwMCBuIAowMDAwMDE2NTI5IDAwMDAwIG4gCjAwMDAwMTY3NjIgMDAwMDAgbiAKMDAwMDAxNzE2OSAwMDAwMCBuIAowMDAwMDE3NTYyIDAwMDAwIG4gCjAwMDAwMTc2NTIgMDAwMDAgbiAKMDAwMDAxNzg1OCAwMDAwMCBuIAowMDAwMDE4MjcxIDAwMDAwIG4gCjAwMDAwMTg1OTUgMDAwMDAgbiAKMDAwMDAxODg0MiAwMDAwMCBuIAowMDAwMDE5MDAzIDAwMDAwIG4gCjAwMDAwMTkyMTcgMDAwMDAgbiAKMDAwMDAyMTkwMyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ4IC9Sb290IDEgMCBSIC9JbmZvIDQ3IDAgUiA+PgpzdGFydHhyZWYKMjIwNTQKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:33.868905\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["layers.0.weight - Variance: 2.5025436116266064e-05\n", "layers.2.weight - Variance: 3.932134495698847e-05\n", "layers.4.weight - Variance: 4.471026113606058e-05\n", "layers.6.weight - Variance: 5.619897638098337e-05\n", "layers.8.weight - Variance: 0.00048347172560170293\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdT5MkuZHd7/Up8rh7YAz+O3AkRWnM1nThckw6yHQYzc6uhtY9a+SQXNtvr/eAyAgPpFezq7q6KLCtjV1vspDhv0BEAAHH829+++Nff/rhx3/+9je3//L7p2/On3745cnf/oC//3Zztz/g73/c/O1b/P23J3f7lbt9fKotbS5k/vDh+CH4tsWSC/75AR+8/Ph/n57+9embX6OJX25ua15KEpdrffghNedbcVJvf+K3f3v5wNOnPv30lNpW8W0pbG1878cnfHorKfoalPxBy776Ld/1vYWL1g/9j7eHxn0oW/X7H7QT61Zuf/rx9j9vP9+++XVgpP72T/j7B/ztBCfGJWw5hhTK5YhP9XIUT79/+t3tj/eG3eYzzs697f7jt7v69EecuX6e/C2nLYXosstR4i3kzTs298PHp9989/TNf/M372/f/etT24Iv0kqVjN/87l+e/tftH/I/3v737bt/evqv3yF4tznPRp361w8fb2jhV7/98Q/f/4+//P77n3/51ceffv7LL7ff/vvtd0+/60f79sy8q1uUVJ1cT/MpvwE179JWe2spJv88NnfAciesrxY5zmXw4mu7Rn7KbxF5dpv01mJ07XMizzpy1VJBn6pVpCbX/K1totsI1zZ+/Y83X7YWxNXI/93+4Yc///TX7//807//fPvr9x9++fpwP//O8TquIfT2cVxSc4vyyb60vUNv2lsU2XwBdX8N+JS/MGDBEVfvUyzFfzpm/24xe++3mIuLcg1a6V8YtXfgJyWmVkP8ZNTh/aJOecvZhxSnqE/9S6NO4Cc+59xq+vTJju8XtuDWk0qaruhT/tKgBfhKkRJ8Kp+MOV1vlGzjV2wNd76IhmrbUo7+eq+d7pO//fHnX376839+Ibw4wgytutiCz4JRVRpDqhDx/N/KfVCV+hhsCyXEGlLKO+nLL9/0Lz9Nv/z0lIEH48MSL/fWLFttOaR6ubVeVd4oA9VLC3cVg7Lf/P8fvBEmBnhowXkX4yX4q9pwGbUHJHd1ieCtMMfo1hUc3DX4U42bc+LDlcgprhG6ESRCx6ASB+mm836qiDJVPidnIHd1jeCNMBE8noi+xjqd91ONmw8+xJnIXVwjdCNIhI47e0he0jX0U40YwKfc0gzkUNcI3gjz45P4TUJruV2CV2rEmCHHWmYkh7pE8FaYCD5tLmZJ1zOv1LgVqdXLjORQ1wjeCBPBY1yTfA7TmT/VhDEV/p2uSJS6RvBGmAgeB5Qk+unMn2reQo4ulCsSpa4RvBHmx6fqtoYw2vXMK7VsOZTY5IpEqUsEb4WJ4HHfxm/U65lXat2iy6nKFYlS1wjeCBPBczKUSpnO/KFmj3mxD8FfkGh1jeCNMBE8xuriUs7X4A81J4zgm/flikSpawRvhPnxqTm+8QjXXn+IxW+uxtAuPJS4ROBGiIg7bKkGF64n/VQ5pnE49HjBocQ1QjeiROxpkyrVX0O/i9XjsRZ9SBceWl0j9McgEblsrsXcprN+qA2P9CYtX4BocY3QjSgRe0MYLV4ncofofdxawBluFyAXeY3gH8PkMhNG6S77cj3xSvYxbJ4dXC5UtLpE+GakBICRundtjv+u9vWj5LKUCYvWFwHwGCnjx0Xsi8QyAThkRLvFisFcuILR8iIAjFDHSmsJIQc/EThkL7zWY5i4nOoi4RtxInyPMXvAiZw6wCkz0ILx7H4JXLAc+hoIrFiJACP32Jd1rwgOmZ29hub7iF6j0foiCIxYiQDj99iqzL3gkD1mdC2XOIE51UXCN+Jk+BjEp1zK3AMO2Ye2FSkc9lyxaH0RBEasQBC4JOhTmnrAKbPfSw65TGSUvAYAK1ICwJg+S4hTHzhlDPpbCFImLlpeBIARKQFgYF+i8zIBOGSpnOAyM+fCRcuLADAiJQAM70utbkqtO+XCf0UJ9cpFy4sAMCIlgMaks1znHnDIufLR53O6ctHyIgCMSAEg+q2gCZl6wCnniHbx6PcTFyWvAcCKlAAwqOXi7NQDlIygXMMI+MpFy4sAMCIlgII2fEtzDzhl2VLwvr/m040oeREARqQEULfcRMLcA045818t+4mLkhcBYEQKAAnDexezn3qAkhN6fXalTFyUvAYAK1ICwPDeNTQzATjluNWWnPiJi5IXAWBESgDoyj5jTDMBOGXMfF1EQw9cDnkRAEakBIDRfXC1zD3glBGzlBrLA5dDXgSAESlz0DG6D6XkqQcomSc9hfCIZVfXCN+Kk+FjbB9Dmt6Jazkyraf0zOIrlUNeBIAR6diDIGg0zOf/lOPmcM9z9YHLIS8CwIiUADC2T8m5uQeccuQWqSDpkctdXgSAESkBYGyfMJ6Ze8BFvuevTo0sldZqRgoABWP7nLNcUx8mufJyf+Ryl9cAYEVKABjbFwxw0wTgIktMzuBylxcBYERKABjbF/Fp7gFXuQZfH7nc5UUAGJESAMb2Elqce8BVPgCYXBYBYETK/SVuq1LFTz1gkg8AJpfXArhuidny7T+eno3oiuOfv71dt87MWy4ik3Q+PuGEOe5qkpGXjdt3GXmrIXoJPZs1YTDb32xLwidqij2bla97K2OTvNVSEkd+CZ8NTPiEynshHoKFKYD4/75IXpkc5DKzjAT/OYd+g6wBX9ZC8kyYyzx/bWSSjSklRlYZV1RPMqh5EyZVtlvmI6bwmypn36lg9o0nsMdjuA89KzhiDOLTDXdlQZfMfCtT8W/B1ATXKdqsXWvg6irO2Q2nNPrsSxjJLaVI8vnG+GoofYNKQ4QuJ0SIb0VnHxPdVjYJofpy4+J4bc2FkSfgkvNgxPfkEVOiNhYPmQmcWuS+zMKEMel5M317Kj7l5cbbSG6tI/MuI9AQXYQMpphalbovwmbxhWsSwi1aYDmWbAXDEIezC508Wh4dk3tp+XIqdx13KQm7XCu6Td3lY+W39fPOtY1+2p139yVRnGKXcJQS0HViS0NHj3EFXYMXRky4DmSXpWZ0Nhy9cPdDyUPH6QNGnFQ+NTOeGv2ke8/3B7iAcTjoN5Lu0LjrHHHiJPCI2YWGDrJJMi7EW8MJzyG7+3oFHsOIBL3ICefj+8tqbsbC40k4R8sxjnfYGd+JzpT5Drui6X76+oWZANX33uJi37GA/s9dKxHXC467pBbK/hKUvQEfwSlNuB7beF/E1wKJ6QHoriJReuI/80YcIOLbmUAhzd9fo1U0XYSXQYkx5vF6EWclA3LkNYMznur9VVSKOXvPd07oO9H1pnFpp+ba/iICBzBe0OBXcc5a61cuLrY2gOCoYmySxpBVyrj4cQFs6LZZ7k/3Wpp1x0OveV6+7r8LvIXhNrDflf/mNl1rxz5aNHfvfnx23z9+40VbgB+/9ZNtOwT1uRsLcTuqGSeGf3BJVbm39Py+wP/+/X/++Cf8pDcGvsJrYTg9vNBzAbdr3FIe8kEj77AVc9vr+qiSL4xUK/7Be4G94/gA/7z2qfhk9amAq0JwBU02DEqez+ZrdoviQo6ScYf1zH54kRFD2N7CiuErAmwYaLhap10ASn4LgGiCd0uf3CedLD65jf7rMYixP43itEKo5DdggKfUhkdV5OWHgcBnMLh0nYs9Q8Azs2LYhaEdWLyxP8NX7Gsvutu8sqs5p4/+tZ4N7wIBY3IMMPDkvjA41DdCwKc8puoSMJ79tJ/Bg4vDu1DgWB2jvzZ1hVN+Iw7ctREdRl64EX16s/+Dr8O7cGCmmate4pXDKb8RBw6sMXNxKRRODV/k9PA+ICLH1pFJRlcSp/5WKPBgxzzWCUbjmCZ9tgHE+6HIfahaJxB39a0wZMyMUsHgRsLfMHrJz/lgtDh2Bu3X2uv9MF7Jla+QPvedyd9+hfTJ908YNmMOhwlbm3Kq8Fn8mpMpp2qSMWGtocuXRu7y8QppDRBGxAQh3aBlMgyY5BZ9bI987vJiIIyIOQ/B2IIvxa4rK1qOfLkiMvNR8logrIgJAlOoXPFrE4hTRsTFN4vPXV4MhBExQWBSUWJNc484ZXpHYLaQHvgc8mIgjIgJApOSgrnQ3CNOma+wYs+0nfDs6mIYjHiJofEVZfJzfzhlJtpkTtxmOoe8GAgjYoDImGJX76dMLC2nvgO3L1HoRpS8FggrYoLAUKqWNmVkaTljRpBCT8HWjSh5MRBGxARRNtz5ZTIk0DImBIXrCBMfJS8GwoiYIOqWWs05TSBOWfj+Pox7hGpEyYuBMCIGiOK26lKMU484ZS4iSow9KUs1ouW1QFgREwSTz5yfLBuUnOnDxSXMiY+SFwNhREwQmDt4rrhMIA6Zy8JSat+zpvkoeTEQRsQEgblD8KXNPeKQC4YOdFme+Gh5MRBGxAAhmDsESVMul5Il820407cufLS8FggrYoLgqm8MU06XkmvG99bWEzhVI1peDIQRMUFg8hCbyxOHu9rqxoW9nk6imtDyYhge4yWFwlSMGmcMh8wkDp+j6/ZtZyMXeTEQRsgkgblDdmV6S3eozB+pqQYJEx+tLwbiMWJw4KJmLmm+ME7Zx4bJRfA9B0cB0vJaIKyQSQJzhxKm1L9TZQJNDm6MIRQeJS+G4TFeUmCumzSZ+8Mh+5I2yVLHE+PEo+XFQBghkwRmDhIng4hTZSaeD/2fVz5aXwzEY8QjCwQjIuYYXECc8iWZUANS8logrJBJgquwOU6GCUpmyDUhAP9I6NAXQ2HETBR5i83T9PCK4pCZAloD82UmRFpfDIURM1EIPsnPTigOmam/DQ/N7gesEWl9MRRGzB+fosP8wWHeMKUMnjJzVourMoZVCpHWl0JhxkwUmEO4msRPKA6ZecTOtepnRFpfDIURM1FgFoETnOdeccjMEBd0hD6W1Ii0vhgKI2aiYBKec2nuFYfs0RGg1/66ViPS+mIojJiJAjOJgBnE3CsOGQMJQex9L4ZqRMuLgTAiBghMrXP0ZbJfULIIvnc3GFaNaHktEFbEBIG5RBT6h19BHHLhLpsQuwWhakTLi4EwIiaI0r1G69wjDpmbVHIMfZeK5qPkxUAYERME5hKptjL3iEPONCPZswFVI1peDIQRMUAEWs4lyVOPOOUctxJT7Ft9NB8lrwXCipggmArEWpgTiEPOfgvJ9dmFxnOqi2Ew4iUGTCJKwaU+YTjlymIkGFBf6Wh5MRBGxASBKYQE7+b+cMqyodGRVqkbUfJiIIyICaJxC22d7Bu0nOnXxQ2RVz5KXgyEETE37IQt1FjkmkKk5bTxjtg9XHUjSl4LhBXx2Ln0ULjvw0Xu9lUhpomPkhcDYURMEMWqVajliGug9E3JVzx3dTEMRrzE0KyqhVqOzBkqfQv5lc4hLwbCiBggkrcqGGqZG6RzGc+MC59DXguEFTFBRKueoZZVBvrEZ8nEdDNigihWbUMts35lqeMF1ZXPXV4MhBExQVSr0uEkS8jdgGBq5C5/KQi9O+qp+6DcPhPLow/KvL8mcOzHhGvOB3L3MeBFLaGOzGoMi3xNrTsqZFdHQMwzbjHX0ovbYRxdjqzbInEfOyCumOueg5o87pjdITRVCXtqauFrzW6+InSTLyN9U7ZUmJ7JoTlghnLPWizoYczvYhX27PKQ24Y4uR8yu62xkO5I7QsbrsvkaUgRot+TNwq6aXL01EBrldk8XWW1qip8ieBZzqGNVYlSuEGUxi4lb+KiT0NuiDexzpEUuqi0tKcJCeLzgZYbaCt1E9ggnssZtVVu/aosFdOXwXopcuZg3ujsgQMSd08lSDyHcut2GJKjH0vKdDIRz1WBwnpLjn4o1DOzvaVKr0KA3ui75xj1mrMfriMJD+99iV54k+pGLXQpwVV7X56U7GtflGM5h1zKWMBt+IzvDi6CkSC6TGq73jzO+b64J7W2++IeptgVl8TQ/Xj/FBo6Rap5LH+GFtrY1dMwvELEdHbh17Z7Lj/06iR0ZxcmEuQdWqO5VG50dinoC07iOMyWadzDh3H3n+IFNPTC4RuNQTzOdsTQPsR9iYXOK0xfwIE18tuXG2Ks0tM7cDgB18h44ey31CTStgLXaMkp7csT3HCRE0us07nGxTF6dqw8jrDo1BIwSsipu+HyJWVx1ePKYIE8GSc20je/lDqy74QOinV/kddCzrge0IEwF8k9oti3vKZAS5aKi5U7wrqM3hSBpr/kqXQ/Sfsrj8pcTlwDIFRzaHF/A8BjHW9CYsZjfMwDcS8ArNptnHk5eNmnh7yHjVzqCtb7HKpsrP3QVYertXue4Nc3lh/na+208QZS9mG0IPCxJcElfHPbR1OB+699L4ya/d5Ew0WX+tIRb1M4H3V/vmBGku6Pl3G5PNyDR921Z+QXOLI8syH/OT8PtGzu1f/4rDMIfuPFm/7tb//kd7zEoYW3u7Q/mHgn+HyLlvB3sWjBseK/P+T74q60yWMdFyVfIKlWvGnRcn7AXb/qi7czJ1xxdFKa7OeVPJ/OV+xoTixRVpLDY4bD9ZdZtLyBQctXxIdnAy7tMm2xVfJb4CtcWmJrGMK0zzJomfdtfz0CObCgdJynMEp+AwJ4+OIpgtak4ObwWfYsz5iz4JaM4xpd7G2dWb5iJ3vRTeaVBjgYDKqjf60zy7tAwIgXAwMMR68QTvmNIOAiLvwRd3v5tDfLgyfJu3Do9Y6ksOTBBYTS34hE9znsJjWFj+UXWXG8D4pe8gATMz+hOPW3QpEcJqCYTWBqiJvbp1CUvw8KqRvn4LlNKE79rVBwPoa5uHgO9z+Joj7jTBI5szhb/AJnkleyfdeXO4m+nfWh1E2iD+djqZtJljDKOk2N3OXT3HYJEEbEBIF53mPJm2dlE9tiIIzQCEKs0jfPyiafxUAYoRFEs0rgPCubfBYDYYQ2JmRGKZxJbrRwfORzl9cCYUVMEMkqiaNlVr5w/V2VbuNUF8NgxEsMxSqMo2U6ifva3cGvdA55MRBGxATRrAI5WmYpHEwM4gOfQ14MhBExQGCoZ5TK0TJd5EPtjuZXPoe8FggrYoKIVskcLeNfkmN3a7ryOeTFQBgRE0SxSudoGbcFcSPrTDei5MVAGBETRLVK6GiZ6x60wp/4KHkxEEbEAIHJq1FKR8uC+Vhw0U98lLwWCCtiguAPDyV1lJwdzUdTX61SjWh5MRBGxASRrdI6Ss5pc37Uk9V4TnUxDEa8xCBWgR0lZxaXkFHgQdNR8mIgjIgJolmFdpTc0xBaX/pUbSh1MQxGvMCQWX0jMc3kguGUJeHeWHzPClGNaHktEFbEBJFYyyTUqT+ccmWSRZM08dHyYiCMiAmicMujk7lHHHIrWw4+9p2yqhEtLwbCiJggcMtzftpKfKosWlSKHykTqo2LvhiIx4jBoWDi4KRM9gtKpiUNWi19I6ACpOW1QFghkwRmDj1R6QrirtIantmIY5qh+Gh9MRCPEZMDy7jx9ycQh8wCtTn1ZZoLIC0vBsIImSSY6jZjGBrrU4YWcq+ZoNlofTEIc7TMAMHHIj4yQThlFpLLeD729LQTjhLXgmAFPDJhWizz0tahXrxoNB3To2YNEI8RkwOmDAm/MPeHQ+7ZqvyOBz53dTEMRsDkgClDuha0+qBUmjRJqq4npl7oKH0xEI8RkwOmDDm2yWVBySwAyBJSPbNbAdLyYiCMkEGisgRSE39NY1Jyz5BGm+InQlpfC4UVM1GwdmtObeoUp9zN/Zwb2ws0Iq0vhsKImSgwcWA219wrDpkVQ9Ox4KkQaX0xFEbMRNG4E4ZFRK8oDplVqHJ9AHSqi2Ew4mU1Ur+hzZqnHnHKreHOKK57ualGtLwWCCtigoi47T0k5ysZfQBNtXrFo9TFMBjxEgNrMqcU5v5wyMKtNznkiY6WFwNhREwQLCrtwmS1oOThIl575p9qRMuLgTAi/viEByCrrrR2zQpScm5bihL6hiXViJaXAmFGTBD4wXsRmUAcck6IHUdfJz5KXgyEETFBYALhJZe5RxxydhvrWAY/8VHyYiCMiAkC84cQY5p7xCkLN161vUecjSh5MRBGxATB6ozM3p5AnHLeSmihOzPpRpS8GAgjYoDw4bFK4oeLzL3TuC/IxEfJa4GwIiYI7ip+qAupZZUXpBtZNV3IjJggilUXUstxiym4vlP5yueQFwNhREwQzaoLqeWIiXff/H6ls4uLQTCi5QY+b9WE1HLkPmrpBghXNoe8Fggr4rGT0agJOcm1tO7LNDVylxcDYURMEJg5PNaEnOT7m5epkbd6IfOWHiTzThovpfaMYvpL5ebvSePD0jaFSrO+UsKoctlcN35IkbsEc3LdK6DmPNa9I03LurUFnpcR0+/ub4CfN7TmQ/cmqC2E7u6Ay2UDBGaVJUxOvWt9phbbVmiS2EdhJbYzGa06PIIrnUkYXx25WR4EU209da04xDw+je8pvrDWVt4w23P9OPA1mPkE+pVU7qSuPuz5PJJrDIl16ZsL8Z77k1qJOdLwoXiJow1aNyJCnCOhc3ppZc8AaRKS97QgCTgzaeQBYERZG4+pJdoEt5Gfn4V1jfjtHv0h55rHx5lO5KVxAYSHXWQ4u3C5sEopXDMtDnMV1n7pOguGxW5ZwlJJUeJ4Q4ofWgyOn5fA+jDNDx1dx6Nrle76UTG82RccAsb9TsLY3BZbdGPRGh8KqdFzg3rxMQ+5b4Drjihcp+Fk2u86HUjS8CDJhUT29YxcSndKodmIYPo53vrTILX4cZQgMWbqIoyw7p79RRIOuL/achvLeTCnIuOZ42IcKd01IKjarUzYFeO9L9Y+42+F70y55Az44/M42zHQgoTPcuf8yOFpjiNdWpC0bhCDL+5y4HkQ3M7678U+N+LbhFAQaM98SsXVcYj4TcSWMCTgkQcEPZpuW/Q0nCksIZxbt1rh/BOf5Jonffdx3N2ag7Ox4AvtR2jcg6t7n6RxYzn9WOgdCj6+jAE8OEecMKFzSEZ/6WU+ssP1JLgFFF5DaKuluo/rU3Q0K2E5ytZ9BilziySOas/8xRNtjPkc3yDSrCT11bji6j4UROgSu1dRkzY23HJghLuh991SBD2t5WMYRcb97oFLuScV5+6EmrtZCe41AQeaHu+pONl9AfAZ+QWeIs9sJX/OgAItm7vMPz5rZYHfePF2dfvbP/kdL/EUSTw7L/ISSX8XL5GM6zc9ZugKjcUfy7wo+QJHteJNL5HjA/yTXvXgfc4KAncOuktN6xdKnk/ja6wgcPg0JnG8wsP7e4l8PXyF3kb+oSCakt8AX+FwhK3hEYvb3Gu8RL4eAcGNQOrDfEzJb0BAHO6OvTWaqX2Jl0hx3SDLY+5LP6S3tRP5ipfpi+4zr7xKMWpTR/9aO5F3gYBBWcHoC2OiC4RTfiMItDqIGAI1jmZfZifyLhw8Rj+hREntCkLpb0SCY31XMWWiH1x6mZ3I+6BIfFQHzkuuKE79rVDEwseZD8mF+umr48FO5H1QYKKScaIkTShO/a1QYBKH2aSvmNsmeZWdSOaM+GzxC+xEXsn2fd/T1GrVreF4y6hbo2XaBHupY7x4NqLk4z3NEiCsiAkiWHVrJpnT9zDxUfJiIIyICSJbdWu0zJe2IXefXN2IkhcDYURMEHRdfahbo+XYfQ/7RteJz11eDIQRMUE0q26Nli8gTD6LgTAixuzKBatujZYjZpK++gc8d3UpDGa8xJCsujVa5vvKmPoOzyudQ14MhBExQRSrbo2W6YKNQcbMR8mLgTAiJohq1a3RMmfOicsCVz5KXgyEETFAeG/VrdEyYvchxDjxUfJaIKyICSJadWu0zDdV+N448VHyYiCMiAkiW3VrlMz9fNkPB3jViJYXA2FETBDVqlyj5By3nnxcJz5KXgyEETFABGdVrlEyd//GUvsucM1HyWuBsCImiGBVrlFy4VpxG8UUVCNaXgyEETFBZKtyjZKl2y2VnlugGtHyYiCMiAlCrMo1Sq5xQ8CuL8yqRrS8GAgjYoJoLPHYcptAHHKLvdR4DFc+Wl4MhBExQETMHmKWNPWIU/bMP46Je/wugC76WiismImCdjE+h6lPnLJn/ZRWh6GMRqT1xVAYMRNFYbZT9HOvOGQWxGnR9Tm3JqTkxUAYERMEZhA5MgfsCuKQPdPBkgv9/aQGpPXFUBgxc+mbiSy11qlPnLJnxpALzc2ItL4WCitmouBySypl6hWnzHJUaNX3vCKNSOuLoTBiJgrMI+aaRR+0TLOAUPfCVBqR1hdDYcRMFHXzUsJ8fdzVnsTosuuLdBdASl8MxGPE4ICZdaqB2ZQXEKfc8zNZgq49ADrktUBYIZME65zJtG3+VLnIWoUJlBMfrS8G4jFicsibazG3uUccMv2GXPK1hgmQkhcDYYRMEsKp9WQLfarMIY6pDjsyzUfri4F4jJgcGm3XmC58BXHIHjrGUMG3KyAtLwbCCBkkSqB563xpHKrHjIuJT3uPOPlofS0QRsTkwFzIIpORgpK9Z8GbOMqoKkBaXgyEETJJYBIRQp68FJTMlK2K+2Lf36YJaX0xFEbMRIFJRKjRzZ3ikLkRQjybuRDS8mIgjIgBQvr+njlfX8kVT0rcF0K48tHyWiCsiAkCE4jYqkw94pR7ZidrSVz5aHkxEEbEBIEJRMqlzD3ikHlfaPvGONWIlhcDYURMEJg/ZJ/S3CMOOdct+Shu4qPlxUAYEQNExa9lCXHqEafMQSSm3uMeofgoeS0QVsQEgflDiW5yU1ByZmHvLGMmrvgoeTEQRsQEgQlEqXVyU9By3YIPaWRLqEaUvBgII2KCYKHslOvcI06ZW32DH+MI1YiSFwNhREwQ7bHo4YeL3K1e635pnI0oeTEQRsQA0bxVr1DLLJOdZcZzqmthsOIlhrQZ1Qq1jIGDb91X5Qrnri6GwYiXGIpVq1DLcRvbn2c4d3UxDEa8xFCtSo5ajjTcGSbxE527vBgII2JurfFWgUctq+0ZVz5r7towIyaIaBV41DJ3ymOq7R/53OUvBfGWNiPTNh1cxNHvKfjM+al9442X4McD0NFgyu0GO6mH3OW8FVe8L3wucoCQRropHpcp0bmB1gQ5uNJH2q5trvYWuegTqhvvNH2gx0aIfRTmayy57RmK4ks3PKFXak5e9ny9lFNLQqcFHK4byWtMawXNntyHsasfSypeNuGItvuMJLRW90y3Fj2i6T4jzpdwz/vC6N/F7jMi3rdu+s8sKDpKlW40Emmb0ZtmvQz0MZAWQV/PsdwziPii3gmdTVNoZcy/Q8WBNMRGpxFEHkcWZnToPlL5GpM9yWHI3b8zZsxJAv1RfPSb9+hCbV9Wr5iy3t//NuAJ+xqzS432Ih4MU0NwIyGhcQGBac9ce+ZXDVzcMZgK+k1fWYiphJHKkbrRh/Sll8wX7flYrQwl0j+FC7cJxzOOE6c3BfT04XAivtXxUhLnN9du9kLvkMytGWMNkPsK8c3DycRlXBjjeNBhfO2OK3QyiehBbdeZT5In630ulSWwwunseixjvSTR76nUNJxPAKTEXUaTHLwOg5M8jDW40CQtdd8Tz/FdaeMdu+eCfc5lBItBzoBAWxMfAh53vqQtp9QNTgrB1jrqZdTi2v56GuwcnVmiMGMsdJ8hvqxFj3DoWJ7eVPS6aft7KsmJPl2126t4GS8rcEW3kHFlSCPosk/dw1Yden660VamsRfurzZaoXFqKezr9+k/d8nQC+zGtQMX95elmPXi/MfYi6ZV7hrpKvoLroNwy/2eMC5b7m53zqVeZw503MiAwj2MA2EaA/D69HXArnytUoS3NcFgUYbjD24ofDLKyECPFTHeB5Q4pDyqPorDBd/7bXPo3Lg9pL6DoYGe3Mdd4SiWyR3u/QBbph1kd6ju7j4+3p9G3E4/nFBcRZcY92aExnSlcd8r3bJ+ur3zS/zz8gusTZ7Z1v6cHwZaNne8f3zWWYNmKC/dOm9/+ye/4yXWJridotuiFf55kcVJ+btYnAh9fx6zhmtlVd4rvLt2waN+35vmJucH/PVLvtybonAA4MOU+a3k+US+xpui10/zNVe+OH5/c5Ovhw+XM246KU2LDEp+A3y1J9aztUjPtteYm3xFApUPNZkrkSr5LQjgsVJ6a4FToy8wNxE+B3EZ40BpzPS25iZf9zL9zDvMKy/RGPWhv9bZ5F0I8DUz+pdXAA7pjeIXDDEcBl30xHihqcm7IGCeNBftW1EQlPhGGFhrA1SZhowx4sscTd6HA2ZlmBzg35rDKb4VB3ryZebNpFjK59uZKA8PQdT5bPELPDxeCfZ9X4LQ6fKx5oswafex5ouW+XIg9jG8buNUj1cga2Aw4gUGzLqMmi/PyTa0tUBYoRFEsGq+aDnyPVjpk0vdiJIXA2FETBDJqvqiZb4oabnf03QjSl4MhBExQYhV9UXLeSucHKaJj5IXA2FETBDNqvqiZYRQWu6lG3QjSl4MhBExQGD6YFR9UTIdm4uPkq58tLwWCCtigkhW1Rcl8xU13+bViY+SFwNhREwQxar6ouRcelWTXhtN81HyYiCMiAmiWlVflIwhVHOuv6xWbSh1MQxGvMDQvFXzRckFd0dao5aJjpLXAmFFTBAYJz/WfFEyHhOV72LqlY+WFwNhREwQ2ar5ouTaHeO7z7hqQ6mLYTDiJYZqVXxRcgsbs7z7ixPViJYXA2FE/PGpOmdVfVGyd32/MQZOV0AXfSkUZsxEEay6L0r2PnOJM/UsVo1I64uhMGImCq4IP1R+UbLne3zJY+1VI9L6YiiMmIlCtoBz6+deccg+YhQZ2eqESOuLoTBiJoq2YT7t29wrDpl2yQ53yhomRFpfDIURM1B4v2F01KacJSUzWaR4TMDTjEjpa6GwYiaKnkYgk1GBkvnWObgQBgqFSOuLoTBiJgrWlqk5pwnFITO7hXWOYpkQaX0xFEbMRFG5TbBniFxQHDITgGoZ7+cuhE55MRBGxGPB29NaeuoTp+wLE27Q1AMgpa+FwoqZKDCdmOsEfdAyT34UqY+IlL4YCiNmosCMInhmSF1RHPIlKU8j0vpiKIyYiaIyjTfJ3CsOmXmOoXrpnsMXREpfDIURM1BEbg6LoUy94pR7sbuapafPXhApfS0UVsxEEVgB0U05YoeKi2HLre+6vQLS+mIgHiMmB1zuaaoR9UHLPvOBGXxPpNWAlLwYCCNkksB0IrvpHf+pdjM0zEFznPhofTEQjxGTA3p4Lunh0jhkGuSlWoajjQKk5cVAGCGDRPK9i08PjkP1nin9OdaZj9bXAmFETA6YRxRpMvWIU+YOCPFteFUoQFpeDIQRMklgHiFxMm441db3vbhe4ks1oeXFMDzGSwp9R8ycna5kLvTEEuKVjlYXw2AEDA7Zc1AUJ7MCJXMsHTDbLFc8Wl4LhBUxQcQtNt/3kl1AHDKL9rpapV75aHkxEEbEBJHxSX52AnHIJfTdRb2Gu+aj5MVAGBETRO0e03XuEYec01b6vtsLHqUuhsGIFxh6TfGaZOoPp5xZ9idGnyY6Sl4LhBUxQQS+lQ556g+nzFIWocWeQa35KHkxEEbEBMF7v3Np7hGnLJtnckC78tHyYiCMiAlCHmsNfrjI3Gy4F2nXjSh5MRBGxATRrOqKWmYWWc7ZT3yUvBgII2KAEG9VV9SySrnVjayaiWtGTBDJqq6oZZWErRtZNTfbjJggMHV4rK6o5bg1vrh+5HPIi4EwIiaIalVX1PK5T+OKZ8ndG2a83GbkrdqKWr5cGJrOm10Yb+nkcd1o44NkPzbrtA13+DJ6MkaBLY/NB9zOiVFR/3ShTceQ8Rm+p+9GHkXK2MMjeXPJ9SXkvIUUkxtywTdWab3KHG3s0z3Lv0VJdWz9l30PvbSN2IQ2AS5gSBZ6GqfDDSd5DEUwk8Ph1D3bl4WGXMOYNZfNN39PiWVN5tpSr00VgMKPXFA8x1xpEjj3aa6Mjf9MEW0p0wKDDzqfY58LMGGS/Ul6OSOQLUX2/MEsTVLfhthKdN3tTVpiySPcCm50Qcs++rZn2dUGesI9YIhilGKvjsuAPjjWQMFwy7V7pk3efCn0bcAJ2rILrcdZHbpDwtmJ3cijr4r0hVUegXP9jTlOe0QvGkvPgQWIhJa3mSb5cV999OiTIjhD0GlRFsOYBHg8zWJhjjDXGhrNL8ZifubCg3Axhr7BOANpX9mWHBNtSPp67rBJrd1QGPx8X/qn1cNY3HI0WcgI0Hej2d1vgUuhzCTqS6TCfbe5F2fnuiD6Mh+tXAGqGHWNl52BTiipdcN7+m+E1H3eqVfCGb4cElromwC4qJYSb0SUa9vLUaGPo1vheOLQC6iWXS/8D6Xrhf1k6MLd7CWOyguIL4yxAHTpJ64fJnr6cFLmAlbD1VdqX+EN9JON+3oOHU56OgC7Jy7f8Q4XB4HmmTuCmwNgS69UjN/acsblFvo5bDgP+b5KIh59vvZzLjz+obMwQrfu9YkZ30FGbkqUzUXXPVQSbxromWN9CXeqUrsnCg4N/woDP/oXTkFl/REniMvl7prBV4u5eIRzo21THUYYmC/hbg/8kf41mDbk8TqWjpA5R0TCW0LAf+9t50Bj9ohroNDbR3Bp7O8kgCH5brJKf49uf8QpesbX4EpDpywItI5XOeh9OAf0neSpKfdpvjAHp/q+AwIhhe4vUvGrrBbhutMPrvI85jjoQCXQeYDXTcn7dYDeXKoLaTg54rIZXYC9GURiLw4ZfBupspWJ9egkfHONp19upbZ9tMyuzzKDeSsZv5j2IRNuKbRF4S0z1L0b0WA2NHpL4P6KqNoA2O1WeZ9M3YBWRk7i5aGDcai0x2fRIb/AduSZDefPOVWg5ce96B9ttwtalLxoO7v9pc+3/hKrEWnsDa6NPy+xGqm3ZywGIp5ipXtYBNzU87WpZDkMSMKFhbsFbrHKYeBffvrlz3/66f/8hT9c9gA//T9b4YowCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTExMTkKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2Ci9laWdodCA2NSAvQSA2OCAvRCA3NiAvTCA5NyAvYSAvYiAvYyAvZCAvZSAxMDUgL2kgMTA4IC9sIDExMCAvbiAvbyAxMTQgL3IKL3MgL3QgL3UgL3YgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9BIDE3IDAgUiAvRCAxOCAwIFIgL0wgMTkgMCBSIC9hIDIwIDAgUiAvYiAyMSAwIFIgL2MgMjIgMCBSIC9kIDIzIDAgUgovZSAyNCAwIFIgL2VpZ2h0IDI1IDAgUiAvZml2ZSAyNiAwIFIgL2ZvdXIgMjcgMCBSIC9pIDI4IDAgUiAvbCAyOSAwIFIKL24gMzEgMCBSIC9vIDMyIDAgUiAvb25lIDMzIDAgUiAvcGVyaW9kIDM0IDAgUiAvciAzNSAwIFIgL3MgMzYgMCBSCi9zaXggMzcgMCBSIC9zcGFjZSAzOCAwIFIgL3QgMzkgMCBSIC90aHJlZSA0MCAwIFIgL3R3byA0MSAwIFIgL3UgNDIgMCBSCi92IDQzIDAgUiAveSA0NCAwIFIgL3plcm8gNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDk0MlopCj4+CmVuZG9iagp4cmVmCjAgNDcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjEyMjAgMDAwMDAgbiAKMDAwMDAyMDk1NyAwMDAwMCBuIAowMDAwMDIwOTg5IDAwMDAwIG4gCjAwMDAwMjExMjkgMDAwMDAgbiAKMDAwMDAyMTE1MCAwMDAwMCBuIAowMDAwMDIxMTcxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDExNTU3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMTUzNSAwMDAwMCBuIAowMDAwMDE5NTcwIDAwMDAwIG4gCjAwMDAwMTkzNjMgMDAwMDAgbiAKMDAwMDAxODg5NiAwMDAwMCBuIAowMDAwMDIwNjIzIDAwMDAwIG4gCjAwMDAwMTE1NzcgMDAwMDAgbiAKMDAwMDAxMTc0MCAwMDAwMCBuIAowMDAwMDExOTc3IDAwMDAwIG4gCjAwMDAwMTIxMTAgMDAwMDAgbiAKMDAwMDAxMjQ5MCAwMDAwMCBuIAowMDAwMDEyODA3IDAwMDAwIG4gCjAwMDAwMTMxMTIgMDAwMDAgbiAKMDAwMDAxMzQxNiAwMDAwMCBuIAowMDAwMDEzNzM4IDAwMDAwIG4gCjAwMDAwMTQyMDYgMDAwMDAgbiAKMDAwMDAxNDUyOCAwMDAwMCBuIAowMDAwMDE0Njk0IDAwMDAwIG4gCjAwMDAwMTQ4MzggMDAwMDAgbiAKMDAwMDAxNDk1NyAwMDAwMCBuIAowMDAwMDE1MTI5IDAwMDAwIG4gCjAwMDAwMTUzNjUgMDAwMDAgbiAKMDAwMDAxNTY1NiAwMDAwMCBuIAowMDAwMDE1ODExIDAwMDAwIG4gCjAwMDAwMTU5MzQgMDAwMDAgbiAKMDAwMDAxNjE2NyAwMDAwMCBuIAowMDAwMDE2NTc0IDAwMDAwIG4gCjAwMDAwMTY5NjcgMDAwMDAgbiAKMDAwMDAxNzA1NyAwMDAwMCBuIAowMDAwMDE3MjYzIDAwMDAwIG4gCjAwMDAwMTc2NzYgMDAwMDAgbiAKMDAwMDAxODAwMCAwMDAwMCBuIAowMDAwMDE4MjQ3IDAwMDAwIG4gCjAwMDAwMTgzOTQgMDAwMDAgbiAKMDAwMDAxODYwOCAwMDAwMCBuIAowMDAwMDIxMjgwIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDcgL1Jvb3QgMSAwIFIgL0luZm8gNDYgMCBSID4+CnN0YXJ0eHJlZgoyMTQzMQolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:41.614252\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 1.2273123264312744\n", "Layer 2 - Variance: 0.5360878705978394\n", "Layer 4 - Variance: 0.2593609690666199\n", "Layer 6 - Variance: 0.2384992241859436\n", "Layer 8 - Variance: 0.29864996671676636\n"]}], "source": ["model = BaseNetwork(act_fn=nn.Tanh()).to(device)\n", "xavier_init(model)\n", "visualize_gradients(model, print_variance=True)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "0b096c78", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.061673, "end_time": "2025-04-08T10:49:42.508584", "exception": false, "start_time": "2025-04-08T10:49:42.446911", "status": "completed"}, "tags": []}, "source": ["Although the variance decreases over depth, it is apparent that the activation distribution becomes more focused on the low values.\n", "Therefore, our variance will stabilize around 0.25 if we would go even deeper.\n", "Hence, we can conclude that the Xavier initialization works well for Tanh networks.\n", "But what about ReLU networks?\n", "Here, we cannot take the previous assumption of the non-linearity becoming linear for small values.\n", "The ReLU activation function sets (in expectation) half of the inputs to 0 so that also the expectation of the input is not zero.\n", "However, as long as the expectation of $W$ is zero and $b=0$, the expectation of the output is zero.\n", "The part where the calculation of the ReLU initialization differs from the identity is when determining $\\text{Var}(w_{ij}x_{j})$:\n", "\n", "$$\\text{Var}(w_{ij}x_{j})=\\underbrace{\\mathbb{E}[w_{ij}^2]}_{=\\text{Var}(w_{ij})}\\mathbb{E}[x_{j}^2]-\\underbrace{\\mathbb{E}[w_{ij}]^2}_{=0}\\mathbb{E}[x_{j}]^2=\\text{Var}(w_{ij})\\mathbb{E}[x_{j}^2]$$\n", "\n", "If we assume now that $x$ is the output of a ReLU activation (from a previous layer, $x=max(0,\\tilde{y})$), we can calculate the expectation as follows:\n", "\n", "\n", "$$\n", "\\begin{split}\n", " \\mathbb{E}[x^2] & =\\mathbb{E}[\\max(0,\\tilde{y})^2]\\\\\n", " & =\\frac{1}{2}\\mathbb{E}[{\\tilde{y}}^2]\\hspace{2cm}\\tilde{y}\\text{ is zero-centered and symmetric}\\\\\n", " & =\\frac{1}{2}\\text{Var}(\\tilde{y})\n", "\\end{split}$$\n", "\n", "Thus, we see that we have an additional factor of 1/2 in the equation, so that our desired weight variance becomes $2/d_x$.\n", "This gives us the Kaiming initialization (see [He, K. et al.\n", "(2015)](https://arxiv.org/abs/1502.01852)).\n", "Note that the Kaiming initialization does not use the harmonic mean between input and output size.\n", "In their paper (Section 2.2, Backward Propagation, last paragraph), they argue that using $d_x$ or $d_y$ both lead to stable gradients throughout the network, and only depend on the overall input and output size of the network.\n", "Hence, we can use here only the input $d_x$:"]}, {"cell_type": "code", "execution_count": 19, "id": "c372f72c", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:42.628385Z", "iopub.status.busy": "2025-04-08T10:49:42.627537Z", "iopub.status.idle": "2025-04-08T10:49:56.995919Z", "shell.execute_reply": "2025-04-08T10:49:56.995202Z"}, "papermill": {"duration": 14.429355, "end_time": "2025-04-08T10:49:56.997194", "exception": false, "start_time": "2025-04-08T10:49:42.567839", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgOTE2LjYyNjc0OTIwMDcgMjE5LjM2NTYyNSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUgo+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzVnUuTLbeVnef1K87QHiiFjTeGrZbNiJ6pxbAHHR7IEltNBS8VEkkr/O+9FpAPALnPbVbdupeGGIxmrT4HJ9eXSCQeGxu//u03/+fbP37zr1/95vHPv3/59fXXH394kcdf8O+fH+bxF/z7j4c8vsK/f34xj1+Zx4eXInGLNiZf+Pd3/d9WyuZiiDZAN+Of//Hy8u8vv/4nFPTDw2xFUvTJhJxvf/hipEST8uPvvIavhg+8fOzTLy8xbQ6/5u1W2u9+eJHiN/FOsu3k73pZsmzh0PcSBq1e+t8et8LFxi3L/g/KcXmLj79/8/ifj+8fv/4nS6fy+Bf8+xf8WzlOpLPfojHB2+GKL3W4ipffv/zu8bejYLNJwD06yq5/frWrL3/D/at3Sx7Rb9aLxGS9tQ8bNjEs7o8fXn7z9cuv/7s8RB5f//tL2Sw+U2JOAd/8+k8v//b4L2YzNvzXx/96fP0vL//tawCAICzYdP/1xw8PlPKr337zlz/8j59+/4fvf/jVh2+//+mHx2//+vjdy+/qFb8/N7F+885L8OOtvuR3ICcGl5VZmnGSnqMzPTBjLmCfzT3vaUwpxtH9Jb+He5+3ICgtZCsfqTjmWXX5XV8argftQ5JQTJFH2VJfjh3L+ervf/jT48Mf/vz9tz/+9KdvPj/On99mvI1kMFvG13FdKYfi0kcZfjG7uCN42NGWjnYv+a12ra12U9qCydYWyT5/xLE1X+SZOZp1azYvxpo82u70T/SNpnazzgQUFUv8iHH/ZY2HsombK/epfqrp4LcSbBYbgvcfMR1n0397YTG/YoEAx0vB1XkfnIxtzdRG/PNff/r+x0+E55pRW7JxxUpI6Fv41rGwDm/BLR5dC197ImhcrcsWF7eTHr786L/8Mn355SW5zeTioxvamRQ2B254QPpmZlRTcCZSHUo4VHRNfvP/v3nFJsynLRkxzo3mB/U0ryJZw7xiE3089hUiLm4w36m422IkxBFJpy5hXrMJ83bD8x3NeOc7FTbhON2RHOoa5hWbrXcv2eXpzl+qQ08rmDuSU13DvGIT5uNWMBxJfjR/qQ4DxuiNzEhOdQ3zik2YxyDLlhLKaP5SHQxbm9OM5FTXMK/Y5KzBFlxIfrzzneq27H20MiM51SXMazZhnjYk2PHOd6rfUM9jLCOSTl3DvGIT5iO6m8nJdOcv1WNg5KJLM5JTXcO8YhPm84bOrCnTnb/UgJdaKGUkcolrWFdMYpxhzJbwlTze+F6G4yJS7IikU5ewrxqlf3RYoufzO/q/5ATZx+QmLJ28CADFKQGg156MD2ECcMpBcKu9iB259PIiABSnBJC2mKKdH4BDhU8UWlK8UTnlRezffdJ92Uq2xs63/5RD2KIr3slIpVMXsa8YhX+xG7ptWUb7pxplw4+WKCOUXl7DvuKT7v0WigtluvuXXD2Z2qnvoFziIuYVm3SPKyzF5cn8oSb0cB3XW0YkvbyI/btPuocPEyTO9/6US9iSNTmNVHp1EfuKUa5DoQ+PR3qyf6oiYStOSpqoDPoaABSn9I9uvKADEycApyzo5MWQUfVHML28CADFKgmgE2ttsFPjf8mSUDCbPDuR6fVFECheiQA9eps5UzsiOGXh6oFP+N+EptcXQaB4BQKHPr3zXPIcEFwye/1WfChpQtPrayDQvBIBevWu5DTVgkvOePvZLI3AVUgvLwJAcUoA6Nf7EONcB045+c3aKK0XfBXSy4sAUJwSADr2Qbyfa8Apx7AFDHe8G7n08iIAFKcEgL59SNbNNeCUo9mccWGvAReXTl4EgOIUAPCHjc5IGgFcMoZ8Npbo3Mill9cAoDklADRmMWczhaBdcnCbjw4/PHHp5EUAKE4JAFeYfMhzDbjkgjEQev5+5NLLiwBQnBJA2QRFpLkGXHLaUKJzceLSyYsAUJwCACe1cuT3BwCdzGlfhz7QxKWT1wCgOSUAt6UixU81oJPDJiG4JBOXTl4EgOKUAOKG13mycw24ZL/54H3rCXaFdPIiABSnBIDuPd7nMteAS/abGCvW37ic8iIAFKcMUEXv3hQUMwLoZC7/ZV/cxKWT1wCgOSUAxu8Ek90E4JJZ67O01+DA5ZQXAaA4JYDA6d0c5xpwyY6T/67VgIHLKS8CQHFKAIl7JWKYa8Alu82mYtua0MDllBcBoDglAPTunfXzzHgnO4ak7sPhgcspLwJAcQoACb17FGqnGtDJXZzbyGWt8DfVKQGgd++9MVMN6GQ49cHUEM+JyyEvAkBxSgC4QnRnylwDLpm32huf7lwOeREAilMCKOzShjQFRnQyQwEwBHZ3Loe8CADFKQBk9O6juDgFBnQynJbgvMLlkNcAoDklAHRoYsIwbwJwya6GQGV/53LIiwBQnBIAevfJFjfXgEtm38eaGgU1cTnkRQAoTgkgby7lJHMNGGRuRMoTl05+K4Bx28wWHv94eepoxPGvXz3G7TXztgy0Vpahvo6b5xi9WAO3c6qNdg6bDSFy3x66cyUZz3oMyxIAWFqob4o1vD+XLRfjq5jF1I5fwbvQpJTrSNEGjwehxUwyOpqdRLwqTKzRAyVsMbtcoytRTM572GHIJjBKCR3LiHdK/Sibl5I5zGjr7xL3eLRc2OXkHJQtIrE+i4bBSampERdm60vK2M1w0h4UMq6xAEmVPe6mK7lFekU8wXaX0Yo5m2uoU3apDflNBGpxuAGB2wVRYN4Dg2wyEO3mXChtgshwqaw4GAh+y7bE4vcwGtw2VJVHSLxOabMpgpGUjylkzqmHUGIbYouADV6u/oGRhnNoWmvZgtvgnU/uEXFrbHLB7WEa1lrS4RItgLVRmgAlhmbGPvCiQh1K+QhqCN6gPteVrMzHp8rAgxuIQgpshdQCXCnnkHBldeUvZOLeYwO8Q/1DFTacDE+xvRMtPlQCt0DzI9EmyW0FkYwcKtFDvIE5xxrU9CKg9ODEEh6VJMeCvC+WL9S6eTSH/XZaj8cNEpejPYrPpQYhU4/BwHrVuzXdwD1vuKMPjtlyitJuB55Ch1osuEyHuuUK617TC6pnlPqgJufjXn7lzR4OaTsJLvl9WRB3yaNVwCNQCroA9UY52Yx1fOLwtMApzFXZbkLeQO/YecyNsXNbsSg7PVLY+BSasi84xQDnkXcbdUBav9OxAUmMQgWZAHPxWLUqqEdofmL9FdveUI776HzAIxJQAwHBteldNitsmQJrw0EXak42oEMTcCFSgrQ5TzwL+MvVKs16mY7VgMitt5ayYwe4zZGjXclAEbhIwBrvjyUF53MECNxoWMwNCVsBjB9xVwLaM4//kH2eGW0AW46CBxW3uRWNmumDYzMFIi7vdYhz8ahpHIrgQU15/zR+B0+cCFsPtkht9s5vUpJvLRWeNjTDVcazEqK0pgoFNyuBkX8u1LbK+HZX+JwmY9lU0Z537aORCyKx1GYVxYN/VVFtMDKS+tYUNHEtrARV1CdUg/ppg9vQOLM3gTHlvs8oe2nLTtObx9tsn8vjbknLVwme5v3t+J9uL9ZyDKBEddfxh6eZCvCNV21dvv/qR8s2MPVzt4Fmu6XEx7UFNeR0lPR8B+d3f/i/3/z9h81s//jm2z//x4+PfjPnG7JEtEwVr8wWgTYCT+ItbNclboLOcQpf6uSBVVeK3LJGsJacH+A/b+2lvGh1y6aa3cGZcaa5k+e7+pY9vng+8YbjNARbydemkHiPDBKfj6ATVF30NKYl605+B4IO73RcN0qTjC7Gz8wkMW9v/owQau+slPk5uOT3gIDLKoLS0OOQn8ngWToJvDzxYkUPu9L4pHwSn/HhfFXr8tb997ntGmhX/7YcE18EAfpc6Dc660YEl/xmBHi4OgQoOhv0EAN6FK/OO/FFSHCQYtA44ykYUHT6O7HgQCs7/g8D01fnovgyMFAs+tbJTixO+b1QoOOOERZ6gRhBvypDxZdDgWfBRHS288Ti0t8LBgawHCWjU81tNs9h5I+l6+BezavMt6fteCNczmL93Gmb/3wW66NTYOgpctjkfJkCu2zAH96kKbBrllNbt5sLSdNy3hogFMcEEdDjjH7KavBUVrEtBkKxRhAY+wSLYfLk+Ims8lkMhGKNIAoa3IyvTY5H+Xw0xkLWfDQUxwDBiaLosp9u/STnUieH5kJ2eS0QmmOCwCsilminGjHJBwidz2IgFMcEEbeUgpe5RgxycrlOmk2FHPJiIBTHBIEebxYpc40Y5AuEymcxEIpjTtjI5nIsU2DYJGeXcr7zOeS1QGiOCcLhk2j8ywRikOHX+TufQ14MhOKYIDAwLjkEP4EY5GJaSNxUyCEvBkJxTBBclfEYwk4gBplBEVHhs8uLgVAcA0Q2XAiSKZtELzM2wIW6gNIX0slrgdAcEwQXM5lJdgJxyVzuybbuH534HPJiIBTHBIHRgxUufY8gLhmOuY5Y7nwOeTEQimOCwOjBJp/mGnHJjpuLfXt9DnxOeTEQimOCKJzws3GuEZfsaiyZyJ3PIS8GQnEMEAWjB1fMmIGhU93mbM41/mWkc8prYVD8kgIn5Xx2M4ZLdpt3tsgM5xAXg6DYJQWMG4KJ0xzdpaLvFPAUyA3NKS+G4e6XFApDtPztkbhkzyAJW0Y4l7gYBMXuhxdnMGKIdoo67FTuPDUx3cgc6lIQNLdkgJodE7PMjBAuOWzeMghtZNOpi2FQDJND4CzClJmiU9NmOO80sbnUxSDc3ZIB4xELF9FHCKccDBMPO18GNr26GAbFMOM9GHUZ3JSjoZNrpvxcskx4OnktEJrjFvjC6FOZnopLpoeAhrFGZnalDPpiKBTPRBE2fAyfnVCccsmbMSXMhHp5MRCKY4LgWR425rlOnHLkBo0Qatq+rpBeXgyE4pggMFIwmX3CEcQpB4tyY6r9pa6QXl4MhOIYICzGCoLewFQjOjkz8jvVPlNfSCevBUJzTBAYL1hT92kMIC65nmqS6pCyL6STFwOhOCYIjBjQO7RzjbhkRrEU62Y+nbwYCMUxQWDY4CROWR562aPz4Fx0E59OXgyE4hggHAYO3P0z5vvoZbdhoJ1qnvO+kE5eC4TmmCDqfqI5Ir+XHceXJtgbn1NeDITimCAwfPC5xLlGXLJDs+BM3eM08jnlxUAojgkic/teCnONuGTuD7R1I+CI51AXw6D4BQZvWMGDm+pDJ8OwOLfXh4HOIa8FQnNMEBg7xIjuwQTikl3tODh743PKi4FQHBMExg7JiplrxCVz6cpJzYg38jnlxUAojgmibl/NU46IXuZiZow23vkc8mIgFMcEUeo5MClPIC4ZjvGOrHt0Jz6HvBgIxTE349j7CYLfzXI2vo00xkIOeS0QmmOC8NqhiZN8hMBMhSwZGaM6JoioHaA4yclad8ezq4thUPwSQ9GOUpzkI1pwprNiEKHqGCCiaMcqzvIeWj0XsmLEteqYIJx2xOIs7xHFcyErBhqrjgkiaMctzvIJQuXzqSD6TVAvNdnK42diuSdbmXfQ5HiECHrv3H4CTfHt7DBbHNOh2FLDW3xwuWbRtYW706V2lXjIVGgLXtyhy6Pn6mKvR7twrPsV55kKhHloc0yt42nwGdiUOo8XmWKgLoaYuDHJANeWeHR8LDWJB+XMrb81zUJIPtZevEk8cZrZvWkKv5LCLjMXCwpkvhPLTbJVLpv4jKEf2i/uoq2Hg1HFc4uXGvOaRJhpIyVh4vBkmUKc2XNLisdaTQYxOOOOMs/8DFWus/QFgwgm10i5pZjjekZEEczd0ef6QCd7s6aeT1RziaSY2joxdPQ4mKeBiVxwD0PriTCRB/qjPjEbR0HtymGXeaNwLTXpjdmXk8IWOLRzTOmDL2XfDKFANFZooSK6/PxNv8sxG9QXLsN5XHFK+7w7s2sAHBt76WRUblQ1JtKIEn2785I34iwtY4bHDWwTc9xFh3rYUlObktucvmVj4RO7EygOg3HndhmdDKYOqclyTHJxn+a0GKClPbWO1EAzZ+tJX8ynw367ldSqic1bRt2wLegilNjWXB1z4aAu1wob0ZFp3p1nRswY9tkRPAttCgGVGw9ymyxwxsZ97Fw2mzw+X8fObQ8ke4l+8zn7vCfXwxji7Fwbuycwxv+/Pk4uZPQgLDPH1DenxJqe59aYxJoW54n8irwZT7ZPP8u2gJLVndUfnuZtwDdevUVb//WP/sZr8mhYpvxHM2Pa4vJrEmnYXzKRhrcWjdktQDV4nmd1O/+kkwdYXSmiJtK4PmDGn/rkbbje8UmNYZq67eT5tr5hF65Hm5IDut4SmBnnlYk05B3yaHxGgGzc733STn4PgIm50FmaY7qzn5dDYt5u/PkY4F2wBWZ1Gx+CU30HAhjA8Wgk442wDfpZBORJEg3PFFe+fv1TEmh8xjr1qlbljVWKIU3X1b8tgcYXQcCodUaglRHBJb85MUtKPQJUUvS1DPpNxrrXJtD4IiTQoeOBieh9jSg6/Z1Y1AR54pk1jknpXplA48vAYIZok9HTm2Bc+nvBiOzDooufmVjqFRk0uqQR7Cd1SN6eNOKNbL/oqNwznWG+HYXimc3wfhTKLKdU0+7NhezyOSpfAoTmmCCsdiTKLB8gdD6LgVAcE0TQjkZ5KqvYFgOhWCOIpB2R8lRW+SwGQrFGEEU7KmWWz0djLGTNR0NxDBD4QzkyZZZPECqftUBojgnCa0enPJVVbIuBUKwRRNSOUJnk5E2dbJsKOeTFQCiOCSJrR6lMcpJSs6jNfHZ5MRCKY4AIoh2pMslXjRj5LFkjNMcE4bSjVSY521CTQk+FHPJiIBTHBBG0I1YmOedcE+jPfHZ5MRCKY4LI2lErvVzjZHINB+gL6eTFQCiOASIa7ciVXmaajOiNvfM55LVAaI4JwmpHr/QyHFvmkL/zOeTFQCiOCSJoR7D0sqtbE4rC55AXA6E4JoikHcXSy24T/m688TnlxUAojgmibDH7YOYacclu48kB4c7nlBcDoTgGiCQMlbN5qhGd7Ljyb1rPcuBzymuB0BwThEcZ0UwBNL3stmzRLuQbn1NeDITimCAwejAy7QDtVL9xCrxGFfRFdPJiGO5+SQFDB5PitFu+l8OWSvRtMuIqo1MXw6AY5qqucAPGlNG0UwteEam0rlRXRCevhUHx29a2g/D7E4ZTxqsyostUT366yujVxTAohskBowY7Q2gaT4wSZ2qgWff1Xl4MweyV/jPN8NyvEcEp84Qmzs+mjkyvLYZAsQsKxfCosnlR61LrcXHBTWh6eS0Mil9SsIzWc2GqC53MI7BMW5btyujUxTAohsmBEaZZpn7TpTLw0LTkWn0RnbwYhrtfUsAQIaCAqdvUyY7RvrEGWndldOpiGBTD5IARQihJZOJwyQ5dJd8OfBzxnPJiIBTHH16CEf7hy1ghehkjKI/Okr3xOeWlQKiOCYLZDsTmKTK0kzGm9r7NxI58TnkxEIpjgohbSMnEuUZcMnOURp59OfM55cVAKI4JIm/4Bs+rHEFcMs9+dqG+I0c+p7wYCMUxQIhscg8+72Vuds5t18DE55DXAqE5JgieTuu9nWpEJ3NuPrdjPSc+h7wYCMUxQWDIgM7htCu+l7lak4ordz6HvBgIxTFB8KDXUIqdQAwyd7nOfDp5MRCKY4Cw+JpISlONGOVjRXcqZMmFXtUxQWDsIClMyX0nmecHa3x2eTEQimOCCDwL2/m5RgzyEfUxFbJkMIjqmCB4zHERN9eIQU7R1gOlZz67vBgIxTFBlPuRdd/d5JJrPqG5kF1eDITimBtwRDttbpb3WMG5kBVDCFXHBOG10+aeyiq2xUAo1ggiaqfxPZVVPouBUKwRRNYO6Xsqq3wWA6FY48YZ0Q7pm+WjjZgKWbKN0BwThNMO6ZvlA4TO51NBvGfKiGn/TDLGtcA4s+Fqkz9OFCu2rtJFv8VU83lzgsW43BZtuL3biWlJGX1INVcKt6PGHD2jzT18uuT8vuKJX8l1Vr9gTOrbhwujZUKoKQKkFO/SLgNaZpIKfC2ZnEpdITFM/mC5x6NgOJfaCdmUC+PyQk1WEIKJZV9bREEFd4epDVz9AGXLPAI21ezlPA3KHDLuWRT/iGXjdtq6YY7Lc1ZSgWExPFWcGQh2PTHfxJAGwmfPUI+IOy8et8BwVLHrJYSS4wM/E7iyE/dVL/wnehhc/pRc80pQjkxgF3mFeUu2MAazybFwjyv95IwraYWkmiIVV8iEyhZMDjmj/8I8GrhR0oJbc+YhJmZfjcZjIo0UHBfGL9W7EAW/XmdahQe/pFATNfiYU5RdLiaLaWlqrfVF9ol6x1wh9bwI3KR2bk4wBmVnpt3gdK2r95qjL9xhAbc9b4JLygPVquVT+RVpE55smn22tx4lq/tpPzzdpY9vvHpjrv7rH/2N16RN4P4XPId1K/Nrcib4XzJnAsbjYHSLz0zMCHw/kaGTB1JdKaLmTDg/wH/8m5rgJ5tQo/V4piVOJxd28nxP37AHNXJaL1mL5rLgaf8FciZ8RoARLaug0RtrQCe/B8DAVhulObRS8sacCZ+PAYYXNXPOtKWjk9+DQUEz7fmCRsP6iVkTIvMZHRlaPi1zwuej+rq25Y2pKLJroeHt6t+WOeGLIEBXAF0SdFFGBJf8ZgQh9AjQ9UnoNVl0FNAHeU5BtGQBX4SEOGbdCjWHRP9GOeV3IiEOveuI970tPP3jlUkkvgwKdqVdCOjYjiwu/b1gJB6mhj5AiExe/RyG+0jihMBda1eZb0+c8Ea4X3RsGk3QjlbAo6odrTDJybddS1Mhh3yOTdcAoTgGCCb4ux+t8EzWsa0FQrNGEFY7WmGSE0dudz6HvBgIxTFBeO1ohUm+QKh8FgOhOCaIpB2tMMkXCJXPYiAUxwRRtMMVJvlsLCc+SzaWmmOOR0U7XGGSszdW7nwOeS0QmuM2MFcOV5jkVLy1dz6HvBgIxTFBRO1whaeyim0xEIo1gsja4QqTfD4aYyGLPhqKY4Bwoh2u0MsMpWI+24lPJ68FQnNMEE47XKGXuQ3c5JokeeJzyIuBUBwTRNAOV+jlGlxnarjlxOeQFwOhOCaIrB2v0Mu89cGLvfM55MVAKI4BwhvteIVe5tk7xZpy53PIa4HQHBOE1Y5X6OUam16nk0Y8h7oYBsUvMXjtcIVeZn4Eh9+90znkxUAojgkCYwdbSigTiEuG45QklTufQ14MhOKYIAoXuZOfa8QlM1GEr8vCI55DXQyD4hcYAkYOXoKd6kMnuxqGa/ONzimvBUJzTBBcdkpu2gXZy25jDEq48znlxUAojgki8vwVU+YacclMGWGkhsT0hXTyYiAUxwSBkQO+k+caccnoPwWMNtPEp5MXA6E45ho3Rg7Rj7ED3w0yw56irceX9IV08logNMdtsd/NJ5B818sxbTwHpx4G0xXSy4uBUBwTRNhiinZ6Mk5VatZjZ1uv8ipj0BcDcXdMDjwAymLoNIE4ZZ4LxW3BaeDTq4thUAyDQ0IZOU0bhDs1bS6XXOP0+iI6eS0Mil9SsDzSIJSpNnRy2HJMoZ5q2ZXRqYthUAyTg99yKVOq205lkBPGV2WC08mLYbj7JQWMGUyQONeGS0bXidELeaZzqothUAyTA8YMYm4Pxan6zeD/lnyDc8qLYbj7BYWMAYPENG0U72W3RZvaCaddGZ26FgbNMDkwCNuGaZ94L6O3EKTUvQkjnlNeDITimCAwXrDZmblCXLLbbAiuHik58jnlxUAojgkC44V7IHovc6+DK0nufA55MRCKY4AowrnnnKYa0cmOKzipNZUDn1NeC4TmmCCYQCegLzCBuGQ6NlGhY9abmNPcEgIGC0G8n2vDJfcrGCObNVcwNMcEgfFCSNbNteGS+zWtkc+aa1qaY4bZs1hnpj3ik5xze2GMZezqUhhUv223QUDrN211nmQejZzvdA55MRCKY4Lg8bY+5Lk+XHIX8NAXsmochOqYINL96LbvZvkIgZkKWTIyRnVMEEU7rG6Sj3jBqZAlwwhVxwAhop26NslHBOnMZ8XAUtUxQXjt1LWnsoptMRCKNYKI2ql0k3w+GmMhaz4ammOCyNphdU9lFdtiIBRr3EYk2qlrk3y2EWMh79VGvGfyhNseGhN8DXTgMlRI+2EoXH5xe4wLG/8WF2mtMTWBACMdvMvB1m4CrpnHqXNRD59xUkKVU0ohuH311xUT92lL8W2dI4QteB7bRRWVJ9YMDFwhFZsj4/f9Fo2LNUMqLo3z4I5nnQXYtWlfZuU28RhLzchfYirH4iL69sDz4BFp6M359ouFuWf5TZ+BW2LNMBmjYfoCEzPTDYh3viYxp5yi88IjulG1asKEtl7n8POgBgPwKG2ECbmADzhEu7kke4wQ/ggGAw2mTjBc+D7WulA8bvqYgSFGD37Fc5+1N5zACS7vOupFxvPFpAs5pdZ7jwFcAT88YjvJp01+QEarxBwWYAk30sY8kaleYvbCROXCSLa4L7SgQgIA80+Ij9IWqmNGDfPs/jCLg03uUNErsuK4KpOktKsuXNPe02DArLQokITiijBvRUuaEVvBkBOfkZqXIVopIe0z/HhumMGCibNxVS0cNQUm6intPArH7b5NjuiTAWybHgd132ReqzMt8KSAZK61FexRg70PbX4w29TmRnjWaMiSWriOS21lOkfumwgtvA3VM/g2kjQb1+3bkSiGk/BtZsFzkY5pOCh7OV+c0V57UKLXGg2bw0fkVySIeLI3+FkiAZSsbhv+8DQlAVNKvHb/sf7rH/2N1ySIQEcM75wSZF8zfkWOiPhL5ohAi4EW4RaKinqFujZCPLQBU/d9UbNDXB+Q8Uc+eatt5o6i7GRK2NjJ8w19w07bbPIWHEvznLR9W3KDz8egGMPV+TSdPNbJ78GASWosS8MLN/08BuFJcoPEspwETgLzePZPSG7w+ai+4qF4G9HEKJvr0t+W2eCL+Mfbx7H3kzv/l/Zm/3wzX5eOF6I1sTAOT+LH9/L/IhDEFnQ7U93If7aCp/ZOEMSy/5ENOnPRfWwTv/+lKCR2uXPKA4ZLfC8O6L8ZvKRKQIcpfYRDfJrKAKOIHsfbUxm8keuXHSkyq9o97X9i1/ye9r+XOVSytQL3ZVzqOU5cA4PilxiSlvS/l7mxquSa6G2kc8qLgVAcA0QxWtL/Z7KObS0QmjWCsFrS/17ua0RXyLI1QnNMEF5L+t/Lbotojmv4ysjnlBcDoTgmiKQl/e/loUb0fFatEYpjgiha0v9edltG193HG59TXgyE4hhjSCNa0v9e5jlie0BTX0gnLwVCdUwQXkv638txg+prktO+kE5eDITimCCilvS/lxPT7LZWsS+kkxcDoTgmiKwl/e9l/JeY9gz0hXTyYiAUx5xnMlr2+k4OduMKwQ7iLKSX1wKhOSYIp2Wv7+QQmQzK1pn1nk8nLwZCcUwQQcte38nJcEK9nQDSFdLLi4FQHLcpWCW7fycP60xdKYO+GArFM1BYo6X972SuxOEn6/E4XSG9vBYIzTFBWC3tfyejOcjxeG9chfTyYiAUxwRRk7h6mWvEJWcMK47msiukkxcDoTgmiLSZLFLmGnHJcWNS7hoV3BfSyYuBUBwTROGEeslzjbjkuBkTuE175nPKi4FQHAOEE3zSpmnPdi+jEhi8NdPEp5PXAqE5Jgi3lZJD8BOIS8Z7krEK9sbnlBcDoTgmiFiPFXFzjbjkbsQ98ll0IK45Jog6fBI714gnsoptMRCKNYDwDGiYTgb5bpC7yai+kFXnqFTHBMGVN87DTiAu+VrKGfEsucCj+iUGDB5s8mmuD5fcTVePdNacxVYdEwTGDs7ZONeHSx5AqHwWA6E4BgiGTbpixkCNTh0wqHTWwqD4JQUMHLzPbsZwyd3qxUBnzTUN1TA5oG+Ia59m6S51oKDCWQzD3S8pYNAQor89FJfcvSx6OGu+KzS7pIARA2N8Jwi6qhJbDMPdGShEDBcYPz7VhSeySmctDJozcnD1sLw4YdBVFc5iGO7OSCFu9h4x/VTW6CyGQXFGDnkLmaG+k+FL7lrIroxVm0jNLzAks+UiIlP9fyLr0NYCoVkjCNzYws9OIJ7IKp/FQCjWCAIjBWO5PWd0/ERW+SwGQrFGEBgrGIwY5lv/RFb5LAZCsQYQ2XDbnA3Tre/krqnsyli1qdT8EgOPCDbGTze+k/uxxUBn0bGF5pgg/P0wte8GuasPA55F64PilxiSdgraU1mFthgIxRpBFO2UuKeyymcxEIo1gCiiHR7Xy/2DcZWx6oOh+SUGpx0d91RWoS0GQrFGEFE7Ou6prPJZDIRijSCydnRcL3cPRlfG+z0Y75nEYNo+g2+gt9P2njgb4/Gc+7qhmzsKrHX7c259yTUHXo2mTiFI3eedLZqDFnudtyIu+BpybL21NQaA+zuD8Gc8U7D6aFqQoWVu4pp8IAfu3K5i2CzG7VJTF2ep2QkoJ+7Rd75mPGdyxrqFi3GKkh2uNHAPVSmhfRhtk5eE4U2w6MYEa2SXQcuEUvfwu+LOEL+ANzxD/PzmUZxtsjCTQ8KgOcTNZNvOe6PMg3wZJ5h5kks7JTiL3SwDgLi3egMAaYv+kDNDrf0jcgXDRbF7MB2zKkp6cJ9/ClGOGMSSoo+PhJpVbEh+jzcDUoEMurgDqbQPo54VYEBdkbr9xe9XgnqUHApFlXJbCCbYI5zN4z/r3j0Px8HVlBGobXyhMUO0WIMbknxNA0E9ijDMDwPFDR1Al8oe61Rwr/DlyLm24lILb0CtNMxswxQOwYqvSQUYEGRywkP5CKj46FbmXY34nwlELtw518pgDQtoRZhNIaHf5WSXsw22CO8ybp/4IwSJC6TO14QUEffT7TIulom/PY8cwl2uNvF4oT8bYw1PgZjzHp2Ca4rcFBC2Engw/B6rEQWXXRNH4/5xZxGXZw1zVnhTI+dzBJK2fA3DEryraRYSE5S0T+MJCM63RLs+x1CTMnCN16H6tE1bNNOC0WsqBjwvVfbFuppELQcmdhc+yOyH++jblYQ6k7HnH8Onm5vIY0zFHgOgVPw+pMEdz3u6vlRizUbBHn4EnpaSAS1WLPtrHaDNkcnEoiW9NXVovkpN6PVEfkXyhSd7l5/t00fJ923NH/S9/kzU8Kqd0fqPPi/9NQkXuB+pBG7Kr6var0m4kLWEC13RGJzhWYkYwT/Qzm1hLNPf96h/+833Pz7+9O0PP/792//904/f/vX7YR/py/8DandvQwplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjk4ODYKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyMzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbgAxCLvnFf5ApbAn75mq6qH9/7WGUS8DA9jYJO/BRiQ+xJDuKFd8yuo0y/A7WeTFz0rh5L2ICqQqwgppB89yVjMMnhuZApcz8VlmPpkWOxZQTcRxduQ0g0GIaVxHy+kw0zzoCbk+GHFjp1muYkjr3VK9vtfynyrKR9bdLLdO2dRK3aJn7Elcdl5PbWlfGHUUNwWRDh87vAf5IuYsLjqRbvabKYeVpCE4LYAfiaFUzw6vESZ+ZiR4yp5O76M0vPZB0/W9e0FHbiZkKrdQRiqerDTGjKH6jWgmqe//gZ71vb7+AENNVLkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDI0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUluxDAMu/sV/MAAlqzFeU+KQQ/t/68lHRTtwRAjS1zi7sREFl62UNdCh+PDRl4Jm4Hvg9ac+Bqx4j/aRqSVP1RbIBMxUSR0UTca90g3vArRfqSCV6r3WPMRdyvNWzp2sb/3wbTmkSqrQjzk2BzZSFrXRNHxPbTec0N0yiCBPjchB0Rpjl6FpL/2w3VtNLu1NrMnqoNHpoTySbMamtMpZshsqMdtKlYyCjeqjIr7VEZaD/I2zjKAk+OEMlpPdqwmovzUJ5eQFxNxwi47OxZiEwsbh7QflT6x/Hzrzfibaa2lkHFBIjTFpd9nvMfneP8AlU9cJgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyNDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFNcgUhCIT3nqIv8KrkVz3PpFJZTO6/Dc28JCtaheYD0wITR/ASQ+yJlRMfMnwv6DJ8tzI78DrZmXBPuG5cw2XDM2Fb4DsqyzteQ3e2Uj+doarvGjneLlI1dGVkn3qhmgvMkIiuEVl0K5d1QNOU7lLhGmxbghT1SqwnnaA06BHK8HeUa3x1E0+vseRUzSFaza0TGoqwbHhB1MkkEbUNiyeWcyFR+aobqzouYJMl4vSA3KCVZnx6UkkRMIN8rMlozAI20JO7ZxfGmkseRY5XNJiwO0k18ID34ra+9zZxj/MX+IV33/8rDn3XAj5/AEv+XQYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDg5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw2AMAxEe0/hEeK/2QchCti/xUlwY9/dk15S4kDlOhGOpoEnQfWZXiDZ6QFWReJRScz/Tb2pRVPPpu2rTQQnM471dRyomtN60FoobZMW3nB9AJwd7QplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2Ci9laWdodCA2NyAvQyA3MSAvRyA5NyAvYSAvYiAxMDAgL2QgL2UgMTAzIC9nIC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAxMTQgL3IKL3MgL3QgL3UgMTE5IC93IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQyAxNyAwIFIgL0cgMTggMCBSIC9hIDE5IDAgUiAvYiAyMCAwIFIgL2QgMjEgMCBSIC9lIDIyIDAgUgovZWlnaHQgMjMgMCBSIC9maXZlIDI0IDAgUiAvZm91ciAyNSAwIFIgL2cgMjYgMCBSIC9oIDI3IDAgUiAvaSAyOCAwIFIKL2wgMjkgMCBSIC9tIDMwIDAgUiAvbiAzMiAwIFIgL28gMzMgMCBSIC9vbmUgMzQgMCBSIC9wZXJpb2QgMzUgMCBSCi9yIDM2IDAgUiAvcyAzNyAwIFIgL3NpeCAzOCAwIFIgL3NwYWNlIDM5IDAgUiAvdCA0MCAwIFIgL3RocmVlIDQxIDAgUgovdHdvIDQyIDAgUiAvdSA0MyAwIFIgL3cgNDQgMCBSIC95IDQ1IDAgUiAvemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMC41ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMxIDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNDcgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuOS4yLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuOS4yKSAvQ3JlYXRpb25EYXRlIChEOjIwMjUwNDA4MTA0OTQ3WikKPj4KZW5kb2JqCnhyZWYKMCA0OAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAyMDc5MyAwMDAwMCBuIAowMDAwMDIwNTMwIDAwMDAwIG4gCjAwMDAwMjA1NjIgMDAwMDAgbiAKMDAwMDAyMDcwMiAwMDAwMCBuIAowMDAwMDIwNzIzIDAwMDAwIG4gCjAwMDAwMjA3NDQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ4IDAwMDAwIG4gCjAwMDAwMTAzMzAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDEwMzA5IDAwMDAwIG4gCjAwMDAwMTkxMzMgMDAwMDAgbiAKMDAwMDAxODkyNiAwMDAwMCBuIAowMDAwMDE4NDU1IDAwMDAwIG4gCjAwMDAwMjAxODYgMDAwMDAgbiAKMDAwMDAxMDM1MCAwMDAwMCBuIAowMDAwMDEwNjU4IDAwMDAwIG4gCjAwMDAwMTA5NzggMDAwMDAgbiAKMDAwMDAxMTM1OCAwMDAwMCBuIAowMDAwMDExNjc1IDAwMDAwIG4gCjAwMDAwMTE5NzkgMDAwMDAgbiAKMDAwMDAxMjMwMSAwMDAwMCBuIAowMDAwMDEyNzY5IDAwMDAwIG4gCjAwMDAwMTMwOTEgMDAwMDAgbiAKMDAwMDAxMzI1NyAwMDAwMCBuIAowMDAwMDEzNjcxIDAwMDAwIG4gCjAwMDAwMTM5MDggMDAwMDAgbiAKMDAwMDAxNDA1MiAwMDAwMCBuIAowMDAwMDE0MTcxIDAwMDAwIG4gCjAwMDAwMTQ1MDIgMDAwMDAgbiAKMDAwMDAxNDY3NCAwMDAwMCBuIAowMDAwMDE0OTEwIDAwMDAwIG4gCjAwMDAwMTUyMDEgMDAwMDAgbiAKMDAwMDAxNTM1NiAwMDAwMCBuIAowMDAwMDE1NDc5IDAwMDAwIG4gCjAwMDAwMTU3MTIgMDAwMDAgbiAKMDAwMDAxNjExOSAwMDAwMCBuIAowMDAwMDE2NTEyIDAwMDAwIG4gCjAwMDAwMTY2MDIgMDAwMDAgbiAKMDAwMDAxNjgwOCAwMDAwMCBuIAowMDAwMDE3MjIxIDAwMDAwIG4gCjAwMDAwMTc1NDUgMDAwMDAgbiAKMDAwMDAxNzc5MiAwMDAwMCBuIAowMDAwMDE3OTUzIDAwMDAwIG4gCjAwMDAwMTgxNjcgMDAwMDAgbiAKMDAwMDAyMDg1MyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ4IC9Sb290IDEgMCBSIC9JbmZvIDQ3IDAgUiA+PgpzdGFydHhyZWYKMjEwMDQKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:47.163477\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["layers.0.weight - Variance: 3.730092794285156e-05\n", "layers.2.weight - Variance: 4.7479999921051785e-05\n", "layers.4.weight - Variance: 6.661842780886218e-05\n", "layers.6.weight - Variance: 0.00014274715795181692\n", "layers.8.weight - Variance: 0.002348906360566616\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODk0LjAyNSAyMTkuMzY1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNWdTZMkuXGm7/Ur8igdGAPHN46kuDtmsr1QHNs9rO1hdjTSDq17ZOSQlOnf7/sCkREeSK9WV3V1UVDbyLpfZiLDn/BA4MPh/s1vf/zrTz/8+E/f/ub2D79/+ub81w+/PMntD/jvX2/u9gf89+83uX2L//71yd1+5W4fn2qLm/OJ//hw/MNL20JOGX/9gA9e/vn/np7+5embX6OJX25ua1JyLC7V+vCP2Jy07Eq9/Ym//u3lA0+f+vTTU2xbxa9Fv7Xxux+f8OktxyDVK/mDlqXKlu763sJF65f+x9tD4+LzVmX/g3ZC3fLtTz/e/tft59s3v/a0VG7/iP/+gP86wYlxxo+E7GK4XPGpXq7i6fdPv7v98d6w2yTh7tzb7v/8dlef/og71++T3FLYos85lySt3nzaxLG5Hz4+/ea7p2/+u9xEbt/9y1PbvOTSci0J3/zun5/+9+3v0t/f/s/tu398+m/fwXi3OWGjTv3th483tPCr3/74h+//519+//3Pv/zq408//+WX22//7fa7p9/1q317ZiJlKyXX2K63+ZTfgJpI3HxvLeIXnsfmDljuhPXVLC94yuC3KU8OfshvYXlxW+qtxRL851ietOWqpQyfqrWUGl2TW9uKbsNf2/j1398kb80XVwP/7/Z3P/z5p79+/+ef/u3n21+///DL14f7+T3H67h639vHdZWaWiif9KXtHbxpbxHOg1strl4NPuUvNBjuFGqM3qVY5ZM2y7vZDI/eBA3CLS9GK/0LrRYnW6u+uZBa9p8027+f2QFdZBZX4mT2qX+p2SFsqeICc44xftLs8H5moyPCbUipTGaf+peandFLllZzy+3TL4ktXjtLNvIrNofeL+CrtW0xBbk2MvWVv/3x519++vN/fCG/MOz0rbrQvKSCkVUcwyofMAbY8n1gFfs4bPPZh+pjTDvsy5dv+stP05efnlKCW7SYr+OcVLbako/10r1e1SLJdfXSwl3FwOw3//WNN8zEIA8tOHEhXIy/qofxJpIljLfMhPF+Sy7j4q7GX9RSQjWQ7OoaxhtmwviI6/PZTXf+otYmMT8guatrGG+YCePLJlJDne78qYbNOddcviJR6hrGG2bCePTuPmK8fjX+VGFmchgzPyC5q2sYb5j58anIVnxrqV2MVyrMrMH7+oDkri5hvGUmjMcULaQSr3deqWETjJHDTOQurmG6YSRMx8gmSvLTfT/VsPmQBaOcCcihrmG8YSaMxwVhHi3TfT/VsMVQW6kzkkNdw3jDzI9P1W0tBdeud16pYUN7LcxE7uISpltGwnS4L75Rr/ddqRF32Bcfr0CUuobxhpkwPnHtIOfpvp9qoqN7165IlLqG8YaZMB5j9eJiSlfjTxXzzxBrjFckSl3DeMPMj08NU+SS/dXrT7FtEkITuQJR6hKmG0bCcr/F6p2/3vZTTfibwySmaSBaXMN0w0rYHrdSS5Wr6Xcx5Q0duyv5ykOpa5j+aCQsL5trXEO6mn6oGSO4WmJtGogW1zDdsBK2ty20Fq4TuUPEKDaWmiRceGh1DdMfjfz4xMVdfEXy9bYrucrW0HiLGokWlzDetJPmc7/Jtdn6uwpHx3RVUrgy0fIi5j/aSesxTJdcQp7MP2R8ZauBfn7BcpEXAWCYSgK4JO+Tl4nAIdMGjGeDCxMZrS+CwLCVm80Ys/sa3OQEp4yJ+1Ywkm9+QqP1NRBYthIBZ+h9a/eK4JDR9Jbx7PfdNI1G64sgMGwlAozfQ6tl9oJDllzR6UWXZzRaXwSBYeuIuqgx5Tx7wSEzOqEK+r0ZjdYXQWDYCgSe+4IS4+QFpywFNz6j3wszGqWvgcCylQgwrk/Fh8kLTpk7pCHEnNqERuuLIDBsJQIM73NwUiYEhyyc7Qn+6ic0Wl8EgWErEWCcn2t1U6DdKUvggkeIUic0Wl8EgWErEWCwX2KqsxccskjdGtvyExqtL4LAsBUIgmwZTZTJC05ZHPdxU6oyodH6GggsW4kgbK1mfv+K4JArrjlkTIauZLS8CADDUgLIaENanH3gkEsecS7lykXLiwAwLCUAjO8axvmzBxxyzltppbly5aLlRQAYlgJAxHDfhSSTB5xyaltsMvqAsw2lrmG+ZSfNx8jONTQzmX/IKWJSHEOQiYqSFwFgWEoAeKNLcjVMAA45uQ3vfoyDJi5KXgSAYSkBYJjvXc2zB5xy3ZzkPJ4A1YiSFwFgWAoAuJO4ypwmD1By3iS2sj8CZyNKXgOAZSkBeO7mxmmFXMucAUtrMxclLwLAsJQAMMBHo372gFOOm8MsMMQHLoe8CADDUgIoNMS52QNOOWwpueJk4qLkRQAYlhIABvd4ltvsAaeMjj+WWsIDl0NeBIBhKQBkjO1TSuUaCqHlsEk/tDRjuatrmG/ZSfMxss8Y3sbJ/FNmbCN+tjxQOeRFABiWEgBG9rlInO//KcNS/OYO4MLlLi8CwLCUADC0L76F2QNOWYX2TlyWivg1LeV5E7dV9GQyecBVxm88cFHyawFcz8hs6fbvT89adMXxT9/ermdp5iMczeMmjYjmFjL3SHHDSvKR76ySNp4AyqMjr+jI9hg/BjTH/fVWpYdA8ZlvtfW3Pmb+sR9tqJ5WpREol5NLkfOBGvG9jAeEsWL9ynsLnDzHzBl4ZjhNyW3EF8UUgke7Bb1qGnPK2jZpErhc0TZfQughlo1bUy3UfEuylQgYdcSq5FyiJE7KirgRnNUC7kAWvJrxtsKcJYQe9tADuXBh2W+OFHsDmMt7XyXfctpKLoVX0OoWM9pKt+L5t9TjnsRh9NcqX3gVEyAfcw+M6afIQNd5HgzyxbuxXuDAuiUegMYPN+AZy+oOVMS3fBMR/K2ksfEmuM4cWl9odrG1bgemWDyazQAcvne88+x2xiZV8qFkno/CQDTFWMe2BW4En43az01lzNGOHR3wKNzUYnRHa35M6aDXiNYidM9j2uMdL7hH3sVS+gaQS7ibd721RheGjNYk3/eR8D5Ax9h1tb8EX0o1ubGPlMAg3PWCm8pDwAV3CvbVcTV4teL6mu9XU+ACoex6Rav4Mq/e8TR53XcoYkl4QvtWXUshxvuyvZfA9RnJ9BpcQdh1vLf5QPKsji+t9eY9OvQkjVvfcDj4uezrwQkwG374xrUf9ANp3CsPr+WXAc1HHnZpA37oTlEczHI8mCy1Rw9x5azS48utYsSAT4zlFHw1Nbj/rcBHUxgh5Pyl3EoEENzAlDDbGmtSuGDcBjyscFM4Venn4bgmAYR4wlKFo0gbbUTZ8FB5j0clcR87xI4LTyk8veHhxzQGv1BGd86QzgpX6o+b4H8erocprq8xjCc24y/D8/BVh9EvbODjjVs3LgTPJB5ex2cW/lhrCHWfLjRcFR5a/nhiF9BluB08A89n72U8HZlyZZAhDOo9UnZuOClfuJh07SdMAu6zPHbOxZXxerbl68lBz94W17O/QP7TM8ZWugG0aB49/vhs0gJ840Xnlx9/9ZNtOxj1uUcia4U7Ndf/oE9AP7y39PyBxv/x/X/8+Cf8S59ofEWiiJGm4oUJIzweufAYyArHh9fVPEX5KPnCSLUiD4kj6B3HB/jntS/wJ8unPBePc+ZhAW2Akue7+apzruxvCx4UPOXh/bNIfEV88Ff0VvNhJSW/Bb6a+A5Ga9FhdPKabBJfj0BAn46euve7+gk45TcggJEWOhe05jBE/Kx8Gs9llcDYiGF0PvgGEm+cVuIr+tmL+plXuhlGkerqX5tq4l0gYHSGASQ3/y8QTvmNIHD0hte6b0XQFb4o/cS7cOBYnvkxXLuCUPobkWgc5cfiMRxN5WUZKd6HBHNHYBaGyc6VxKm/EQnGHGAsiimNcOT/oiwV74Mic1wfMGKeUJz6W6HA3C9jwotpTJFPJ+x4NnMFp8Rni1+QweKVbLnM87nrGv/5Ms8n14gwXoQ3YoLVptgnfBZfc2WKfZpkJlmpXb40cpePZZ41QBgWE0TZCiZ00wH/ST5BmHwWA2FYDBCYQGOw48t172OSqwQDz66uhcGylxj8FjAfT5M/XGVOpg06d3kxEIbFBBG3nPFKn/3hlAOX58bJAN2IkhcDYVhMEJnrx9nPHnHKXEqGbfWRz11eDIRhMUFwTTdx2fgK4pR5YMC3Rzx3dTEMhr3AkIQ5w2SKldIyhsKx+lwe6BzyWiAsiwmCqQ9ym2KmtBy4j5Af6OziYhAMawkhb4IJ+5Q8QMtx40/200O6ESUvBsKwmCDqFltNKU4gTjltErOMblI1ouTFQBgWA0R2mPREnpK/gFByxqCh+r43phtR8logLIsJArMGcTKlV9AyRpGJm3oTHyUvBsKwmCC40clNhgnEISc0VVwt/spHy4uBMCwmCNxZL7nNHnHIjCd2PGA18VHyYiAMiwGicO+wxCnOSsmpbTU21/OIaT5KXguEZTFBYN4Qgp8irpScGWTn0phlnI1oeTEQhsUEgXlDaC5NHO4qg1Fijza90NHyYhge7SUFzBoYwTFjOOQGD4joHeuFjlYXw2AYTA6YNSSXp9W5Q2WOgiQjE7BqQsuLYXi0l5uawgCqOD8Up9wTNOCvrVzxaHktEJbJJIF5Q/ZTUN6pMnIlt+IkT3y0vhiIR4vJgQnPSyuzRxwyg3JrYJjNhY9SF8NgGDy2+2MJUyKHU2XQmEOPMDoIRUfri4F4tBgc0PGX0jfWLyBOmeF2IiX4MAFS8logLJNJgolnU5hSGiiZgYGl9cjHKyGtL4bCsJko0sb8fDI9HacsKWwJo4U0I9L6YigMm4mibEzy72avOGTuVodce9ShJqTkxUAYFn98Cg4jROdzneLjTpkBwI1Rz3kCpPWlUJg2EwVmD67GIhOKQ2645hJdvAJS6mIYDHuJAZMHzJ3S7BGHXCMXpFKLVzpaXgyEYTFBMOLMYf40gTjkEpj1Y6zHqUa0vBgIw2KCwPzBp+pnjzhkhl8L9CsepS6GwbAXGITl3DBivk4+lcxzjzmVvYM4GtHyWiAsiwkC04dQQisTiENOvu/ouZmPkhcDYVhMEDzi/hCXr+XG4G3ppyh0I0peDIRhMUFg/hBry7NHnHLZpHHlYeKj5MVAGBYDhMf0IcWSJo9QMk8MZbeDOBtR8logLIsJgi9Bx9NZVxCnjPelL76fGtONKHkxEIbFBIG5Q87Bzx5xymrD+8pnzX1w02KCwNSheHGzR5wy+sfoxkk53YiSFwNhWEwQjScC65RMQcthizwJGR74HPJiIAyLASL4zdeQyzVgSMs8dZxCjwy68jnktUBYFhNEfCyr9+EiM9V8KuWRzyEvBsKwmCCyVUlQy7DYyTjcO/G5y4uBMCwmiGZVFdSyiia98lkzyNS0eJxeMyoMTnJxdfQR10bu8logLIsJIljVBie55rHzPzVylxcDYVhMENmqPDjJ9xMIUyNLHkwwLSaIalUhnOTj0Zj4vNGjoc9DPfXMJLfPxPKYmWQ+TYPvxx5enbZa3d7Nu5JHVkWffM+JwBOXYcuh5J7ZgQGUtZaRh6ThX70Il++pMVIYE7Aa+f7cY+taDIHVYPKGHlT6KBM3C68T7zgvq0xglP34dNyi4PM9Lg2N9GwdjMZKpSeEwBWlui8FMzaJqx5MvIBfLJjvD5k7bbH2dAyl0in2+B0vvubGRTO80HcTi+CeSBrHH6XhhXcPfkE7vrASCYjWfraQ4Q7OZd/arQmTbQxTCmbYmYGUPDcoUsrYCi91IzoeCna4EB4o7PuAbuPx5hsTXkRmA+nhJBV3I1VmUGF6P9cwZe1XXfteIXOoCKgH57Pc9dx64Wgm12D+o36BFRwSa8YwWXjGX/LYe0ST8CpurjAxQ5YRw8KEAy1IaiPvSAXhum9VQkhuZBgJqYb9R2FGkrpvbaq937aBpsDve6Z6P4aNlJs45ono+UvgHDnv+38wr5aR7gR+Kz19nQdTl+HTZaRH2UMSoeZYU+65VHDjYxkfhmv6wlQbzIQUGm/ivqOGC2sB1556WpA6QjxbYtKPDMOFwa7srsq+2xLhca0/hHhoSndx7j00wROBj/MUYIy55+XhWjxziOCCmfMmRdz8LrMLjHhubkzHwzT19wXrhs/i3sBzeFa3Z9bh+q0Ez4NLsDOXfF/W7XW+hIFno/5Ru68BO6CHgwpM5rrvvuSH/oYJZJhyB3IvFMQFMMfHRpifJzfhMSnKnOmCTeFj5drudbj1ICrZ91Sa1ffHkXLZilRmVeQBct8TnoyllFpKHk+yY/Y12RcWmJC4pyLB8zsKNWBWuTFxTOhB6OgVJPl98p1wH+A3nHzXHHtBL05F4W8x9SRGrIm+T8wYYobHqY0MJcGlMQSBb5e6n+8Q11wZL2TQjvW+D1nySNoyd9bw0/K8/IIMJc8cU38uvwVaNk+wf3w2Uwa+8eKj8Pavf/I3XpKxBF0sn8E0/rwkZYn/m6QsiXwCH4OB0Sdt5bEgi5IvkFQrYqYsOT/grj/1xSedo7ADlrmEnpLn2/mKg854Ztk9eKYnQ+/77ilLviI+vDNcjkxmdcF3ym+BL4+UZs17rhi8JmXJ1yOQ0OOWfujp8gAc6hvYn/AG8GzMCfv7L0hYgg4ZvddwsLfNVvIVXexFXcwrU8JgiKmu/rXZSt4FQmF6bgz78hXCKb8RBA7cMdzJNQU0/6JsJe/CgYN+BgLXcgWh9DciwfwnFc8fBmxM4feidCXvgyI6ZkHEgHpCcepvhSIwZ6L3gVOs8LJ0Je+Dgll7IuxvE4pTfysUTOfDyQXjQ16XriRwGna2+AXpSl7J9l3XgKI4q0JNFG9VqJnkUkb6oamRu3xmpV0ChGExQWCS9lipZpIxDe8ZqWY+u7wYCMNigihWxZpnZRPbYiAM0wiiWZVrJvn0iEsji3qEYTFAMNftYw2bSa5tlCybGrnLa4GwLCaIaNWy0XLokXr9OIxuRMmLgTAsJohs1bTRMhfaS+oZuCc+d3kxEIbFBNGs2jZa5pJlC73Y9cTnLi8GwrAYIDDYM2rcaDlssWIAER/4HPJaICyLCSJYtW60HNhUGG+NC59DXgyEYTFBZKvmjZaZr73kNPNR8mIgDIsJolq1b7SctpzjWOfXjSh5MRCGxQDBCfFjDRwtM1QNj0CZ+Ch5LRCWxQTBfzxUw1Hy2B5ufWdKNaLlxUAYFhNEsqriKDkx038sfXNZ81HyYiAMiwmiWNVxlMz0rLC3xomPkhcDYVhMEM2qkqPkERYR08RHy4uBMCwGiOQ3BiO4ySNOmdkpJPp+BkQ1ouW1QFgWE0TcemKeySNOuRZujKa++K4a0fJiIAyLCYIlgfGx2SMOmVWCQpTs2xXQRV8MhWEzUTSG605njk+V1YKkodUZkNYXA/FoMXd6MX1wJU9ZGpTcc6Zzwj0B0vJaICyTSSKwmNOUU/dUWXUp+phnPEpeDMOjvaSAyYPw+xOGQ+6FjgJTfV3xaHkxEIbJJMH4xBnD0BiXJxgs9HAwzUbri0GYrQWBgo8FfGSCcMqXMMcTjhLXgmAZTA6epfPmDa5DZeClCzWOpUpFR+uLgXi0mBwSw6BCmv3hkJnLqbkwajRqQEpeDIRhMklg1hBZdfIK4q4ytxdML73OiOaj9cVAPFpMDpg0JDQwDaNOWTyrkMJ2fwWk5cVAGCaDREXPnxgmeyVxyiyemX0tXiZCWl8LhWUzUWDakFNsk1OccsMLs5XWE3ypRrS8GAjDYoLAtKHA1WefOGTGFjbP8xIXPlpeDIRhMUE0btq5PHvEITNYzaWRX1s1ouXFQBgWs0InDKq+pskjThmj6CyuV3BVbSh1LQyWvcQAex7D85WMCXeKGDHEKx0tLwbCsJggMB5oMfrZHw65L0b1Q0qaziEuBsGwlhAwb3DOT1kZtNwYPx7HEr5qRMmLgTAs/viUHMM9U2vXcCEt8/CK35diVCNKXgqEaTFB4B88KFgmEKfMaGlX68xHyYuBMCwmCEwdpKQ8e8Qp85xLdv2kmW5EyYuBMCwmiMJS8iHOHnHKgTlKxgFc3YiSFwNhWEwQLLfdJMweccphi0F4wGvmc8iLgTAsBgjxj8UTP1zksElOo5b7lc8hrwXCspggMG94LBep5bBxyb4PH698DnkxEIbFBJGtcpFapsW+9DPzM59dXgyEYTFBNKtc5CS35Pqe/9TIXV4MhGExT/GJVTByku+B1lMjS8ZfmxaP44xGwchnZRPbYiAM0wgCs4fHgpGTfHjEtZG38oi3TFgyn6fhOnOPKi5brBKkZwYQwb/bHjXLot0jSxNmD2WPGHRbSyWU/lLAMNKNFamAd4VkN7KegMNICcFAy4ppeLvnDSxjKzDkTYrE3KvJ8XzZWN8LZQMcrv3HvPlQ6ghACjxhXGWE7AkzaMgeqeaZ0jox4wJG9aM8BuO2Ev5f6Hld8csyLrDnSMDnMxOcYCYUq+zBTax2nno63Fj8fiX4fcwSYMctOx7IbSPeo5c0q8FHLrNU3rB7vFDEh1O4Fcd866knT4Ez4s4Cd7pVx7wSqd1jSUDbtcK8FxhmxX5mLzLvSm7CZV4Ozn0ciRsirgt3VLglgPdQ5t0u+/Y6PpR8gc8IM8yNjCPcb85wLGb5YOY5zHGy7Nuv0fVoBLTFY8VMEUE9bik1z9wqGcBwZWF8Pm0FzPueTOHa2ujsuYVZS87cxy0jSUCp+5aeCyx53w/g4bpqK7uecavLSF0S4tjoyG2TFh3X96EmUk27znwy/FXWduB99/tWWei2cqcIk/p9adwTCINWeY3S8M1+LbgAH1tPAQMzAh67mHa9+oof67ZWDPXGHj23IWvpKWDABn3JSLsSK173Df1KvjG3CTxpXGTt6woNXLk2XxpeBF3GLFs8T1DDitpC7cnmuTYXmXam3XAtjMj396UqODgP3Kae0qYMp4FPNFiL54sOgc+O2LOGW49b7PJI2+M4PB0rHOhycAU9WhP9y4jGwdViuh+Zc69tzIkSQx/ZCt5apZZRu1B2Z+dc0PNkYxppRzAvHDOjsLGyROuJRGKoqeR9wpSbzyO2vMYy1hKSg1skCa6NDgDu1T8tvXR8T1ISunP18zkPnWjsz9cz8gsSiTxzgvy5rBNo2Txc/vHZ/BX4xotPqdu//snfeEkikRh5o16SQCT+TRKIpOqZpWkOyy1MPf5Y/EXJFziqFTETiBwf4J/4qjftc/kf8BBKwoM1TSZOeb6Nr8kAURmSz8cHL5f0/glEvh6+PNJnp3DdIFfyG+DL/WQLW2OZh1clEPl6BPCqwntJ3JQ+U8lvQaBxksbWuPnxBRlEMl4XzSeG9/Il9LZJRL7iU/qibuaVDynezerqX5tE5F0gcCxUuCN2YXCob4SA8Uut8kgVG31RCpF3ocDEHqlJaJMvKP2NSDQM9wRDY8wl3KfTZjxkEHkfEpiTYTzs6wTikN+Ig2ACWTB85UQ1fTppxkP+kPcBgZmPxzQ0zy5x6m+FgnklQ8Hsl8VuX5U/JEWmIDla/IL8Ia9k+75LMphKGTVtMIS2atpouS9U1z4L0o0o+ViSWQKEZTFBeKumjZaZWRvDPnnkc5cXA2FYTBDJqmmjZSYB8K6nRZ343OXFQBgWEwSTrz7UtNFy2ASNjF3PC59DXgyEYTFBNKumjZZZE7G1set54XPIi4EwLMa8ivl1H2vaaJn7vPjZ8MDnkJcCYVpMENGqaaNlLmTV2lfsr3wOeTEQhsUEka2aNlrm0nQe6+u6ESUvBsKwmCCqVdNGy1yT9qHlBz6HvBgIw2KAELFq2mg54o1ZxxbFlc8hrwXCspggglXTRssJ0yOf3MxHyYuBMCwmiGTVtNEyn4bGk75XPkpeDIRhMUFUq6aNlusmbEsmPkpeDIRhMUB4Z9W0UXLPg59cL1WiGtHyWiAsiwnCWzVtlMyKoZWrCBMfJS8GwrCYIJJV00bJXP7A1/qGseaj5MVAGBYTRLFq2iiZm/HJtRavfLS8GAjDYoLgWl9rqU0gDpnrw3hN9FgMzUfJi4EwLAaIwBCKVOLkEafMc42h8GDjhY+W1wJhWUwQjPWQ5CePOGUGv2Do1OMBVCNaXgyEYTFBYGAUS5DZIw6ZWcx50jVPgC76YigMm4kC84cUGDF2RXHI3DNw1Us/jKARaX0xFIbN3PRmCEtlgNsFxSmzdlVsbgRRaURaXwuFZTNRBJ7NynnyilNmvpCU6ijXpRFpfTEUhs1EwdprU4miD1pm+JtjrEmeEGl9MRSGzUTBwmnXWj0flHrJHHIBZGUUWQPEo8XggFlUrN75ySVOmduVIWJ4na+AtLwWCMtkkvC9kptMIO6q4GsZ08+euFPz0fpiIB4tJoeEeXVgMPEVxCELxxChf/ECSMuLgTBMJomyYeowZYE+VabL4FnPOOFR8mIYHu0lBUwiXGK4whXDITeYLk76hs7ZhlYXw2AYDA6MXhc3PxaH2iPrnMvhCkfLa2Ew7CWFyNSkZcqXoGTWyfTSi+OcTShxMQiGuaSAqYP3aUqWoGR8z7UaxsLM2YiWFwNhWEwQmDj4GtzsDoeM/qA1l0K88tHyYiAMiwECHu4fo/OVnHDrWYNWJj5KXguEZTFBYNIQWi2TR5xyEq7bP+A51cUwGPYSA0/OJAwMJwynXLeC4fRYsVSNKHkxEIbFBIEZQ5IYZ384ZZ6FY0LfiY+SFwNhWAwQFV/j7v7kEUpOrM7snZ/4KHktEJbFBIEZQw5uSpeg5cjcSqN6uG5EyYuBMCwmCB5OrXVKl6BlHTikGlk2cMiymCCYNSjy4OkVxCnzmB/U+MjnLi8GwrCYINpjXcMPF5kVhorrYfRXPoe8GAjDYoBoYlVy1HLYQqx5RFBd+BzyWiAsiwkibkZJQi0HDKEk99RjVz6HvBgIw2KCyFbJRi2HTfAT/Ujvlc8hLwbCsJggqlXJUcsqCP/KZ83YfNNiHqkRq5KjlmGxb/uTccGzq0thMO0lhmDVcdQyDHa4/PpI5y5/KYi3zCMyHc7hKe9eoBx30JWY976tJl9GUC2Gxy6L5J4CxAUZay4O78YYhccx48jEN2TmK+jJUyCzDPcecOmYOcG7HocJPG6sX4nnBqAPPZ0f+tUwljEkb8w50POFAM7IW5WlbIXj1NbncCxHUfY4rZyZcpxTXIlhD/r1gl9kzhPmW7gflWQsE/rvONYFBG0M5/X4R0zMbZAy05x4aXvAT8Bbr1SmeGh5LyqGC8It9Mx+kv0mI7MJZUbOOWY/yWWrLYY0dscd8BSmOSl5y9zvGzLn48W7yhwUPvpcwx5I4RNDMm9MUpGZzWGPKkglMPtJL88SJIZ9hz2I+L4oznyIeZQjyAFNuupGWfEWuGC8b70mnwLdKxWePw9l6B6vd0CpfdcpciEx7PuTNcINYs9vH2DbAMB76ITZNpjAo4bWCzJSThVOF3oGETwgcW8+g5LrmVGYEyTU7PKul9BiHhlHcCt8HTqrM1UmDqHuXEv75RBr7ZlU+roGnLIP0yKTOcEA6dlCqoNXyr6HVBqLy/ekIIVnOvcNlRR87XvxxAojxg4DT55LT7ASmESk7K+6HvXWMsMYhNlNsuztoOevNJY+j3sWxso0KyNkplHBmwG/LsMdeYIQPFO9VXpYKeN2Z3ipQ5dVGECExybIvqzb+CvhBr4h9+IjY5kztyYYl2f8dIq++n3RL4bCr6I1kZjHvlFmieHESQwuKQamR+kybmRgpQJG89F5ev+UC3qQBt/AE9ATEPtj3aRhPtCYhwRz5TaeCzgy+oeWe5ZSn9q+nV14Fofpxbi2EGpK+T7Tzi7w0YaDFBrQG6lwLvgDFzwDz6nHvM89UuqHvOFBpUg/18SBeC1M/9OTk6DTkzEIcYw1Yoc0Dv/47v08jp+lhr1wqsDd2tRhsxeAK/nn5RfkLHnmwPpziS7QsnmW/eOzKTOY5eSlh+LtX//kb7wkZwm718hW+OdFuUvy3yR3SeHz9xgSXCtr7F7h3bULHvV9MbOWnB+Q6498edIJpk6KPUX85daf8nwjX3HgGa9T+L5vGD60kF+WtQTd6RvkLfl6ADHw4EGoNpWcVfIbAKws7YC3pMeLJX1W2g4jn8RXZEBvwcttSjGr5LdgwLDoyNYEI5vPYXBxnUvyklKYdcvhJdPzLr1t8pKv+LB+fj/zygc1BH3pr81c8i4E8FLA3QtOEzi1NyKAYUREh4QRIdzkRdk63oWBYEAfEmZqUUFQ4htRYJEdDJYxTC349+dnqHg/Dhgcuoix6oXDKb4VBwyYKzr1ghF4+TSH/EymjgKrk/Kv12fqeCXY9130YJrIxzIuhdkgH8u4aDngXuynw3QjSj4WPdYAYVi8D7Mey7homSviMfR5+pXPIa8FwrKYILxVyEXLzPcpo6aTbkTJi4EwLCaIaBVy0TKmrj5IX57SjSh5MRCGxQRRrGIuWo4bBicjCahuRMmLgTAsJohmFXPRct6E2VXLxEfJi4EwLAYIzCGMYi5azlvh4lt+4HPIa4GwLCaIaBVz0XLdasgznUNcDIJhLSFkq5CLltvmfF9DvbJR8mIgDIsJolqFXJSc/Bbxrb6PoBrR8mIgDIsBoolVyEXJCcNHDBX6Hqrmo+S1QFgWEwRmrY+FXJRM24R/rny0vBgIw2KCSFYhFyUzXT1z0fuJj5IXA2FYTBDVKuSiZG66tDIS4atGtLwYCMPij0/VOasiiZIrE+9z0fLKR8tLgTAtJghvVWxRMkNPsowciKoRLS8GwrCYIHgk9KGQi5KFtc9i8r3EtGrloi+GwrCZKMrG/XiZfeKQe9ZeF1w/76ARaX0xFIbNRNG2VEXa7BWHzArsmG7WnCdEWl8MhWEzUIhsteY2RSgpWRJPmqdRXUUj0vpaKCybiSJypFimZARKvhww14jMg+droDBsJoq8xVaZu/uK4pAZXROT6+swF0KnvBgIw2KCqAwKCmH2iUNmIorSvOtxQBqQ1hdDYdjMPW9GCDmZ0jIomRFUseU43h8akdLXQmHZTBTw8rkK0ActM/GAsOp0mBBpfTEUhs1EgdmEl9xmrzhk6WekYHybEGl9MRSGzUSB+YQvscxeccgsypY8fuUBkdIXQ2HYDBTBMVLQ58krTpkXHSXmPgnXiLS+FgrLZqLAlCI0NwWKHargazW0vo5/4XPKi2F4tJcUMEKKkYX+rhgOGR0kS85JLFc8Wl4MhGEySTDs1U2r+6cqjvUiS+yFGzUfrS8G4tFicsBMAm/ChwfjkBuL0jAo5cJHq4thMAwGh4hpROahgQuGQ60RBjTfw31UE1peC4NhLylgCpFLK5M3nDKLVuU8grfPNrS6GAbDYHLABKKEKUHDqTI3hYi4fIWj5cUwPNpLCnUrj6HpSs7CE2OtF0JVdJS6GAbDYHBg4o2awpSWQMmp8vRN9Fc6Sl0Lg2UvMQRGGvdjZBcMh5wK866PQ1OajpIXA2FYTBCsv8vPTiAOWe/6aj6rbgabFhNEZZHjXGePOOW2NQyXWrvy0fJiIAyLAQKXHljtdPIIJbctupjH7PvC55DXAmFZTBCepcZ9mjxCyY05a9x4ZVz4HPJiIAyLCQJTBp4lnT3ilHPPTOEnPKe6GAbDXmIoj1UEP1xkHrHk4PGBziEvBsKwmCCaVTdRy6xon0rf/NaNKHkxEIbFPK8kVt1ELatoY93IqkHIpsUEEa26iVpW8ee6kVXD0k2LCQITh8e6iVpWJxKufNY8qGBaTBDVqpuo5QsIk89iIAyLebhIrLqJWr6AMPl8KYi3zNcxna7xntl/xxGdnDEMHmdNiqt+RFXjH1yIZ5/nmPuxR86VxOQ0fY84bokn6Hv4FNyglFpaL4TGQeUITMW1pljHiKJhMp5HPKZn9TzPmBRmFx2pPRi3G8T5NMJ5m2vxHsXqYmVIN1N5txb3T5cN/1OQxPmMB/dwD/VsEeyFoZ5FxO2Bj465hXItTFaQchS5x4vScUroaU69l9F284zrcKxW43hv/AgsbgGX3QpXHBhi7GIKewgdE3oAVMEtThLHCZ5W8Rk+GjdQaLj+cZ6lYdKRfOKBMH6guJ4DojruCop3caxpuhzzHoLkc6utr/imVOMRsYTvMYkCvsN+uI4hvStbrIHJNYRrpDXUnvCCgRrAjVZvEvGr1UsYe/W4suy41SScDYDKeN+hUZFavPSd6wAzWt11XI3L+/au4Pr67wqLyBe4BfSCCbeLY+UeOm5+YW56/GzxcaxcSsQMNDtcG/V+S0czzESd8D/1NCG+BBd2GaNyTlgpCwckZd9flxLhx72Z4trdqn4IgOlReDWtZx7pOv4heGr29B7stEb7cDee+C3dWkDIY17gcfNdZXhPp4Nnq9eE5bal9P4GuvAIhnNjDy9uGDvy4oTunotrQ4erwtr+cOPuB7cvY3su1LXMbCmscIJbfmz8MPkJ4wa49ZHTiFeugblKimMVlLJlz/zE+/ZIK8kx4ELqFnKoY0UwRDwAwTE6h/UaJbWe5QQNb3iPs4tgzfsYSh4rBPAYXiUGOS1zPljuq6uuMnMdsxoWn/rzBKQbMDD1CR58B7cdFjEBR/XMfMIyFLXHlVJmkWHhOUrepwzvaPtSnW8cVt5wOxpeqWOCzromCd8NN9yNnPw4zQEP3wir9JBmdGVhPCEJviSuwIG4whHEDx/oj3mLXP8SPtn7LUpwDfR/XA7CzcWnRswjnn7c557iBD0WO722T4gS/GXkgIXXp7HgzKc/9YJPDAXzYTwDcLUSUk9aAsBplBnguXh4U8i9UmYovozLYzqWwj68H+ZCP9YT3/RRBWai4+hXjNLcMQZBv9h6higOPvsPFviSk/3koCt4svPD68mlnPPjW+uQX5Cd5JkT6c8ltEDLj4fVP9pJMZjJ5EXn3e0ffb71l2QkYQ+NN1wbf16SkaTenslBEAoerZ7qwrueOUk3Fa0UBIU+jbk4bqlKQfDPP/3y5z/99H//wn9czgg//X+/LHtdCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTExNzkKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggNjEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzU1VzBQsLQAEqamRgrmRpYKKYZcQD6IlctlaGkOZuWAWRbGQAZIGZxhAKTBmnNgenK4MrjSAMsVEMwKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggMjQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRTXIFIQiE956iL/Cq5Fc9z6RSWUzuvw3NvCQrWoXmA9MCE0fwEkPsiZUTHzJ8L+gyfLcyO/A62ZlwT7huXMNlwzNhW+A7Kss7XkN3tlI/naGq7xo53i5SNXRlZJ96oZoLzJCIrhFZdCuXdUDTlO5S4RpsW4IU9UqsJ52gNOgRyvB3lGt8dRNPr7HkVM0hWs2tExqKsGx4QdTJJBG1DYsnlnMhUfmqG6s6LmCTJeL0gNyglWZ8elJJETCDfKzJaMwCNtCTu2cXxppLHkWOVzSYsDtJNfCA9+K2vvc2cY/zF/iFd9//Kw591wI+fwBL/l0GCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IDU2Ci9laWdodCA2NSAvQSA2OCAvRCA3NiAvTCA5NyAvYSAvYiAvYyAvZCAvZSAxMDUgL2kgMTA4IC9sIDExMCAvbiAvbyAxMTQgL3IKL3MgL3QgL3UgL3YgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9BIDE3IDAgUiAvRCAxOCAwIFIgL0wgMTkgMCBSIC9hIDIwIDAgUiAvYiAyMSAwIFIgL2MgMjIgMCBSIC9kIDIzIDAgUgovZSAyNCAwIFIgL2VpZ2h0IDI1IDAgUiAvZml2ZSAyNiAwIFIgL2ZvdXIgMjcgMCBSIC9pIDI4IDAgUiAvbCAyOSAwIFIKL24gMzEgMCBSIC9vIDMyIDAgUiAvb25lIDMzIDAgUiAvcGVyaW9kIDM0IDAgUiAvciAzNSAwIFIgL3MgMzYgMCBSCi9zaXggMzcgMCBSIC9zcGFjZSAzOCAwIFIgL3QgMzkgMCBSIC90aHJlZSA0MCAwIFIgL3R3byA0MSAwIFIgL3UgNDIgMCBSCi92IDQzIDAgUiAveSA0NCAwIFIgL3plcm8gNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDk1NlopCj4+CmVuZG9iagp4cmVmCjAgNDcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjEyODAgMDAwMDAgbiAKMDAwMDAyMTAxNyAwMDAwMCBuIAowMDAwMDIxMDQ5IDAwMDAwIG4gCjAwMDAwMjExODkgMDAwMDAgbiAKMDAwMDAyMTIxMCAwMDAwMCBuIAowMDAwMDIxMjMxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDExNjE3IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMTU5NSAwMDAwMCBuIAowMDAwMDE5NjMwIDAwMDAwIG4gCjAwMDAwMTk0MjMgMDAwMDAgbiAKMDAwMDAxODk1NiAwMDAwMCBuIAowMDAwMDIwNjgzIDAwMDAwIG4gCjAwMDAwMTE2MzcgMDAwMDAgbiAKMDAwMDAxMTgwMCAwMDAwMCBuIAowMDAwMDEyMDM3IDAwMDAwIG4gCjAwMDAwMTIxNzAgMDAwMDAgbiAKMDAwMDAxMjU1MCAwMDAwMCBuIAowMDAwMDEyODY3IDAwMDAwIG4gCjAwMDAwMTMxNzIgMDAwMDAgbiAKMDAwMDAxMzQ3NiAwMDAwMCBuIAowMDAwMDEzNzk4IDAwMDAwIG4gCjAwMDAwMTQyNjYgMDAwMDAgbiAKMDAwMDAxNDU4OCAwMDAwMCBuIAowMDAwMDE0NzU0IDAwMDAwIG4gCjAwMDAwMTQ4OTggMDAwMDAgbiAKMDAwMDAxNTAxNyAwMDAwMCBuIAowMDAwMDE1MTg5IDAwMDAwIG4gCjAwMDAwMTU0MjUgMDAwMDAgbiAKMDAwMDAxNTcxNiAwMDAwMCBuIAowMDAwMDE1ODcxIDAwMDAwIG4gCjAwMDAwMTU5OTQgMDAwMDAgbiAKMDAwMDAxNjIyNyAwMDAwMCBuIAowMDAwMDE2NjM0IDAwMDAwIG4gCjAwMDAwMTcwMjcgMDAwMDAgbiAKMDAwMDAxNzExNyAwMDAwMCBuIAowMDAwMDE3MzIzIDAwMDAwIG4gCjAwMDAwMTc3MzYgMDAwMDAgbiAKMDAwMDAxODA2MCAwMDAwMCBuIAowMDAwMDE4MzA3IDAwMDAwIG4gCjAwMDAwMTg0NTQgMDAwMDAgbiAKMDAwMDAxODY2OCAwMDAwMCBuIAowMDAwMDIxMzQwIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDcgL1Jvb3QgMSAwIFIgL0luZm8gNDYgMCBSID4+CnN0YXJ0eHJlZgoyMTQ5MQolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:55.823889\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["Layer 0 - Variance: 1.011019229888916\n", "Layer 2 - Variance: 1.0046828985214233\n", "Layer 4 - Variance: 1.060686469078064\n", "Layer 6 - Variance: 1.1315085887908936\n", "Layer 8 - Variance: 0.5648466348648071\n"]}], "source": ["def kaiming_init(model):\n", " for name, param in model.named_parameters():\n", " if name.endswith(\".bias\"):\n", " param.data.fill_(0)\n", " elif name.startswith(\"layers.0\"): # The first layer does not have ReLU applied on its input\n", " param.data.normal_(0, 1 / math.sqrt(param.shape[1]))\n", " else:\n", " param.data.normal_(0, math.sqrt(2) / math.sqrt(param.shape[1]))\n", "\n", "\n", "model = BaseNetwork(act_fn=nn.ReLU()).to(device)\n", "kaiming_init(model)\n", "visualize_gradients(model, print_variance=True)\n", "visualize_activations(model, print_variance=True)"]}, {"cell_type": "markdown", "id": "ef6d3efb", "metadata": {"papermill": {"duration": 0.068723, "end_time": "2025-04-08T10:49:57.140311", "exception": false, "start_time": "2025-04-08T10:49:57.071588", "status": "completed"}, "tags": []}, "source": ["The variance stays stable across layers.\n", "We can conclude that the Kaiming initialization indeed works well for ReLU-based networks.\n", "Note that for Leaky-ReLU etc., we have to slightly adjust the factor of $2$ in the variance as half of the values are not set to zero anymore.\n", "PyTorch provides a function to calculate this factor for many activation\n", "function, see `torch.nn.init.calculate_gain`\n", "([link](https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.calculate_gain))."]}, {"cell_type": "markdown", "id": "6c6e490d", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.066685, "end_time": "2025-04-08T10:49:57.281378", "exception": false, "start_time": "2025-04-08T10:49:57.214693", "status": "completed"}, "tags": []}, "source": ["## Optimization\n", "\n", "
\n", "\n", "Besides initialization, selecting a suitable optimization algorithm can be an important choice for deep neural networks.\n", "Before taking a closer look at them, we should define code for training the models.\n", "Most of the following code is copied from the previous tutorial, and only slightly altered to fit our needs."]}, {"cell_type": "code", "execution_count": 20, "id": "1ef85332", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:57.415458Z", "iopub.status.busy": "2025-04-08T10:49:57.414947Z", "iopub.status.idle": "2025-04-08T10:49:57.438051Z", "shell.execute_reply": "2025-04-08T10:49:57.437439Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.095062, "end_time": "2025-04-08T10:49:57.439185", "exception": false, "start_time": "2025-04-08T10:49:57.344123", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def _get_config_file(model_path, model_name):\n", " return os.path.join(model_path, model_name + \".config\")\n", "\n", "\n", "def _get_model_file(model_path, model_name):\n", " return os.path.join(model_path, model_name + \".tar\")\n", "\n", "\n", "def _get_result_file(model_path, model_name):\n", " return os.path.join(model_path, model_name + \"_results.json\")\n", "\n", "\n", "def load_model(model_path, model_name, net=None):\n", " config_file = _get_config_file(model_path, model_name)\n", " model_file = _get_model_file(model_path, model_name)\n", " assert os.path.isfile(config_file), (\n", " f'Could not find the config file \"{config_file}\". Are you sure this is the correct path and you have your model config stored here?'\n", " )\n", " assert os.path.isfile(model_file), (\n", " f'Could not find the model file \"{model_file}\". Are you sure this is the correct path and you have your model stored here?'\n", " )\n", " with open(config_file) as f:\n", " config_dict = json.load(f)\n", " if net is None:\n", " act_fn_name = config_dict[\"act_fn\"].pop(\"name\").lower()\n", " assert act_fn_name in act_fn_by_name, (\n", " f'Unknown activation function \"{act_fn_name}\". Please add it to the \"act_fn_by_name\" dict.'\n", " )\n", " act_fn = act_fn_by_name[act_fn_name]()\n", " net = BaseNetwork(act_fn=act_fn, **config_dict)\n", " net.load_state_dict(torch.load(model_file))\n", " return net\n", "\n", "\n", "def save_model(model, model_path, model_name):\n", " config_dict = model.config\n", " os.makedirs(model_path, exist_ok=True)\n", " config_file = _get_config_file(model_path, model_name)\n", " model_file = _get_model_file(model_path, model_name)\n", " with open(config_file, \"w\") as f:\n", " json.dump(config_dict, f)\n", " torch.save(model.state_dict(), model_file)\n", "\n", "\n", "def train_model(net, model_name, optim_func, max_epochs=50, batch_size=256, overwrite=False):\n", " \"\"\"Train a model on the training set of FashionMNIST.\n", "\n", " Args:\n", " net: Object of BaseNetwork\n", " model_name: (str) Name of the model, used for creating the checkpoint names\n", " max_epochs: Number of epochs we want to (maximally) train for\n", " patience: If the performance on the validation set has not improved for #patience epochs, we stop training early\n", " batch_size: Size of batches used in training\n", " overwrite: Determines how to handle the case when there already exists a checkpoint. If True, it will be overwritten. Otherwise, we skip training.\n", "\n", " \"\"\"\n", " file_exists = os.path.isfile(_get_model_file(CHECKPOINT_PATH, model_name))\n", " if file_exists and not overwrite:\n", " print(f'Model file of \"{model_name}\" already exists. Skipping training...')\n", " with open(_get_result_file(CHECKPOINT_PATH, model_name)) as f:\n", " results = json.load(f)\n", " else:\n", " if file_exists:\n", " print(\"Model file exists, but will be overwritten...\")\n", "\n", " # Defining optimizer, loss and data loader\n", " optimizer = optim_func(net.parameters())\n", " loss_module = nn.CrossEntropyLoss()\n", " train_loader_local = data.DataLoader(\n", " train_set, batch_size=batch_size, shuffle=True, drop_last=True, pin_memory=True\n", " )\n", "\n", " results = None\n", " val_scores = []\n", " train_losses, train_scores = [], []\n", " best_val_epoch = -1\n", " for epoch in range(max_epochs):\n", " train_acc, val_acc, epoch_losses = epoch_iteration(\n", " net, loss_module, optimizer, train_loader_local, val_loader, epoch\n", " )\n", " train_scores.append(train_acc)\n", " val_scores.append(val_acc)\n", " train_losses += epoch_losses\n", "\n", " if len(val_scores) == 1 or val_acc > val_scores[best_val_epoch]:\n", " print(\"\\t (New best performance, saving model...)\")\n", " save_model(net, CHECKPOINT_PATH, model_name)\n", " best_val_epoch = epoch\n", "\n", " if results is None:\n", " load_model(CHECKPOINT_PATH, model_name, net=net)\n", " test_acc = test_model(net, test_loader)\n", " results = {\n", " \"test_acc\": test_acc,\n", " \"val_scores\": val_scores,\n", " \"train_losses\": train_losses,\n", " \"train_scores\": train_scores,\n", " }\n", " with open(_get_result_file(CHECKPOINT_PATH, model_name), \"w\") as f:\n", " json.dump(results, f)\n", "\n", " # Plot a curve of the validation accuracy\n", " sns.set()\n", " plt.plot([i for i in range(1, len(results[\"train_scores\"]) + 1)], results[\"train_scores\"], label=\"Train\")\n", " plt.plot([i for i in range(1, len(results[\"val_scores\"]) + 1)], results[\"val_scores\"], label=\"Val\")\n", " plt.xlabel(\"Epochs\")\n", " plt.ylabel(\"Validation accuracy\")\n", " plt.ylim(min(results[\"val_scores\"]), max(results[\"train_scores\"]) * 1.01)\n", " plt.title(f\"Validation performance of {model_name}\")\n", " plt.legend()\n", " plt.show()\n", " plt.close()\n", "\n", " print((f\" Test accuracy: {results['test_acc'] * 100.0:4.2f}% \").center(50, \"=\") + \"\\n\")\n", " return results\n", "\n", "\n", "def epoch_iteration(net, loss_module, optimizer, train_loader_local, val_loader, epoch):\n", " ############\n", " # Training #\n", " ############\n", " net.train()\n", " true_preds, count = 0.0, 0\n", " epoch_losses = []\n", " t = tqdm(train_loader_local, leave=False)\n", " for imgs, labels in t:\n", " imgs, labels = imgs.to(device), labels.to(device)\n", " optimizer.zero_grad()\n", " preds = net(imgs)\n", " loss = loss_module(preds, labels)\n", " loss.backward()\n", " optimizer.step()\n", " # Record statistics during training\n", " true_preds += (preds.argmax(dim=-1) == labels).sum().item()\n", " count += labels.shape[0]\n", " t.set_description(f\"Epoch {epoch + 1}: loss={loss.item():4.2f}\")\n", " epoch_losses.append(loss.item())\n", " train_acc = true_preds / count\n", "\n", " ##############\n", " # Validation #\n", " ##############\n", " val_acc = test_model(net, val_loader)\n", " print(\n", " f\"[Epoch {epoch + 1:2i}] Training accuracy: {train_acc * 100.0:05.2f}%, Validation accuracy: {val_acc * 100.0:05.2f}%\"\n", " )\n", " return train_acc, val_acc, epoch_losses\n", "\n", "\n", "def test_model(net, data_loader):\n", " \"\"\"Test a model on a specified dataset.\n", "\n", " Args:\n", " net: Trained model of type BaseNetwork\n", " data_loader: DataLoader object of the dataset to test on (validation or test)\n", "\n", " \"\"\"\n", " net.eval()\n", " true_preds, count = 0.0, 0\n", " for imgs, labels in data_loader:\n", " imgs, labels = imgs.to(device), labels.to(device)\n", " with torch.no_grad():\n", " preds = net(imgs).argmax(dim=-1)\n", " true_preds += (preds == labels).sum().item()\n", " count += labels.shape[0]\n", " test_acc = true_preds / count\n", " return test_acc"]}, {"cell_type": "markdown", "id": "6e0b3e15", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.067649, "end_time": "2025-04-08T10:49:57.587486", "exception": false, "start_time": "2025-04-08T10:49:57.519837", "status": "completed"}, "tags": []}, "source": ["First, we need to understand what an optimizer actually does.\n", "The optimizer is responsible to update the network's parameters given the gradients.\n", "Hence, we effectively implement a function $w^{t} = f(w^{t-1}, g^{t}, ...)$ with $w$ being the parameters, and $g^{t} = \\nabla_{w^{(t-1)}} \\mathcal{L}^{(t)}$ the gradients at time step $t$.\n", "A common, additional parameter to this function is the learning rate, here denoted by $\\eta$.\n", "Usually, the learning rate can be seen as the \"step size\" of the update.\n", "A higher learning rate means that we change the weights more in the direction of the gradients, a smaller means we take shorter steps.\n", "\n", "As most optimizers only differ in the implementation of $f$, we can define a template for an optimizer in PyTorch below.\n", "We take as input the parameters of a model and a learning rate.\n", "The function `zero_grad` sets the gradients of all parameters to zero, which we have to do before calling `loss.backward()`.\n", "Finally, the `step()` function tells the optimizer to update all weights based on their gradients.\n", "The template is setup below:"]}, {"cell_type": "code", "execution_count": 21, "id": "1507c5dc", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:57.722548Z", "iopub.status.busy": "2025-04-08T10:49:57.721988Z", "iopub.status.idle": "2025-04-08T10:49:57.727235Z", "shell.execute_reply": "2025-04-08T10:49:57.726742Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.077302, "end_time": "2025-04-08T10:49:57.728335", "exception": false, "start_time": "2025-04-08T10:49:57.651033", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class OptimizerTemplate:\n", " def __init__(self, params, lr):\n", " self.params = list(params)\n", " self.lr = lr\n", "\n", " def zero_grad(self):\n", " # Set gradients of all parameters to zero\n", " for p in self.params:\n", " if p.grad is not None:\n", " p.grad.detach_() # For second-order optimizers important\n", " p.grad.zero_()\n", "\n", " @torch.no_grad()\n", " def step(self):\n", " # Apply update step to all parameters\n", " for p in self.params:\n", " if p.grad is None: # We skip parameters without any gradients\n", " continue\n", " self.update_param(p)\n", "\n", " def update_param(self, p):\n", " # To be implemented in optimizer-specific classes\n", " raise NotImplementedError"]}, {"cell_type": "markdown", "id": "a71b0f85", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.061965, "end_time": "2025-04-08T10:49:57.860153", "exception": false, "start_time": "2025-04-08T10:49:57.798188", "status": "completed"}, "tags": []}, "source": ["The first optimizer we are going to implement is the standard Stochastic Gradient Descent (SGD).\n", "SGD updates the parameters using the following equation:\n", "\n", "$$\n", "\\begin{split}\n", " w^{(t)} & = w^{(t-1)} - \\eta \\cdot g^{(t)}\n", "\\end{split}\n", "$$\n", "\n", "As simple as the equation is also our implementation of SGD:"]}, {"cell_type": "code", "execution_count": 22, "id": "b25383c7", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:58.034347Z", "iopub.status.busy": "2025-04-08T10:49:58.033228Z", "iopub.status.idle": "2025-04-08T10:49:58.038511Z", "shell.execute_reply": "2025-04-08T10:49:58.037833Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.088372, "end_time": "2025-04-08T10:49:58.039609", "exception": false, "start_time": "2025-04-08T10:49:57.951237", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class SGD(OptimizerTemplate):\n", " def __init__(self, params, lr):\n", " super().__init__(params, lr)\n", "\n", " def update_param(self, p):\n", " p_update = -self.lr * p.grad\n", " p.add_(p_update) # In-place update => saves memory and does not create computation graph"]}, {"cell_type": "markdown", "id": "055f1eec", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.069951, "end_time": "2025-04-08T10:49:58.175475", "exception": false, "start_time": "2025-04-08T10:49:58.105524", "status": "completed"}, "tags": []}, "source": ["In the lecture, we also have discussed the concept of momentum which replaces the gradient in the update by an exponential average of all past gradients including the current one:\n", "\n", "$$\n", "\\begin{split}\n", " m^{(t)} & = \\beta_1 m^{(t-1)} + (1 - \\beta_1)\\cdot g^{(t)}\\\\\n", " w^{(t)} & = w^{(t-1)} - \\eta \\cdot m^{(t)}\\\\\n", "\\end{split}\n", "$$\n", "\n", "Let's also implement it below:"]}, {"cell_type": "code", "execution_count": 23, "id": "d92214d7", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:58.304948Z", "iopub.status.busy": "2025-04-08T10:49:58.303693Z", "iopub.status.idle": "2025-04-08T10:49:58.310109Z", "shell.execute_reply": "2025-04-08T10:49:58.309415Z"}, "lines_to_next_cell": 2, "papermill": {"duration": 0.073158, "end_time": "2025-04-08T10:49:58.311268", "exception": false, "start_time": "2025-04-08T10:49:58.238110", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class SGDMomentum(OptimizerTemplate):\n", " def __init__(self, params, lr, momentum=0.0):\n", " super().__init__(params, lr)\n", " self.momentum = momentum # Corresponds to beta_1 in the equation above\n", " self.param_momentum = {p: torch.zeros_like(p.data) for p in self.params} # Dict to store m_t\n", "\n", " def update_param(self, p):\n", " self.param_momentum[p] = (1 - self.momentum) * p.grad + self.momentum * self.param_momentum[p]\n", " p_update = -self.lr * self.param_momentum[p]\n", " p.add_(p_update)"]}, {"cell_type": "markdown", "id": "c0b9b3a0", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.067198, "end_time": "2025-04-08T10:49:58.445926", "exception": false, "start_time": "2025-04-08T10:49:58.378728", "status": "completed"}, "tags": []}, "source": ["Finally, we arrive at Adam.\n", "Adam combines the idea of momentum with an adaptive learning rate, which is based on an exponential average of the squared gradients, i.e. the gradients norm.\n", "Furthermore, we add a bias correction for the momentum and adaptive learning rate for the first iterations:\n", "\n", "$$\n", "\\begin{split}\n", " m^{(t)} & = \\beta_1 m^{(t-1)} + (1 - \\beta_1)\\cdot g^{(t)}\\\\\n", " v^{(t)} & = \\beta_2 v^{(t-1)} + (1 - \\beta_2)\\cdot \\left(g^{(t)}\\right)^2\\\\\n", " \\hat{m}^{(t)} & = \\frac{m^{(t)}}{1-\\beta^{t}_1}, \\hat{v}^{(t)} = \\frac{v^{(t)}}{1-\\beta^{t}_2}\\\\\n", " w^{(t)} & = w^{(t-1)} - \\frac{\\eta}{\\sqrt{v^{(t)}} + \\epsilon}\\circ \\hat{m}^{(t)}\\\\\n", "\\end{split}\n", "$$\n", "\n", "Epsilon is a small constant used to improve numerical stability for very small gradient norms.\n", "Remember that the adaptive learning rate does not replace the learning\n", "rate hyperparameter $\\eta$, but rather acts as an extra factor and\n", "ensures that the gradients of various parameters have a similar norm."]}, {"cell_type": "code", "execution_count": 24, "id": "f0756863", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:58.576686Z", "iopub.status.busy": "2025-04-08T10:49:58.575619Z", "iopub.status.idle": "2025-04-08T10:49:58.584507Z", "shell.execute_reply": "2025-04-08T10:49:58.583821Z"}, "papermill": {"duration": 0.072591, "end_time": "2025-04-08T10:49:58.585566", "exception": false, "start_time": "2025-04-08T10:49:58.512975", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class Adam(OptimizerTemplate):\n", " def __init__(self, params, lr, beta1=0.9, beta2=0.999, eps=1e-8):\n", " super().__init__(params, lr)\n", " self.beta1 = beta1\n", " self.beta2 = beta2\n", " self.eps = eps\n", " self.param_step = {p: 0 for p in self.params} # Remembers \"t\" for each parameter for bias correction\n", " self.param_momentum = {p: torch.zeros_like(p.data) for p in self.params}\n", " self.param_2nd_momentum = {p: torch.zeros_like(p.data) for p in self.params}\n", "\n", " def update_param(self, p):\n", " self.param_step[p] += 1\n", "\n", " self.param_momentum[p] = (1 - self.beta1) * p.grad + self.beta1 * self.param_momentum[p]\n", " self.param_2nd_momentum[p] = (1 - self.beta2) * (p.grad) ** 2 + self.beta2 * self.param_2nd_momentum[p]\n", "\n", " bias_correction_1 = 1 - self.beta1 ** self.param_step[p]\n", " bias_correction_2 = 1 - self.beta2 ** self.param_step[p]\n", "\n", " p_2nd_mom = self.param_2nd_momentum[p] / bias_correction_2\n", " p_mom = self.param_momentum[p] / bias_correction_1\n", " p_lr = self.lr / (torch.sqrt(p_2nd_mom) + self.eps)\n", " p_update = -p_lr * p_mom\n", "\n", " p.add_(p_update)"]}, {"cell_type": "markdown", "id": "28c0cc9a", "metadata": {"papermill": {"duration": 0.062721, "end_time": "2025-04-08T10:49:58.713048", "exception": false, "start_time": "2025-04-08T10:49:58.650327", "status": "completed"}, "tags": []}, "source": ["### Comparing optimizers on model training\n", "\n", "After we have implemented three optimizers (SGD, SGD with momentum, and Adam), we can start to analyze and compare them.\n", "First, we test them on how well they can optimize a neural network on the FashionMNIST dataset.\n", "We use again our linear network, this time with a ReLU activation and the kaiming initialization, which we have found before to work well for ReLU-based networks.\n", "Note that the model is over-parameterized for this task, and we can achieve similar performance with a much smaller network (for example `100,100,100`).\n", "However, our main interest is in how well the optimizer can train *deep*\n", "neural networks, hence the over-parameterization."]}, {"cell_type": "code", "execution_count": 25, "id": "d14d2433", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:58.848557Z", "iopub.status.busy": "2025-04-08T10:49:58.847537Z", "iopub.status.idle": "2025-04-08T10:49:58.861048Z", "shell.execute_reply": "2025-04-08T10:49:58.860412Z"}, "papermill": {"duration": 0.087728, "end_time": "2025-04-08T10:49:58.862202", "exception": false, "start_time": "2025-04-08T10:49:58.774474", "status": "completed"}, "tags": []}, "outputs": [], "source": ["base_model = BaseNetwork(act_fn=nn.ReLU(), hidden_sizes=[512, 256, 256, 128])\n", "kaiming_init(base_model)"]}, {"cell_type": "markdown", "id": "884fc048", "metadata": {"papermill": {"duration": 0.065765, "end_time": "2025-04-08T10:49:58.996713", "exception": false, "start_time": "2025-04-08T10:49:58.930948", "status": "completed"}, "tags": []}, "source": ["For a fair comparison, we train the exact same model with the same seed with the three optimizers below.\n", "Feel free to change the hyperparameters if you want (however, you have to train your own model then)."]}, {"cell_type": "code", "execution_count": 26, "id": "fc2c25ee", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:59.153214Z", "iopub.status.busy": "2025-04-08T10:49:59.152166Z", "iopub.status.idle": "2025-04-08T10:49:59.509027Z", "shell.execute_reply": "2025-04-08T10:49:59.508321Z"}, "papermill": {"duration": 0.426497, "end_time": "2025-04-08T10:49:59.510480", "exception": false, "start_time": "2025-04-08T10:49:59.083983", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Model file of \"FashionMNIST_SGD\" already exists. Skipping training...\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDIxLjE0NSAzMzEuNDAyNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1ZXW9bNxJ9v7/iPsYPpeeD5JCPST+MLbALtDG6D4vFwlCdJoGdNM7uFvvv9wwl+ZKyq6qRbBuCrSNqyDOcOZzhPf/m+r/vVtc/Xryav349nS/vVp8nnt/j9ctM83u8fpt5vsDrl4nw7naKwoFjwv839/+rcogkWRJAGt++naY30/lLGPg8U6hsORqlUh68iZW4ZrIy3/ncF8OAad/oaUo5FMwWJdScfF6skxWjeuzmHlOqgczW4Oa7A9YW/Wl+YFaTBZZZcg6Mv3fX89/nD/P5S3F2PH+P13u81j5bvDrBqzkGU5UkwyoXdJh/ej39MH/aGqbACfuxtd3eXmzQ6RP2iuavCB9lDuLG2GLRWVJgcnOr2+nV5XT+Hc/M8+Wbto+XP0//mF/Q2fzP+fL76dvL6Yc24VGEd8OIctAEK3Vg3MEnoMwkoTRrapQP4ZyelHO0UK0Q2ch5gU/BOdLaWq71oG3mp93nUkMm0jLmXwefgnORtbWYOcWDSD/pRgskTkTAaSDdwScgLRI31kQhdAeQlifdaTEkW0wcR8736Cko59SMaS2Z+CDKT7rPyjHEbJDUgXMHn4C0km2sRV/4AaT1SfdZYYxKLXXM6A4+BelYN9aYYj2I9NPudLVgjGzTkfQCn4J0pbU1/z1Iu+Ow032moJYpENcarP+6jF//9tePq7efn9JvG1uZgnCx2FVe99CX618z7WEHxyVJavuKGQjHMxCtHJRS1J7pgh1JtfjqkkXUM/DbXq75GbgiUoNWYSkd2Q48ki1zQYRIjETJ6n665TnoJg3RShHu6S7gsXSheFIrqxZGfb6Pbn1Sfd/SLTGknBL37VIHHku3UED1V8SSlf2JW+UZ6AqnkJMI1Y5uBx5JVxhNr6GTw/5W3k/3OXRKYkZrWSppT3cBj6WLtaYEGUhU694eE5Seg66Z/00193QX8Fi6piHHVAlHbt0vVfU5pEqphAol7mN5wY4kq+S3EpL9Cof2CRUH2ilP3MpXbo/R5TeJN4gA76lQfjqbzTlJ5Ywfm19c3bz7+erf7z5+mK9Wq//cXa3+dyKHhjT/NqEoqYX8AEsGF8T1lZJowpu8vVSK84/9/Y07frKISWux7ARvp4IzH6uGf3Boq6E59SBD02sEFgXM0bEiANEi3Ey1oIRh71wZHWKtOOD99OzuQjhqIM41eWYy2otciGl9/KTIVL22YMEgignWM6o/rJN9Urepggopz2gh0ErEotxwtOBJk3r/jCEcS27ml+sIRkGK+SP5Khl+VRK/POKKY8CPvWYnYzmCtaEHRWhQO8EcR+eH8t3rHkHsEQ632nBMBtWvEFUBk2oatc27XAnAccEqErONR41dMW3GcCRsRhB7DAu8I7GqApeC9BNFXw0cNhNUDNEoGgNOrNzMiIdvLYLDRtoVCTSq4UtTLhHez3Bcsw/3gKMoaMUYVBOIOg73FOwbe4GOM8xSju4egXsQHmABHO6MVKzZgXsSFpv9XgJLzhSj7+7SGCOPIJZE4l4QeAcbnZF8jqviq204vBNrpOpdMNSGSs5+CKMUDCgYUoYbMhpFhU3fdYV74HuKHvclRNJc3E7Xm/oKDMWVtPFwj1Vud0bmTY0mcvt+W8tgnkHLUKHg9GrBhmMM2YHAw/oRVQrqrfNRuMdy8mlRK5DCye6drjuUklDXWaRmBt6JWKdxw7kgktoyfW1asHnAUQdSTr5Z2NZAGU5x80hqxOB6OLyjxaxaw009hxxf+jOp8FpBwHdqf5xSlLz5caVI/f2zQj4wF6L8MaVAliZDhzfnBAchlMogGP2V9CgY7EFYR8GAkhqGt9jpBQMpATny02gUDEEIwk95RzBg3VLym+ZRMBRmYta4KxjIRIMmy65gQKfwObXI7wVDOJhBV+MoGKx+t1G5tYGdYPhUCl2wPAqG4xFh1AqyTjDQFsFpRtUGwXDzVZHFcRQM1uznDsdRL9jz37LFNOqFs2p5nke9YNcFKrLO/0UvkDvwJpI1j3rh0xYsJo5ywZApTAQDo1y4ecNi1ubv5YIFBpEBbWs7uWhnBGJwrTqLXLDiqElkLfA7uUA0eYrhDBrlYgidTi44ghUZN/Xq5MJjBFlItiMXkOlQEtJuRy58XrBprBa1cOtUcJbFUS3clxVzNud0asGoVRlHR9xRC4b2IqIhJKNcsFekFd6vo1w4Hp14GuXCnV/h4/KwsRPXgYD83H2Q01Vg/SXRY4+QYPHhI6jbxx9BYeyBT7CWkZ2B37dKIHJo8QfJQQXmltETbYz8Ttn2R3Xbr9d3bz7enXkRWMWoqP/ML26vPqyu549v5u/OptqeHK4/wUdXn9/ii3/9219eX/7r9cU3KPimbcF3/lL/7LPD98DKn3uC2JIytRO21gwt8EcY4odE83yHu6paSM5cetyzSreji4snmA+okQuCj11NHa4ENd5u2oC7IESfpptRCQK8Ht2tr0NXWy4ddjNlP5Pc3T3s5cc40T1yvySYW2Pd8m/usYXoMkHnk4deXfmz1VfTYwfu/CWleXu0ihPSZ0HNmnNpCeEFzgDhpC0PoN0M2ZcdtmaCehnSs/fK9vKsaRcEFyP9d35xd/XuQ9/ENN4bzl9WZGw5W8G6NiqwJb1gC+se+wLaKADzA0ngxzo5g9Cuf10Rhs5t+j9wd7v8CmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTk5NgplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxNyAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDgxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RlCLZv40NEaGxn3QnnWCHCm5xWAy0Oxyt+NRTmH3oHhKSUHPdRFgzJdqEpF/6yzDDmFjItq83V65yvhbcHIsKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XBlcaAL+MDVYKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Oyw3AMAhD70zBCOFTAvtUVQ/J/teGfHrBD1vIuAkWDB+j2oWVA2+CsSd1YF1eAxVCFhlk5Ns7F4tKZha/miapE9Ikcd5EoTtNSp0PtNPb4IXnA/XpHewKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDc3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWNwQ3AMAgD/0zBCDiFUPapqj7S/b8tRHzsMwjserJwpEwT9hF8gf6c9NI4ULTITBlo2rO+2CS5g5cjlCea0qti9edFD90fyZ4YDAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSO9KbQQjrv1PoAp5Z3st5nMmk+HP/NgI7FSywQgLSAgeZeIkhqlGu+CVPMF4n8He9PI2fx7uQWvBUpB+4Nm3j/VizJgqWRiyF2ce+HyXkeGr8GwI9F2nCjExGDiQDcb/W5896kymH34A0bU4fJUkPogW7W8OOLwsySHpSw5Kd/LCuBVYXoQlzY00kI6dWpub52DNcxhNjJKiaBSTpE/epghFpxmPnrCUPMhxP9eLFr7fxWuYx9bKqQMY2wRxsJzPhFEUE4heUJDdxF00dxdHMWHO70FBS5L67h5OTXveXk6jAKyGcxVrCMUNPWeZkp0EJVK2cADOs174wTtNGCXdqur0r9vXzzCSM2xx2VkqmwTkO7mWTOYJkrzsmbMLjEPPePYKRmDe/iy2CK5c512T6sR9FG+mD4vqcqymzFSX8Q5U8seIa/5/f+/nz/P4HjCh+IwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggNjYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM0VDBQ0DUCEmaGJgrmRpYKKYZcQD6IlcsFE8sBs8xMzIAsY1NTJJYBkDYyNYPTEBmgAXAGRH8GVxoAUmsUwAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVwZXGkAdDISoQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDE2MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzIyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRu23FMAzsNQUXMCB+Jc3jIEiRt3+bO9qpSNO8H1VeMqVcLnXJKllh8qVDdYqmfJ5mpvwO9ZDjmB7ZIbpT1pZ7GBaWiXlKHbGaLPdwCza+AJoScwvx9wjwK4BRwESgbvH3D7pZEkAaFPwU6JqrllhiAg2Lha3ZFeJW3SlYuKv4diS5BwlyMVnoUw5Fiim3wHwZLNmRWpzrclkK/259AhphhTjss4tE4HnAA0wk/mSAbM8+W+zq6kU2doY46dCAi4CbzSQBQVM4qz64Yftqu+bnmSgnODnWr6Ixvg1O5ktS3le5x8+gQd74Mzxnd45QDppQCPTdAiCH3cBGhD61z8AuA7ZJu3djSvmcZCm+BDYK9qhTHcrwYuzMVm/Y/MfoymZRbJCV9dHpDsrcoBNiHm9koVuytvs3D7N9/wFfGXtkCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDIzOSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvTGVuZ3RoIDU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1MFAwUNC1VNA1MjZVMDUEsg3NTBVSDLng7FwIEySfwwVTCWGBpHMQKnO4MrjSAHNRD48KZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNTUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgL25pbmUgNjggL0QgL0UgL0YgL0cgNzMgL0kgNzcgL00gL04gODMgL1MgL1QgODYgL1YgOTUgL3VuZGVyc2NvcmUgOTcKL2EgOTkgL2MgL2QgL2UgL2YgMTA0IC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAvcCAxMTQgL3IgL3MgL3QgL3UgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9EIDE3IDAgUiAvRSAxOCAwIFIgL0YgMTkgMCBSIC9HIDIwIDAgUiAvSSAyMSAwIFIgL00gMjIgMCBSIC9OIDIzIDAgUgovUyAyNCAwIFIgL1QgMjUgMCBSIC9WIDI2IDAgUiAvYSAyNyAwIFIgL2MgMjggMCBSIC9kIDI5IDAgUiAvZSAzMCAwIFIKL2VpZ2h0IDMxIDAgUiAvZiAzMiAwIFIgL2ZpdmUgMzMgMCBSIC9mb3VyIDM0IDAgUiAvaCAzNSAwIFIgL2kgMzYgMCBSCi9sIDM3IDAgUiAvbSAzOCAwIFIgL24gMzkgMCBSIC9uaW5lIDQwIDAgUiAvbyA0MSAwIFIgL29uZSA0MiAwIFIgL3AgNDMgMCBSCi9wZXJpb2QgNDQgMCBSIC9yIDQ1IDAgUiAvcyA0NiAwIFIgL3NpeCA0NyAwIFIgL3NwYWNlIDQ4IDAgUiAvdCA0OSAwIFIKL3RocmVlIDUwIDAgUiAvdHdvIDUxIDAgUiAvdSA1MiAwIFIgL3VuZGVyc2NvcmUgNTMgMCBSIC95IDU0IDAgUgovemVybyA1NSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjU2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDk1OVopCj4+CmVuZG9iagp4cmVmCjAgNTcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQ2NzQgMDAwMDAgbiAKMDAwMDAxNDQzNyAwMDAwMCBuIAowMDAwMDE0NDY5IDAwMDAwIG4gCjAwMDAwMTQ2MTEgMDAwMDAgbiAKMDAwMDAxNDYzMiAwMDAwMCBuIAowMDAwMDE0NjUzIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAyNDMzIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjQxMiAwMDAwMCBuIAowMDAwMDEyOTI4IDAwMDAwIG4gCjAwMDAwMTI3MjEgMDAwMDAgbiAKMDAwMDAxMjIwMSAwMDAwMCBuIAowMDAwMDEzOTgxIDAwMDAwIG4gCjAwMDAwMDI0NTMgMDAwMDAgbiAKMDAwMDAwMjY5MCAwMDAwMCBuIAowMDAwMDAyODQzIDAwMDAwIG4gCjAwMDAwMDI5OTEgMDAwMDAgbiAKMDAwMDAwMzMxMSAwMDAwMCBuIAowMDAwMDAzNDM0IDAwMDAwIG4gCjAwMDAwMDM1OTYgMDAwMDAgbiAKMDAwMDAwMzc0NSAwMDAwMCBuIAowMDAwMDA0MTU5IDAwMDAwIG4gCjAwMDAwMDQyOTcgMDAwMDAgbiAKMDAwMDAwNDQ0MSAwMDAwMCBuIAowMDAwMDA0ODIxIDAwMDAwIG4gCjAwMDAwMDUxMjYgMDAwMDAgbiAKMDAwMDAwNTQzMCAwMDAwMCBuIAowMDAwMDA1NzUyIDAwMDAwIG4gCjAwMDAwMDYyMjAgMDAwMDAgbiAKMDAwMDAwNjQyOSAwMDAwMCBuIAowMDAwMDA2NzUxIDAwMDAwIG4gCjAwMDAwMDY5MTcgMDAwMDAgbiAKMDAwMDAwNzE1NCAwMDAwMCBuIAowMDAwMDA3Mjk4IDAwMDAwIG4gCjAwMDAwMDc0MTcgMDAwMDAgbiAKMDAwMDAwNzc0OCAwMDAwMCBuIAowMDAwMDA3OTg0IDAwMDAwIG4gCjAwMDAwMDgzNzkgMDAwMDAgbiAKMDAwMDAwODY3MCAwMDAwMCBuIAowMDAwMDA4ODI1IDAwMDAwIG4gCjAwMDAwMDkxMzcgMDAwMDAgbiAKMDAwMDAwOTI2MCAwMDAwMCBuIAowMDAwMDA5NDkzIDAwMDAwIG4gCjAwMDAwMDk5MDAgMDAwMDAgbiAKMDAwMDAxMDI5MyAwMDAwMCBuIAowMDAwMDEwMzgzIDAwMDAwIG4gCjAwMDAwMTA1ODkgMDAwMDAgbiAKMDAwMDAxMTAwMiAwMDAwMCBuIAowMDAwMDExMzI2IDAwMDAwIG4gCjAwMDAwMTE1NzMgMDAwMDAgbiAKMDAwMDAxMTY5OSAwMDAwMCBuIAowMDAwMDExOTEzIDAwMDAwIG4gCjAwMDAwMTQ3MzQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA1NyAvUm9vdCAxIDAgUiAvSW5mbyA1NiAwIFIgPj4Kc3RhcnR4cmVmCjE0ODg1CiUlRU9GCg==", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:59.308193\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["============= Test accuracy: 89.09% ==============\n", "\n"]}], "source": ["SGD_model = copy.deepcopy(base_model).to(device)\n", "SGD_results = train_model(\n", " SGD_model, \"FashionMNIST_SGD\", lambda params: SGD(params, lr=1e-1), max_epochs=40, batch_size=256\n", ")"]}, {"cell_type": "code", "execution_count": 27, "id": "99a4ae40", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:49:59.657959Z", "iopub.status.busy": "2025-04-08T10:49:59.657741Z", "iopub.status.idle": "2025-04-08T10:50:00.029537Z", "shell.execute_reply": "2025-04-08T10:50:00.029003Z"}, "papermill": {"duration": 0.449635, "end_time": "2025-04-08T10:50:00.030862", "exception": false, "start_time": "2025-04-08T10:49:59.581227", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Model file of \"FashionMNIST_SGDMom\" already exists. Skipping training...\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDIxLjE0NSAzMzEuNDAyNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1ZTW8bNxC976/g0T6Enhl+H5MmMRogBdIY7aEoCkOxExv+SOy2Qf9933AlLSk7imJLtqHE+8Qd8g1nHmd2D16e/Hs2O/n18IX56f1wMF3Nbgc25/h8NGTO8flq2Bzi83EgXF0OXtiyD/j7Yvm3c2w9SZQAkPrLT8NwOhw8h4FbQ7Zwij5RyPnOhS/EJVLK5kbnPuwGDOtGD0OINmM2L7bEoPNinewwqsUulpijYimlEZzf22F10V/MHbMuJMtiJEbL+P/mxPxurszBc1F2bN7gc47P6LPJqwO8Gr1NzkmQbpUT2s0/vB/emS8Lw2Q5YD8Wtuvl4RwdvmCvyDwjfBXZihrj5LMzEiyTmptdDi+OhoPXbJjN0Wndx6MPwx9mj/bNn+bozfDqaHhXJ3wU4dUwomhdgJXSMW7gLVBmEpurNZcobsI57JSzT7akTJR6zhO8Dc6eRmuxlI22mXe7z7nYSORyn38NvA3OWUZrPnLwG5He6UYLJE5EwKkj3cBbIC3i59bEQeg2IC073WlJSDYf2Pecl+g2KMdQjbmSI/FGlHe6z4699TFBUjvODbwF0o7S3JrXhW9A2u10nx2MUS659BndwNsg7cvcGpMvG5He7U6XZBMj21xPeoK3QbrQaE1/N9Ju3+10mymoZTLEtdjU3i797a8+X88+3e7Sb3NbIdjkvY9N5bWEHq5/o2m2AZVfklDIratmbI5PwLSIlRA8Un+iOmGP5JozQiwkKaXweqr5CaiyZJtidKktqBvwkWQZ51vIMebkCue1dMtOBW9BF4ePJK3HW7oT+Fi6qM+poInxqawvy22RJ6ArxDbljEJ8YjthjyUL3YyEQ1y4uPVZW/xTkHXZIqvEt2nbgI+kK85jZSWEEopfn7nlKURKkrcZzRH5lu4EPpZuIhsdBUYL4r+Tubk/wNTKM7XH6AM1UDhZl3nNGfbbvknKSgpH/CSzd3xx9uH477PrK3M8m/1zczz7b0sutcF8HQgxkckV4ZDgAj8+dBAXcBEXjx28+bXt8NX1g67S45TKSvByyAxiIjizYtLnIZk0zNAWoVONqOdLsS76ICosBbrvWFsb/GNzwewKN80yo7VwaPiSGmHUnzETE/wHjkQw4xQXVy+yYXjAoXgJutf1XikUIryOnkKTssJo0YILDj5PwZKgBq1WpnaVc7SBSoh6ilebJPpwAUmN9Pbk63jYjBKLTgtSLJGqWjI6A5R33qFhI61W0LLW8fCMJJzmpVYxQkHgjou2ZUTbg50rTuq80BIkaY4VTr7onReDwDnioS6KQ20CaKkZgXNCQkwhXB22O1GpEa83o+CUnIDD9xxynbZp2gTODHBbkYoXG3yCSADP6jXsreJwT06cWAs4tjkUrERxuAfBARbA0R9g31y1D/cEDIlwQyRLgVLUTZwaJ41KR55rrSTwDvIKfW7Fc8ZhUc3AO754KtolOes8tLouB97JnHWLJIGJR4YrXQf3wPfkQQu7q1FUY6rpXRSHweLrePVt4fpMISUL2mM9o0/zGFscQQtdeElwYR0P93jcjZt1PKJBEws43JNiqNNmqxEbKjx1D9U8tjFX8/AOmLsEWqiOEXvjauAc7CH6fcyK7Q8O5BSHdxBFWCzwiGBAZVgqjh3NKZVUzaeMcKz4VL9DPxDjaDcatX+cTuQ4/1GdCO3zSQfxiDnCwffpBJI0oJ7te8pJLuBlxPAYtJNcZGipS4jxTi6KSjpj+1fUgrRoDqnuSKsWBNvwjONeLdCBCnKJV8SCYF1FPvdqgXIXAklZVsQCVrRMT35FLFTS0OSNi5zEokQcIjGtagXoaA0yl4SlVPTWJ6mojwC9w8nbSQVDcRIyMK5IhXLC97pNnVTAOyhGudSYb6SC0fWV6MRJLxWdJxup6JbTSEXr4kYpFPaEMA69UqjPkCBVvieh0MNSNLdcLxQsCLmIdjD0QoEQRvhwGM1MQqER4bwPtfBphELDxmWnB18nFGoHzvOrQtGustEJ9RlkzlfdanSi3dlJJhQFo6qJjUqoEZylPIrWpBKKI95iPQgbmWDKSMikPWInE10gNDLR+bKRCc0iuC/WneqrJNH8R6d35wF/U3m1KX3fqwVYvPtq4vL+VxMYu+GbjWlkY+DbVglENi35srOQNZVxg8BYmPlGufa9eu3zyc3p9c2+Fn8FRWR2+mP2Lo+vZifm+tS83h9Kfac0foOvjm8/4ca3v/z8/uiv94cv315fotYbFrXewXP3oy+WzoHlH3u9VNNSj2OIS5m3w6hyEO7V/Q2uopqgIyAvLa5Ns1uMRv+MXKTcoaioeRw7GxrcaUYudq7DVRO8TtPM6BDrYRzdrK9BZwsuDXYxRD2Q1OMtHKXW581ES2S5JJgbsWb5F0tsIjpN0Pjkrldn+uLtxXDfaWseUpXX924oEnQWHJQx5poVWh90EI7ZfAdaTZM1KQLxqExQv0Bg1/b2R4h9rydjxEj9NXs3x2dXbf9Sec85P6zCWHBG/RVkLgUL0hM2sW6xB9BGWxnvqALf18QlnAnjr4pC17QN/wNSglbSCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTkxMgplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxNyAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDgxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RlCLZv40NEaGxn3QnnWCHCm5xWAy0Oxyt+NRTmH3oHhKSUHPdRFgzJdqEpF/6yzDDmFjItq83V65yvhbcHIsKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDOyNFUwULC0ABKGluYK5kaWCimGXEA+iJXLBRPLAbMMgDRYaQ5MRQ5XBlcaAL+MDVYKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Oyw3AMAhD70zBCOFTAvtUVQ/J/teGfHrBD1vIuAkWDB+j2oWVA2+CsSd1YF1eAxVCFhlk5Ns7F4tKZha/miapE9Ikcd5EoTtNSp0PtNPb4IXnA/XpHewKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDc3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWNwQ3AMAgD/0zBCDiFUPapqj7S/b8tRHzsMwjserJwpEwT9hF8gf6c9NI4ULTITBlo2rO+2CS5g5cjlCea0qti9edFD90fyZ4YDAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSO9KbQQjrv1PoAp5Z3st5nMmk+HP/NgI7FSywQgLSAgeZeIkhqlGu+CVPMF4n8He9PI2fx7uQWvBUpB+4Nm3j/VizJgqWRiyF2ce+HyXkeGr8GwI9F2nCjExGDiQDcb/W5896kymH34A0bU4fJUkPogW7W8OOLwsySHpSw5Kd/LCuBVYXoQlzY00kI6dWpub52DNcxhNjJKiaBSTpE/epghFpxmPnrCUPMhxP9eLFr7fxWuYx9bKqQMY2wRxsJzPhFEUE4heUJDdxF00dxdHMWHO70FBS5L67h5OTXveXk6jAKyGcxVrCMUNPWeZkp0EJVK2cADOs174wTtNGCXdqur0r9vXzzCSM2xx2VkqmwTkO7mWTOYJkrzsmbMLjEPPePYKRmDe/iy2CK5c512T6sR9FG+mD4vqcqymzFSX8Q5U8seIa/5/f+/nz/P4HjCh+IwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggNjYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM0VDBQ0DUCEmaGJgrmRpYKKYZcQD6IlcsFE8sBs8xMzIAsY1NTJJYBkDYyNYPTEBmgAXAGRH8GVxoAUmsUwAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVwZXGkAdDISoQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDE2MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzIyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRu23FMAzsNQUXMCB+Jc3jIEiRt3+bO9qpSNO8H1VeMqVcLnXJKllh8qVDdYqmfJ5mpvwO9ZDjmB7ZIbpT1pZ7GBaWiXlKHbGaLPdwCza+AJoScwvx9wjwK4BRwESgbvH3D7pZEkAaFPwU6JqrllhiAg2Lha3ZFeJW3SlYuKv4diS5BwlyMVnoUw5Fiim3wHwZLNmRWpzrclkK/259AhphhTjss4tE4HnAA0wk/mSAbM8+W+zq6kU2doY46dCAi4CbzSQBQVM4qz64Yftqu+bnmSgnODnWr6Ixvg1O5ktS3le5x8+gQd74Mzxnd45QDppQCPTdAiCH3cBGhD61z8AuA7ZJu3djSvmcZCm+BDYK9qhTHcrwYuzMVm/Y/MfoymZRbJCV9dHpDsrcoBNiHm9koVuytvs3D7N9/wFfGXtkCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDIzOSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDE2MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvTGVuZ3RoIDU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1MFAwUNC1VNA1MjZVMDUEsg3NTBVSDLng7FwIEySfwwVTCWGBpHMQKnO4MrjSAHNRD48KZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvTGVuZ3RoIDE0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9j8EOwzAIQ+/5Cv9ApNgpoXxPp2qH7v+vI0u7C3oCY4yF0NAbqprDhmCb48XSJVRr+BTFQCU3yJlgDqWk0h1HkXpiOBhcHrQbjuKx6PoRu5JmfdDGQrolaIB7rFNp3KZxE8QdNQXqKeqco7wQuZ+pZ9g0kt00s5JzuA2/e89T1/+nq7zL+QW9dy7+CmVuZHN0cmVhbQplbmRvYmoKNTUgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCA1NgovZWlnaHQgL25pbmUgNjggL0QgL0UgL0YgL0cgNzMgL0kgNzcgL00gL04gODMgL1MgL1QgODYgL1YgOTUgL3VuZGVyc2NvcmUgOTcKL2EgOTkgL2MgL2QgL2UgL2YgMTA0IC9oIC9pIDEwOCAvbCAvbSAvbiAvbyAvcCAxMTQgL3IgL3MgL3QgL3UgMTIxIC95IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9EIDE3IDAgUiAvRSAxOCAwIFIgL0YgMTkgMCBSIC9HIDIwIDAgUiAvSSAyMSAwIFIgL00gMjIgMCBSIC9OIDIzIDAgUgovUyAyNCAwIFIgL1QgMjUgMCBSIC9WIDI2IDAgUiAvYSAyNyAwIFIgL2MgMjggMCBSIC9kIDI5IDAgUiAvZSAzMCAwIFIKL2VpZ2h0IDMxIDAgUiAvZiAzMiAwIFIgL2ZpdmUgMzMgMCBSIC9mb3VyIDM0IDAgUiAvaCAzNSAwIFIgL2kgMzYgMCBSCi9sIDM3IDAgUiAvbSAzOCAwIFIgL24gMzkgMCBSIC9uaW5lIDQwIDAgUiAvbyA0MSAwIFIgL29uZSA0MiAwIFIgL3AgNDMgMCBSCi9wZXJpb2QgNDQgMCBSIC9yIDQ1IDAgUiAvcyA0NiAwIFIgL3NpeCA0NyAwIFIgL3NwYWNlIDQ4IDAgUiAvdCA0OSAwIFIKL3RocmVlIDUwIDAgUiAvdHdvIDUxIDAgUiAvdSA1MiAwIFIgL3VuZGVyc2NvcmUgNTMgMCBSIC95IDU0IDAgUgovemVybyA1NSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjU2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNDk1OVopCj4+CmVuZG9iagp4cmVmCjAgNTcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQ1OTAgMDAwMDAgbiAKMDAwMDAxNDM1MyAwMDAwMCBuIAowMDAwMDE0Mzg1IDAwMDAwIG4gCjAwMDAwMTQ1MjcgMDAwMDAgbiAKMDAwMDAxNDU0OCAwMDAwMCBuIAowMDAwMDE0NTY5IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAyMzQ5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjMyOCAwMDAwMCBuIAowMDAwMDEyODQ0IDAwMDAwIG4gCjAwMDAwMTI2MzcgMDAwMDAgbiAKMDAwMDAxMjExNyAwMDAwMCBuIAowMDAwMDEzODk3IDAwMDAwIG4gCjAwMDAwMDIzNjkgMDAwMDAgbiAKMDAwMDAwMjYwNiAwMDAwMCBuIAowMDAwMDAyNzU5IDAwMDAwIG4gCjAwMDAwMDI5MDcgMDAwMDAgbiAKMDAwMDAwMzIyNyAwMDAwMCBuIAowMDAwMDAzMzUwIDAwMDAwIG4gCjAwMDAwMDM1MTIgMDAwMDAgbiAKMDAwMDAwMzY2MSAwMDAwMCBuIAowMDAwMDA0MDc1IDAwMDAwIG4gCjAwMDAwMDQyMTMgMDAwMDAgbiAKMDAwMDAwNDM1NyAwMDAwMCBuIAowMDAwMDA0NzM3IDAwMDAwIG4gCjAwMDAwMDUwNDIgMDAwMDAgbiAKMDAwMDAwNTM0NiAwMDAwMCBuIAowMDAwMDA1NjY4IDAwMDAwIG4gCjAwMDAwMDYxMzYgMDAwMDAgbiAKMDAwMDAwNjM0NSAwMDAwMCBuIAowMDAwMDA2NjY3IDAwMDAwIG4gCjAwMDAwMDY4MzMgMDAwMDAgbiAKMDAwMDAwNzA3MCAwMDAwMCBuIAowMDAwMDA3MjE0IDAwMDAwIG4gCjAwMDAwMDczMzMgMDAwMDAgbiAKMDAwMDAwNzY2NCAwMDAwMCBuIAowMDAwMDA3OTAwIDAwMDAwIG4gCjAwMDAwMDgyOTUgMDAwMDAgbiAKMDAwMDAwODU4NiAwMDAwMCBuIAowMDAwMDA4NzQxIDAwMDAwIG4gCjAwMDAwMDkwNTMgMDAwMDAgbiAKMDAwMDAwOTE3NiAwMDAwMCBuIAowMDAwMDA5NDA5IDAwMDAwIG4gCjAwMDAwMDk4MTYgMDAwMDAgbiAKMDAwMDAxMDIwOSAwMDAwMCBuIAowMDAwMDEwMjk5IDAwMDAwIG4gCjAwMDAwMTA1MDUgMDAwMDAgbiAKMDAwMDAxMDkxOCAwMDAwMCBuIAowMDAwMDExMjQyIDAwMDAwIG4gCjAwMDAwMTE0ODkgMDAwMDAgbiAKMDAwMDAxMTYxNSAwMDAwMCBuIAowMDAwMDExODI5IDAwMDAwIG4gCjAwMDAwMTQ2NTAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA1NyAvUm9vdCAxIDAgUiAvSW5mbyA1NiAwIFIgPj4Kc3RhcnR4cmVmCjE0ODAxCiUlRU9GCg==", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:49:59.842813\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["============= Test accuracy: 88.83% ==============\n", "\n"]}], "source": ["SGDMom_model = copy.deepcopy(base_model).to(device)\n", "SGDMom_results = train_model(\n", " SGDMom_model,\n", " \"FashionMNIST_SGDMom\",\n", " lambda params: SGDMomentum(params, lr=1e-1, momentum=0.9),\n", " max_epochs=40,\n", " batch_size=256,\n", ")"]}, {"cell_type": "code", "execution_count": 28, "id": "bb7a0fdc", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:00.201712Z", "iopub.status.busy": "2025-04-08T10:50:00.200885Z", "iopub.status.idle": "2025-04-08T10:50:00.573234Z", "shell.execute_reply": "2025-04-08T10:50:00.572610Z"}, "papermill": {"duration": 0.463679, "end_time": "2025-04-08T10:50:00.578856", "exception": false, "start_time": "2025-04-08T10:50:00.115177", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Model file of \"FashionMNIST_Adam\" already exists. Skipping training...\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDIxLjE0NSAzMzEuNDAyNjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL1ZTW8cNxK996/oo30IVR8kizzau4mRALtAYiE5BIuFMJZjG5Idy9kN9t/vK/bMNCk5k4k1kpRBPE/dxXrFqseq7rO/X/737ebyhxfP57+9nM7Wb5tPE8/v8PllpvkdPr/PPL/A55eJ8O16isKBY8K/r/b/VuUQSbIkgDR+fTNNr6ezZzDwaaZQ2XI0SqXc+RIrcc1kZb7xtV8MF0yHrp6mlEPBalFCzcnXhZ+suKrHrvaYUg1ktoDbewesOf1xvmNWkwWWWXIOjP/fXM4/ze/ns2fi7Hj+Dp93+CwxW6M6Iao5BlOVJIOXKzqsP72cvp8/7gxT4IT92NluX19s0ekj9ormrwh/yhzEjbHForOkwOTmNtfT8/Pp7Buemefz120fz19NP89P6On8r/n8u+nr8+n7tuC9CN9OI8pBE6zUgXEHn4Ayk4TSrKlRPoZzelDO0UK1QmQj5xU+BedIi7Vc61HbzA+7z6WGTKRlrL8OPgXnIou1mDnFo0g/6EYLJE5EwGkg3cEnIC0St9ZEIXRHkJYH3WkxFFtMHEfOe/QUlHNqxrSWTHwU5QfdZ+UYYjZI6sC5g09AWsm21qI7fgRpfdB9VhijUksdK7qDT0E61q01pliPIv2wO10tGKPadCS9wqcgXWmx5r9HaXccdrqvFPQyBeJag/W3y3j7179+2Lz59JBx29pKKAhl1tK1Xiv25Qq4GKeAriYmJIrooX4mlPwIXCvoZdPaUd1D92SKQ9OKGQmOz3KYaXkEpqwaEmmO3HHtwHuyZalBRWvSUuzwxtYHVbwdXdNAOHrQVnV0V/C+dHNBgpJQSgWSd5CuPAJdYQnJsk9wK90OvCddoRK05phMisTDdONj0E3it8Klnu4K3peuN/kqhkPN6p/s7mOolFQOORb819NdwfvSLd60FMzg2ezgkBlqGc8wt/KV22OMgl4XbEELHzjGfnw6m7OC+xk/Nj+5uHr76uK3tx/ezxebzX9uLjb/O1FIQ5p/n3De1IKiF06GEMTluYNowpe8e/IQ5x/6Id9DP8FLgYAn53c9FQYvEdIZPXJKFbdcTS7xBA5lGV7R6kZXllqgMuzDDbIRYcmp6Ws3LrNiM9SyuRVGB5oLMSF8sQSuiao5jpuJYoJ1BCAaR/bMZgwmKpVShp6BEHouqw3HlJY0KWIO3+EhcTO/Tqxc4A7XmsRxGFUSf77AJeHWDKuOZ7gjufq6YGK5HfoM2ujvomJiQ4+LBrIu3iAwYqlSbW0MpSoLvB8ZEbRgkVNxFWL0YBVrYr4HO0OQksOC0Eisqo5XhCbj3HQcoUmGhEKugjYjZYpHWDxza0HiolYpYA8QNcfXoU20oDwoU214DSkaMFwfg0bBQeU4YlOMjbXVPFock7YuYoPMAAuoSgwUY0keBUFsEpzNPreCoSDIzc5+cJKkaHCk5OYOgsMZdlycEMqanYnjNcQaqfqUhEwoYm3HBdEp2IyMMBjjgEFVujuK8CD0FD3lcWusyCXH19lFsnkugqLjCI9Vbs8U4JlpKi3TdIlhzKAF1wyC3nZF1Y1SjfDfasAaxd1UhMSQvNLQShqpWVmHBzELxILMcRzBiXDTwKq04qkt77W5UDDvt1UJ7tZ2vX/JCmdnD4hQVV5wtBLonBASx02Q4h6drn93nFAmLcG32nc/kSh5++MikfrnkwrlyCUjyT8nEp7yhglgmDQ6sUDeac4teVa16FrMVStaZTBxGqUC1+LUJbFRKSoSMVNUHYWCMHPjiG7Z1wtFO78Lt+TuhQIGoUXFyi2hYLiFhG7J3QsFEgtrIv9uCQVwSGrLmk4pMDAgb1FZMioFE2q2ptRqs5MKhlTE1ELUS4XDSEPNo1Iwhjicz8luKQULyGYofh2Vws+mUlBRMiqFB0GlQNRHpYCwQkGEmzedUnhw/KCMNiqF4zgvRG4pBQvyPNatsuyVwmHIR1zMrErhnTTyAYRHpWB/hIRaW8ysSuG7LwI/86gUHnxUfuJbSoFkC9APasHvlIK5ehcgLZydUnj0oV61KVSnFIP/q1R4lAmH6nL5KhVDSnVSwZicsfu6mFmlAqujXMg0jlKBUkZpsC3Xr1LhdJNaWa5fpcKzxIrvz+0uSVwCQO3OM/6u8+qr+nNvF2Dx7tuJ68+/ncC1R77cWK/sDPyxVQKRY1s+lx5lb2sUebC18gfd2p+1a79e3rz+cPPUe7/qzbL6z/zk+uL95nL+8Hr+5ulU21ul5S/408WnN7jxH//89uX5v5/dufHVxTU6v2nX+Z0907/6pukdsPLX3je1Ok3t/Kw1q7UH3uJHRtuMDnehtZA8FtLjTW92V+OUR21SGVC0abxcu5k6XAkCvdvHAXeNiL5Mt6KSnwTt6s6/Dt3suHTY1ZT9hPII93CW1q13C+2RvUswt2Cd+1d7bCW6LtDF5G5UN/4m7vn0ueN3/pIevb2Ig0S08QhCnUurETQkI4Rzt9yBbhfNoYKxhUklF9yDD/jOkdHRz0q0ee13fnJz8fZ9P8003lvOX9Zy7DhbgV9bYdiRXrGVdY99AW2LftYdfrC5aIShA1l+XSOGEW76P2wXWZ4KZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxOTMyCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYy7DcAwCER7prgR+DiA94miFPb+bYgtF9w96YnzbGBknYcjtOMWsqZwU0xSTqh3DGqlNx076CXN/TTJei4a9A9x9RW2mwOSUSSRh0SXy5Vn5V98PgxvHGIKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDgxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RlCLZv40NEaGxn3QnnWCHCm5xWAy0Oxyt+NRTmH3oHhKSUHPdRFgzJdqEpF/6yzDDmFjItq83V65yvhbcHIsKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrgyuNAA1FxkFCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzsjRVMFCwtAAShpbmCuZGlgophlxAPoiVywUTywGzDIA0WGkOTEUOVwZXGgC/jA1WCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA5MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jssNwDAIQ+9MwQjhUwL7VFUPyf7Xhnx6wQ9byLgJFgwfo9qFlQNvgrEndWBdXgMVQhYZZOTbOxeLSmYWv5omqRPSJHHeRKE7TUqdD7TT2+CF5wP16R3sCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCA3NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jcENwDAIA/9MwQg4hVD2qao+0v2/LUR87DMI7HqycKRME/YRfIH+nPTSOFC0yEwZaNqzvtgkuYOXI5QnmtKrYvXnRQ/dH8meGAwKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDY2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNFQwUNA1AhJmhiYK5kaWCimGXEA+iJXLBRPLAbPMTMyALGNTUySWAZA2MjWD0xAZoAFwBkR/BlcaAFJrFMAKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDOzMFEwULAAYjNzMwVzI0uFFEMuIwszoEAulwVYIIfL0NAQyjI2MVIwNDQFskzNjaFiMI1AWUuQQTlQ/TlcGVxpAHQyEqEKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDEzNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDI1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAyMzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMzIwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSS24FMQjbzym4QKXwT87zqqqLvvtvaxO9FUwwYOMpL1nSS77UJdulw+RbH/clsULej+2azFLF9xazFM8tr0fPEbctCgRREz1YmS8VItTP9Og6qHBKn4FXCLcUG7yDSQCDavgHHqUzIFDnQMa7YjJSA4Ik2HNpcQiJciaJf6S8nt8nraSh9D1Zmcvfk0ul0B1NTugBxcrFSaBdSfmgmZhKRJKX632xQvSGwJI8PkcxyYDsNoltogUm5x6lJczEFDqwxwK8ZprVVehgwh6HKYxXC7OoHmzyWxOVpB2t4xnZMN7LMFNioeGwBdTmYmWC7uXjNa/CiO1Rk13DcO6WzXcI0Wj+GxbK4GMVkoBHp7ESDWk4wIjAnl44xV7zEzkOwIhjnZosDGNoJqd6jonA0J6zpWHGxx5a9fMPVOl8hwplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAzNDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvTGVuZ3RoIDE3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0xlbmd0aCA1NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNTBQMFDQtVTQNTI2VTA1BLINzUwVUgy54OxcCBMkn8MFUwlhgaRzECpzuDK40gBzUQ+PCmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKPDwgL0xlbmd0aCAxNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPY/BDsMwCEPv+Qr/QKTYKaF8T6dqh+7/ryNLuwt6AmOMhdDQG6qaw4Zgm+PF0iVUa/gUxUAlN8iZYA6lpNIdR5F6YjgYXB60G47isej6EbuSZn3QxkK6JWiAe6xTadymcRPEHTUF6inqnKO8ELmfqWfYNJLdNLOSc7gNv3vPU9f/p6u8y/kFvXcu/gplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE0IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYKL2VpZ2h0IC9uaW5lIDY1IC9BIDY5IC9FIC9GIDczIC9JIDc3IC9NIC9OIDgzIC9TIC9UIDg2IC9WIDk1IC91bmRlcnNjb3JlIDk3Ci9hIDk5IC9jIC9kIC9lIC9mIDEwNCAvaCAvaSAxMDggL2wgL20gL24gL28gL3AgMTE0IC9yIC9zIC90IC91IDEyMSAveSBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvQSAxNyAwIFIgL0UgMTggMCBSIC9GIDE5IDAgUiAvSSAyMCAwIFIgL00gMjEgMCBSIC9OIDIyIDAgUiAvUyAyMyAwIFIKL1QgMjQgMCBSIC9WIDI1IDAgUiAvYSAyNiAwIFIgL2MgMjcgMCBSIC9kIDI4IDAgUiAvZSAyOSAwIFIgL2VpZ2h0IDMwIDAgUgovZiAzMSAwIFIgL2ZpdmUgMzIgMCBSIC9mb3VyIDMzIDAgUiAvaCAzNCAwIFIgL2kgMzUgMCBSIC9sIDM2IDAgUiAvbSAzNyAwIFIKL24gMzggMCBSIC9uaW5lIDM5IDAgUiAvbyA0MCAwIFIgL29uZSA0MSAwIFIgL3AgNDIgMCBSIC9wZXJpb2QgNDMgMCBSCi9yIDQ0IDAgUiAvcyA0NSAwIFIgL3NpeCA0NiAwIFIgL3NwYWNlIDQ3IDAgUiAvdCA0OCAwIFIgL3RocmVlIDQ5IDAgUgovdHdvIDUwIDAgUiAvdSA1MSAwIFIgL3VuZGVyc2NvcmUgNTIgMCBSIC95IDUzIDAgUiAvemVybyA1NCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjU1IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNTAwMFopCj4+CmVuZG9iagp4cmVmCjAgNTYKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQyMDYgMDAwMDAgbiAKMDAwMDAxMzk2OSAwMDAwMCBuIAowMDAwMDE0MDAxIDAwMDAwIG4gCjAwMDAwMTQxNDMgMDAwMDAgbiAKMDAwMDAxNDE2NCAwMDAwMCBuIAowMDAwMDE0MTg1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDAyMzY5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjM0OCAwMDAwMCBuIAowMDAwMDEyNDcwIDAwMDAwIG4gCjAwMDAwMTIyNjMgMDAwMDAgbiAKMDAwMDAxMTc0MyAwMDAwMCBuIAowMDAwMDEzNTIzIDAwMDAwIG4gCjAwMDAwMDIzODkgMDAwMDAgbiAKMDAwMDAwMjU1MiAwMDAwMCBuIAowMDAwMDAyNzA1IDAwMDAwIG4gCjAwMDAwMDI4NTMgMDAwMDAgbiAKMDAwMDAwMjk3NiAwMDAwMCBuIAowMDAwMDAzMTM4IDAwMDAwIG4gCjAwMDAwMDMyODcgMDAwMDAgbiAKMDAwMDAwMzcwMSAwMDAwMCBuIAowMDAwMDAzODM5IDAwMDAwIG4gCjAwMDAwMDM5ODMgMDAwMDAgbiAKMDAwMDAwNDM2MyAwMDAwMCBuIAowMDAwMDA0NjY4IDAwMDAwIG4gCjAwMDAwMDQ5NzIgMDAwMDAgbiAKMDAwMDAwNTI5NCAwMDAwMCBuIAowMDAwMDA1NzYyIDAwMDAwIG4gCjAwMDAwMDU5NzEgMDAwMDAgbiAKMDAwMDAwNjI5MyAwMDAwMCBuIAowMDAwMDA2NDU5IDAwMDAwIG4gCjAwMDAwMDY2OTYgMDAwMDAgbiAKMDAwMDAwNjg0MCAwMDAwMCBuIAowMDAwMDA2OTU5IDAwMDAwIG4gCjAwMDAwMDcyOTAgMDAwMDAgbiAKMDAwMDAwNzUyNiAwMDAwMCBuIAowMDAwMDA3OTIxIDAwMDAwIG4gCjAwMDAwMDgyMTIgMDAwMDAgbiAKMDAwMDAwODM2NyAwMDAwMCBuIAowMDAwMDA4Njc5IDAwMDAwIG4gCjAwMDAwMDg4MDIgMDAwMDAgbiAKMDAwMDAwOTAzNSAwMDAwMCBuIAowMDAwMDA5NDQyIDAwMDAwIG4gCjAwMDAwMDk4MzUgMDAwMDAgbiAKMDAwMDAwOTkyNSAwMDAwMCBuIAowMDAwMDEwMTMxIDAwMDAwIG4gCjAwMDAwMTA1NDQgMDAwMDAgbiAKMDAwMDAxMDg2OCAwMDAwMCBuIAowMDAwMDExMTE1IDAwMDAwIG4gCjAwMDAwMTEyNDEgMDAwMDAgbiAKMDAwMDAxMTQ1NSAwMDAwMCBuIAowMDAwMDE0MjY2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNTYgL1Jvb3QgMSAwIFIgL0luZm8gNTUgMCBSID4+CnN0YXJ0eHJlZgoxNDQxNwolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:50:00.380063\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}, {"name": "stdout", "output_type": "stream", "text": ["============= Test accuracy: 89.46% ==============\n", "\n"]}], "source": ["Adam_model = copy.deepcopy(base_model).to(device)\n", "Adam_results = train_model(\n", " Adam_model, \"FashionMNIST_Adam\", lambda params: Adam(params, lr=1e-3), max_epochs=40, batch_size=256\n", ")"]}, {"cell_type": "markdown", "id": "0d0b330e", "metadata": {"papermill": {"duration": 0.097864, "end_time": "2025-04-08T10:50:00.771939", "exception": false, "start_time": "2025-04-08T10:50:00.674075", "status": "completed"}, "tags": []}, "source": ["The result is that all optimizers perform similarly well with the given model.\n", "The differences are too small to find any significant conclusion.\n", "However, keep in mind that this can also be attributed to the initialization we chose.\n", "When changing the initialization to worse (e.g. constant initialization), Adam usually shows to be more robust because of its adaptive learning rate.\n", "To show the specific benefits of the optimizers, we will continue to\n", "look at some possible loss surfaces in which momentum and adaptive\n", "learning rate are crucial."]}, {"cell_type": "markdown", "id": "0ee70014", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.100993, "end_time": "2025-04-08T10:50:00.974446", "exception": false, "start_time": "2025-04-08T10:50:00.873453", "status": "completed"}, "tags": []}, "source": ["### Pathological curvatures\n", "\n", "A pathological curvature is a type of surface that is similar to ravines and is particularly tricky for plain SGD optimization.\n", "In words, pathological curvatures typically have a steep gradient in one direction with an optimum at the center, while in a second direction we have a slower gradient towards a (global) optimum.\n", "Let's first create an example surface of this and visualize it:"]}, {"cell_type": "code", "execution_count": 29, "id": "697f529e", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:01.167332Z", "iopub.status.busy": "2025-04-08T10:50:01.166388Z", "iopub.status.idle": "2025-04-08T10:50:01.170598Z", "shell.execute_reply": "2025-04-08T10:50:01.170025Z"}, "papermill": {"duration": 0.104202, "end_time": "2025-04-08T10:50:01.172128", "exception": false, "start_time": "2025-04-08T10:50:01.067926", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def pathological_curve_loss(w1, w2):\n", " # Example of a pathological curvature. There are many more possible, feel free to experiment here!\n", " x1_loss = torch.tanh(w1) ** 2 + 0.01 * torch.abs(w1)\n", " x2_loss = torch.sigmoid(w2)\n", " return x1_loss + x2_loss"]}, {"cell_type": "code", "execution_count": 30, "id": "05698c1c", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:01.382414Z", "iopub.status.busy": "2025-04-08T10:50:01.381869Z", "iopub.status.idle": "2025-04-08T10:50:02.598405Z", "shell.execute_reply": "2025-04-08T10:50:02.597412Z"}, "papermill": {"duration": 1.332774, "end_time": "2025-04-08T10:50:02.610568", "exception": false, "start_time": "2025-04-08T10:50:01.277794", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/usr/local/lib/python3.10/dist-packages/torch/functional.py:513: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3609.)\n", " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"]}, {"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDUzLjY5OTM3NSAzMzcuMDM2ODc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nMS9y65ky5IcNt9fsYfioHfH+zEURbEBzig2pIGgAdEiKTb2IkE2KP6+zNwjslaeco977s4U2MA9XZWZtZ4R7uZm/vjbf/Hv/t//+A//7n/7u3/++b/8m4+//fW3f/inj/j5j/jff/gMn/+I//33z/j5d/jff/gI+Nv1UWr+anPmXvHX7/tfc+5fIbeBP37jx09//X8+Pv79x9/+zzjMP+Gf/d3HRw5fMbRUP1P+Gj3yVzh2Hl+1PH/6ffs0x/LV4/r4cYSnT9eJkp7oP+DCcRNfA7eB0/IT+8y/PgxfeZ/445/jOfz3j/+C/4bPvwk4VkpfseaI382v1Af/8A/Xxz//+4+//ZfxM4bPv//38pT+/v/++D8//6fwFf7Z5//1+ff/6uN//fuPf/0hV/ERY/zqs/zh9LdPj+ePAf+oxD99Acm4gJm/ykh/vIBfn54vYNSvmuafvoDy+wWkXr9iD3+4gNun5zfQ+leK/U9fQPv9AnJtX6OOP66AX58eLyCX8TVD/dMXMH6/AGuZPy3+4wUUrNU6/+wijNYiNLdAal8t/HHv/X56PH5eYOh/9dJ/nHUkGIb5h7P++tA7ax9fqeS/dr0/zhoLvg/9D6e9feqdN+b2hT33167zXyeeA++z/vHEvz51TzzLV+3zr17fj7eLJV2xrP7wen996r7fmr566X/turYs8u3ET3baPnGO4WvGv2I9p89/pX5KTPyzHzsb+uer+Td/cVP+8fd/hQO7//rp0fhHf7jKf/Wprlj9F93wx6AB+u2++sQr++OZf336dILHESzXmeXEX7OK9/zv+se/W598wFXhWbfWevuc8AUjtzn4lkPDm4u1YNn29hVmKBHHTAG/6a2k9pkmnOesZeDjGMrXzPCk4zPF8dUr/pt1VeA8vGH8V87JU5rHxi03LAYcdRRs0fiVZimt86Zbo49KIWMhxy8YlVayfy16zlT1rGndazrebC9fKc8Q5mdJXym1NOVpOxfkPBuceAGVG0gBmApxNlikggv5AzDLtAeNpx0dOCCkzItJ8yu3BP/1Gdv8qq2MwqtJCW95BFz8ZxrtKzU87a6rK7aEm+kxdBrVNuMIslNrxVFnmThQ5H0HPh/aiwaAUj4TVlOqs7V9mBm/Iv4T0ydOnHtOVS4IphwGdbb8iXsmBozy+AfWWk5zThwIjz9HHEoPlOBQIs4342edWL2zj8QXHPnxLLjfWPDcOi6LDy7H/JXrhIFKreDntaV1nIJ/HWpo9bPSrONdy0LBNsNnA9cdAUonHnGS94WXVwNQFxZE7cA/I7V1RTHFrxIivsV+Cl+94ZkKToI1w7INeBoxYOHGPKq8YmwpvG1c1SdxBM6W4zpSnjhjwGL/TKV8Zey2yjUU8ZcUgPlwUdiyNQN8FYG15Qvn4mF7xiprKZZ1JFwjgDZfBK8WP5TFyHeFl8/nKncXahtTnhJOXGfvn2N+xdKDbAIeB1ArV94sXgSecCmAMzxQx7+ePWGVROybUbHCuQAylt0ckZuA+7a2/OuSsI9SDR33hpeOcyASEDRZgJNT6VjwDSeblQ+SD3zS9XS+UFwd/mEp69Vx7+DR4JHjLnjfCQ9u2ZUx5sQzk+trvVSxIFgbHaYL/352XFOv+5p4pI5NzsvFqhk9/zpSzyMUfM6F2/HHuY4UJvcMUXjNrcTHNSWu6p54G9iZNVcsFT1SHaVx3fCBRPwii1WbAAoDqxGYTH4uz0+OlL+CwPbYuYdrfVxSSbNj1QHT4iG3IXtLlhb2B+0IXmKK8eFHcKCGf90IxbF1ca0jriOlnnPlesVd4JGFvI4U+MCT7MWMy8uP54S/hxbxOFNIfN0h7UPBWGVszlTw8gAGxLrBWnzhBPx9bDAtsWN1/ToUtjtejdwHXh0X2yUWF+8elgZLFosQ5kgsH1zhF9xP48sevCEisH0oPDkspjTlRjo2QJ/rUIiQOm+Q+yLAaBU5FE4RRsbzJKKCN+0970PhmWBBRxwKCyHLSliHwhrm3WKtw3aGsZ4VQpCRxW/AwjSslLEeu8KMv/sr/YHs/ko7whWP11Xh52C1sEFy4mvlAhwElzmnZVODnGl5Xrige+yFLdNmwfnznOWz0U7gvnHJ83eMSHA51Mlv6HTDqP8FjibwwOHXH/7h+sQ//5t/8e/+8d/+7//t3/zb//RPf3P9x//03/7p81/8589/vZGWgbIiVmQJMIj5s3P5w/iIoWwEDFi22LQpj9LjX76/0rHqsSTrrHhRcEYRDzZjrdc/dX/p/5/7g63AM+bGpLGEjcK6w/3BqFbcJDYWItIxcaXtL9/hQKQw4sRKGbCNhUudJhAWeJzA9m+I17hO+lAYb6ywT9qqnOD1uDQBrxqxx/isfGZYavkvXid2FxY3bGtqRANYw1h2Fcsb2+twnelPXSc8M0AMrB599BREwOtEWA0bAYuAPwAJwAH85cuEcUxw4vA6ADsAA19h0NN07mf/Mp9itf9C8FcD/C0O0nFceGhsfPh1OPA//OX2O3hDnAz4HS4/DrhIYFhASxh8GCg9NZeeckU47d/+y7Su43/67//s8+//EesXDggITJizv4mw5LKW5aeIheSXUX55fJo25DxZJJq8MGDZ8fw7A+quUZq4RHiixI03Mxb2X96xaWZyJhV4pcD2c50ATsGYAcz8j7NIOWQEW3i2iQiK1kScUYb/igAK2HiAnxnbePzlHYvn8NUAuVoHiAE6BWAk/sFGK+V/nE3K3NSpwuoQ29XaCcFxhylh48MZirOB4x5/5g4RPhDAAEzCuH3Cszd4X9xyHb+/w7/SJsHWYC+nEgU4AgVjtwge77j8XPAXEpqdD3f85QsFYMZ6hvcOA/BnCHphoPRry/3YKJHUg5fqU70szfmUJ1pJ+DbAMnxOTAar+JftUqalBT4C1uM9TrjFSh/YGDb8FXapIQ7iegISA9hF0Abz08agkbr97el3eKiAkUAFIcKufgDyxdZiwt9KeptdSj+3S15sTrjG0A9hLOAbIwC82SZRKSEvAwvATqCmAtse619+BY3uJJaAuADIMJE6DAB6yTBMT7Tln1vX8LCl8OgCWhLtvlwpETYQ5JDIA2fN7U9sQIJpeDxEFLAq+JcMvToAeEGwc2Y765+72MjoF9hTwnrA3jHiulqEa1hGCA0QZQDMxPknrhYGcQDIY0FhvUU4C6yvQp6hninS+icfLdbcbKQmGCpNBuG6CnCiAhiJ1dEpglTyOH/xagHZgA8Q38KcTeVHCL3goMp5IfQ/+WzhSXLGVv8kIAyBccla5ginJoL+CH8L/Nj/jCnu8MG1EyBmkicIjYDbQi0AjKerjX962SLqIJWBGCpIDEWaS692Nm4siQQJd8pfdv68WgSZ8BzYp3hbk+g9dTwD7IHj1f7ZdZsJj1OWmLLCjy/Wr9MohcpYE8YEPuVP+A54fITrtMEFjzLFhC1RcPeD5uZ0rX921QJuDbH2WFpfARt5mTt4AkQQALOMZgPgefnL8DtjgResftw3n2wi50T+BlYwn/ZY/NOrtgigJzNYSIqsmIZ7Gw82d4384VZy/DOrtpC8wyoIqZHkwiJm7IAVH072K/1h1d4PORHbAqFGEj/4lxNvj8g+CyHnH/L7P//TPz0d8tPgytPEMyn7//3Xf/f5f3z+J4J7mMJCbzrJifRPEmMZ+/Dzv/6Hj/O3HykM0cBzFxoMMcMIAsIZRkXGd/L5rPgHwsySRcA+xF/4OW5sBiERsSzhpkrR38MTNCEmUoxfJLS4cgf+CHMieInHwc0VhGj8HD4fAF6JfHLaWHU8VCDtgK0if8ghDlzz5/HbDwkfekw0vQmwGaCS3I6qtAivOu8UN51zVVYx9YaH2TpZG2Gi2ohyhdTsgJbp7kPlFgGykM/7V4HDkN+TEIObrus4ARBr6u8JbIU73ndEmYCRGIw5DQD+UCqQ5Loj/1veEddbgR3G7sfqwnNTCg6fd+C0hiuJlSJNSXpHWNWkZGl+AFQyoEmRz70nYD0xfk6uGtcB2xoZl9chVOi6o8O6+gtr0lkV12EVEVRV+ir+nmRY0lUHawDEl4t8DnOlvB4/j4CYhccPjMnjOg6emJBX8nu8LlimN606a1Vch1UELAITxSvhaomA6qo04LKA+1KS1ShsvJL0wEwAP0U+JqRse5GO1mtTOpcMcU/veUVYCTg5Aip5hBMwT8xC/xoDcZo+QHzfVSAxzYi/zU9mocXIYIZnJQitSY4/8eJqJ++Pz2OvWUgBnrfgJWS9Snnl800vNOtp9Iknrr4iLxRRCrwldQNqY7iyPI+byDYLJzPCJ0nNhRkzrZa4Ny/eV+5dPgd2z22dtha8pSKHoe8qb1oA5h66Dnuu0dTI1uIRsUl1BQBb4fBTD1MAA0ZaPx9TKHnuBWYG6c+ZpNO4vWXJ1zrGzea8ZEVxdkSeswqGmmNQp+ILjWTiEJgLdd6JIvSBW1bXt4onK2ovGGuBfcv1YJ/P2YXLpJbU4pu2tLWJLn/TuZvUtqK+1cUTQ5zZp3yOgL6Nto6DDZfXEoA7SmrUcN7YRILj571hWb0LGxib6DrsOW+P2lbXNdLAUomhPy1ABnzqcx0Fx5hLimMYndI6a6bIGeVqsHBmTPctMBAGkjopcP6TN4jli3e3toD7LW6fUnfkFgQw55E7cdwlWyPgfBn3nwpDgKFOB0sR1pV8UooTa6HmBTA84OFtGSqQ2ARRUyZSb+1NNsowItfB5kwmf5W1DnsXop7qAxD7JFyiV2awFtevG+JO4u7O6AJ3o8sWLh2rIutJCxfqA0SIQkcjXMo6mnCIS+UkB6DXROlAPaHhZ32/dvKDsw8EHLLYcJOzrI/JjfAOsGQzFsCn5nT0yehX0yJKGTO+aX8BE2C3xixLGldHlk+RagkVVy9boIw0H7bRtoG2V3OdIBZhK1EOgzMlwqx1GBy7Uw4O5GZimm2dNuAZLdIA11jqfNOCtEzadTCBnsm03aDrNQkyqJPwUzjBFto6Cl458/D4/vH8w0JlMHK4D2ISfD7zYtv3/Y9Mw8U7LNQO+dLbgD/S+/e//XD2zOXvsURnxxWgSxGmLuiexNudIQ298hHrCjMT5Y9IDZmfx7ZhcyKRhDi7650O+PA3BV+SL8AtIsEUvtHUlSRk4uCNS9TSQw9x2brfYYbv1v0t4G0Za4vpeRONXhH4AQsbb0bJckzXIdjAuWfIo8q1hor9LetpEMrgAWwaKg+17/g84h2Rq2DASXVnBzMwVURKjDdLSSG/Z5sZdu3yjaBjMx2YcYIlnSshylkbQf3clMjsZa094MeUdsxS8Siz/h7mqT758dcojt/t2nWwg47ZtIHGCZjMIUI6fw9/PtbS64hxw4z6OZZ2eoQsnbBKL3PGnuIdx70CZLjCi5wROx/h9dDspsY0miALkYJiXzdq4h4Xl/gwxosUnC2P0yLYi4yUgEgAANN8F39iGfbL9wOO17CBzAn4jFSJRHjWXHoNdX0OqFL4NrAU4LZ73s6qFawL3Riw7Hk+3v8Hl0ofwJBJvsVSnVlTnAqTrhuzIuicOtb5ToH9HVj5aMbDPngReKNrs8aKu9t5rnyMJDCI+uvKs+RZI0zylI9HTyXU93hK05NdB8/H9EWm6OnDh4lt8pAT9zbsrV74hOtbnrXSiGR5LF0UHd2sifkerYoVo+xRcn6XVWIUgR031Qz02HJc0cWgkKseK0RYznj0ZDY6O6E5rgXmAjLRhfZn7eIBm5GbfJ4eQRqDGpxXLhMbOjBN9U270nIE18FxeI7Ghmc+nJO0W2bkySIt602TNM3C2/NjWN+mS5pwpXUmU/JzOGs56zvAn2UHroPdcOyMA+ZO4A/uvUbdAkArrZQV2PUWJYWTJH+ufZnDySg8UPGh66K1efJLL3BMlue8XAbA4Qts2OSjrMTcxcwYgkxOYXrvOgx8JGEjoQjl8pXMHqSAgAZWsvuxkG5uKUlKKdM0BhEtXBvTqtfd+1/SKTPZftSpQiJz4lcRTZc0at5PzkxCKkoXwVl35cXSoFMiEPn2yQjPiTemViOEinIc/KLd13NMfL/yvgBu5cXh8dS+36b7raIMLE9JtiWPjT08+kIZcJpDUp+x5RHM1bZu6PdQwYXmJyRv20vLvq7nmLgPNYIYvT9t6FdgtuUUr4MTtV2ujYNd3CzPegpjTs+VYtlwOtU5af7J16VJfud7SRJkWOXnoZTW3uWiLRd6HVyugLyyDSv+rh6X2gg+UfNMunSsX48hUUlnKn3RhBtRzJnB2NVowTS1OwH+in+2HOLl+0/P3dqo3o8CcHc1hqYxCYKMsA8DK8g8IR6GzmlszibBxWW9HDgNpcvfETRgc0QsVRw5MY8M+0TCRqaQjBFY3JOY4QFUOpdh+T3I8GH9KQwwmQLPXDSmjODmo7CrcBbzXZjTRASXDyA8vGHjej8OwMpgbs3aAKx8eShG8BfUETrFow2LKgmyQDYeH8Muat3HChtMp34dQIAHGmwc7ONmbIeEkFr3JZH4qOs4FU6H24FhNsIVRaust89AWXoXBX5spl93IblKinF5F3jHVS0rFk6LUp4j2KzOpByGFSy54ckpmmlYIjGuRztGkpsLUosmS5F6JQs10jotsNrM+oYKU/OflJgMBy5OE+6zqrmpZW9G/1ul1eDwQlIUjifBarJreXn4CqUwSIY9YmzT+Tlo3kf/SZxLYyUVYt4ydkzAmjSWJk1B6OuxNyYXFmB0+XVbRXZv2ImmM7tc3+e6ShPKn5A/GyVkXcNAMy3vQCQEPbqUKqW4iS085b72J35VbnYIr4c/IxaseKqCBRsTAxZQdL/ly8cObzFkLZRicpi8epZwhsKaJ+DH2OPMag8tXOkDPx8oOuSQZ+ZZ3VQk4xA+uSN8u+eK4G2U2OX1snKSbxdAsa537375Yfv9y0UJWYBnEpKysTZGsSMfWw3UY/kxdsmi6DJ9X+tDrVGFJVGbmrDeACQoTquVGrW8ZyVbRvw62HzPR9gx2SmGm1VTKfkA+GD25zCsrMmTdCf8gxU78y2HSTqdDyDMnp5E1RdiPgv3XAe21GFXnbDsFMbBfIujojXBvdWdKQR4IrQ2VcSu1ZTCPMCSd81DYUL/6O9ZAaYHvA4e0/OwNvJ1gTJ3CV5HVqsFxLSPkhg96wJgMYDaOFzNIAmuP4cNZMX3e8LEKikAkg0AE9OYe7dwZR2IfFXxwbJID7v1e1jpx3F+3Oe4StO16nkjvGBWUbX3pYq/w5tZ8OE6wA0PntihnB/6USWfdVk7WM+hyJr5N3EEMZrAsICCecOiRIiuVhCwIYan9L+fwxkTQFwu3PDAiR37nGKlGcSJS+jWZvuVAMoAfR8/xy0p9hjxFuQiEYfV8K7QCoasaqMAybHI8+HSgZ5G0gQS+DSt07BDMT/08UMlj4nxtlgjzRgkj57KTh/hTUbQglDXAXF5CM2OfQ6hEhyiQCaukdKGvukofFKXDVkkpp8bGOLTOnXDYEGn/BZMY8KO6wBT8Fgyf6WPC25fE6tyoQMVn8mNm4Ad5X1mVhUAmOn9VNaFrcOENNJ66gErs883vU4LRlw+7PBgihMFnqJGvM8qFhMvKMBAqQ+MrOwbUx8Al/aD4q7SBUOfAFsf3LyaqLs0VXgwpIFgU0JimC9P4PAttzQwC3xIGVIWwVSUoHkPOP1ggRc+Z6ZvX6QAtxaWk3RxGDR6czy2osn+eqiepEOufNWZ/xTL5E1GyuTPr0NWQ2UAIIs6ireYmoMzRE1llTeXQyWdX9fn2BPCQFDxyK1rIcEQ41jkOOwdhP1a37HpTKRz+cDIgVF2ZHCKJAbjoiwrcWizGH4a8KRlo7OmJtcN3VrNiS+fy5Ypbe8KoNmOABGlXnZJlVdEyBEFFK0NF2vf7LFFuPgMh8+IFKbM1HVe7IoFxojMEn8jBmqyzkI+ZkVkxWLUdxQVo7+DP0GI0Kf0FAkMHPA+xxJbepUcGCICXEU5Y0KT4HD5kM4dNZkdy5q5yTY+eR2m10T0wc8jAJfaedaQyVl5mMiGSG9ytybCuw6I0EGQNsXhEiKsD6u69rnjNhLHUeDKWTEsrHlfFDfzkWYMa1P0SdbuTQQK/CHsqxAoQVZnXbYZFrDQfUrnJ+CEtmzqH/kWn+A4ESI2T+6BOZqHJhlsiVuFC+r29hs2V5H3m5hWTOud5178h28/bDhwHdAD7NeEHWr6HmCo5fpykyZjUV8PA/cy1ucRIFyYGHosIowFTrAUZFHACLTxPlreQmvXAd05YNCmOHxKhI0WWN6+lmeLj+NURBXr6eLNKg0Xxb1F/TUebX/KG3khfjajm8sXjjydySY4XD4E0XNhbZyKsmxktHP7a8daVVF+4m2MfVoYMDh7pXNgV/t76EAL2V0HJOghR5vf8PkQPiNJEON5Sc6UrXNgq2RBsvmrY5mGrXPgOLWW5eFjjQ+V2fb/lwcWPGjhwPkD+sflM41eamxCzGtf44kizgy6f3G2uplUvIUh15LZ/q7cCbCXCCBYD0Bf7l9m8xN8xRX94m2yvZQsscmuXMsc/04Y+QTNidAxfb0FDfS08CBRNgI3Tu3vEsot8HMdsJKHrWx65kTndBKsuugK3bR8zG0BC67t1mAS4/o5r200XYvsoXezXy9FSklqbOlH2JGXKp1AUTjpmNihVD7H1Y3lja3Iyo98TpGSrZfY3p4Zq0myhDJZEJzjKa/gBShqgb/LB4suuLTpKZfNkk6abDsypTZprpxe9gfN0uqPR2fTyZ1tE7GH2Gp0SvpKmk/87wtxpUXQX4e8LC+Py44T/bgSewqBW9fPIzCtOsjBdd5ZYEFXjoMUrTTgeaM2So+MeiiF359AI1rkhRbuO95jJXW7noD7rcJRmOeuLRQrfEYZawOwLWQrn4o1xrpwky302bkTm2cT7J59ldYMMWoiBpHl28pejADgOsQLTnhhs3MnNm/CL2S1u0CvZWljfNE9VnWMcBdNNxjzUPGTrIYRz208FYuTMeD9RTahJWgaWPfr7r3vPhy4fB3gNWPC2qv+vmE/qTfLNCNxilzELmhj6LLF73nLfJusiSksspXPpbNKWl01A9vZ3qtLfgzILPh7HdCyg64dZs5n8lhJy8IwfTlkR9dhmAo62wIzpekeoiUYalz4FKknPu7eAXHXAfR5INHmb1y6h80Oes56WvbI1Y2XaIYGd61IH3B7WmDMtocwA1UhGbbP+FWH90HzPWj3qj6RlMSqCE8BJxH0RTQGpIoSLEbIpWBcwoZlV5qrKb2aEOSldZTasxILtHY0z+us+K70fcuLyX5HkGvA2OuAeh2QbAatfoxLu9N4DfKmYPLCPkzliy3yeXqUEGX6sh6qbk6EhPGOqgC86LaJGwgcBDfQ8W5U4X6rqirWDFNFpTkuHHDcqiqWQJe2TZMoaSWTu6jXpKBOjBUTbQbBSZPkvgeBFhkL8veIWULQbLHGsrnIihv+HN675ZsRwooP4jUH3muioSE3mdbrP3zL+ydeqcwCYWvwwChJUWVkA6TBuBWfI0YoSw2G88DdBW2MBIfYFtr0+HoPhbIoobXVQpkUypOm8mOzaqLyywfxHua3OTWXgpOu3XNtW4RsKz0siNbegjZ0Z1O/uE9LExt1XwAlznuU/xJlF2nU2RyNZpKdPacGiUS9lX3mpRs+/r6ylQyKzyfVfBLOU2A9DAZTAx8cNHlqtDtAKPAxsl5h+KPCAGyIDRH8bz8cJ375Tp+duKSHu+D5MJfDYNd7IHkxZ2zzP7reTSFvNDQjlVmAtQ79PPAdSpN3/p46+3jHYjYR1nVAZB6CMzm1AwPHNGzdQcC9ue+WKZIeoraZzfD6oywI+zvP/WznPX/vJcbOiMiuQzqCl75gU2onCq4zzloJMoU5vutzBnZReymVzq7267w4jgzNoFuHKZ9vQYgmJrt8COchPptROzFwA9F+0/fJnnpLY87sV1qCvn/SWsrLJ8alPQl+YscW2NgnwgvXLU53xCbBbS2drZDX+3e/VcaDUwskU4lN4gtRlwZ8pU72dJcXxIqBbWx+J8h8Rsr35Z7vt7CCnherKK5SBbZlvSc9voDNTEB7HQCwjZcdSvLAYGIztKovFCFZivtzIHmaeDWKbeUYAD8HbA41opnO8R3hnoUErwNy9JCmHb754R4LjbQqCnfZsTzUWJAqKwzK5fNI+X4jWXZtrvr7xsX7FtXdDASuQ+DgxBkWGelTl1XGoLS+H1Z8HIXTRpafTDWtnFGWERQuBHUJWFnPiW4vwHIDB18H2OzAbIeNO7F3MBqslePvsX/ag0vEEqcp5uckZVXuZ80NvObscpnk1O+FCy+xvTJSp0m7VAaoZWgVFfAdn5N8TtBZFutmssM+H+uxt56y66BEZjtwQMOn7Fe8xvZEdr5A9UUKNlLMx2YD2BirJjJRo2Lba+k2EPp43OZv1KBPxfnUnSeleJ4lcRaTVNwKx5rnUxXdK2yvISdeh2xsL3vbJmNP5O1IMhRBYeDWtvE501doSCItXp+7hLhqXzYhG4HcnvL9f279rLjp8uMsJyxzmEifuYRxo2FM6lzCbpPFDnXUvPVygPN3lYHMRUrbiQBM3GkJ4AaK5wxVhta8AjDk7fjdLz+cOOM6xCVZmpP35Zw6mwLL51R0q04ECjpHST8vDHYCSwVpORH/a4+LIquFz1RUFTjCfHudr9AMdXIiJ3PfSqeXHFqNAiuXAUHEapFAaauW1WQlfNbAZxk8bcyzlkFqfZgZXdgQrNX+HrLXip0uP9RyAjObjPXJW45ViHp4rpzxq4Cy0dLocgHmiqueq38xhzguN1/G/e03mONJNz3w2ANvEK6A4EPu/vAt3z4smJIDlR31y+JkZOBVkfZrbJIPL7iscKAJpynlmM0xcP9trQqbk3JWC47fVy4ijkPe5AmZ/vRtCsTg8JS2EO/IOmZusmYOj1vfA+Uj2Z4mw+xzuicOGNhHepLztLx7mTo2ZTQBh5HwdbIevKyzwlZy7ho/5ozA+Yv1tqO56xD9edGiza2fuHiSVV3xe8yc9iefU6GC0auf2g4yt7jzTUpMvennY9b6LoTJwTxSO08oCWOYw05uo3SRovbrlwmcp9jPZmZdIrdLsm9qMroWS760TfByaA4nTXBiEIcObZgGxCYDB/F7rKLyZJBeocqsgOY6BEBOwORwXyeuDO6hdPVJ7EaxODdBRJLCDp8EJxTaDtQ6pxLoz0PRCoZ3CB9GOHsdol8nWLaViZOSwfkSYqtllmKYO8toAoVI5TWtKMKNnWVU2ZuqyO+pBT/dPzvLJXnFjXM1CCMCAMy6f//bDwcEXAfQQF8F5F0+NewZK8KG4w6DcZJUlgUpt+DHcCYygZAf00Rou6zClMEgnpfBXGFM9hbEaIWo1yGk9UJgm5k/MfmDoz/XyNaeViTJMIFWctkzDhLZlfR4iuyAJ8sux/HUrW8CcUTh9oHau3D78Bc7YvC/1YgRj4WML40v9cfeVsQos12yfD5qrfPhTX9TCr5tav7E49u5F048RqNQMoVhNkxg0+f3EOUWQL8OgN4LAGwu2+e+KblXJeLxOOFolkzE2XKE6mr8Yuv5URnPYRZqFFuRbOH3cOUWo3H56UtOspNNZfvUd+Nw27p6CDVAO0WqMgKCU2KFcYc3UTGQ2nAS1MazAprV+zSOF16/BWgvHwB7gNmhsn3qm5a9ciizvs6oMwSTjEYOI6vTws5fBamJPXm7Nt2LHDWp4Grdf8fDEisNfyLZbzDfHEwh9+9/+SFTqfHGZRdWmmapQLhkLjU7q3M5N/YAS4u3qV0eEpuSVKZ09aTxrAfILfyuhwmc1iPDlisriX/dDAKVJIuUaWedTjgwvFka5uHbD9t1XL6jwUvuwPmfBFe0rJqRUNneSjpVSAIXHVpZnweZRPkpLBB2uOaacKjmyDJouMl9hfK0NVnvwT3XBzPHJEeRsGxtTffbJbGz+lwzyXvZqT6cII4LpMEmTTtCekjjv8se357McFIlTCBr4V49K/d1U0uBWP2Jyfk5lWHBuusAAz3YaFMTJyqDMx9pmTmzaZa5ld2p5oGLSEZRl3Valoqvw8QenrtwvKLhWIHNdQiEvMDJlllcVYbj5qemYJES2noFXT2WnDxf4ofNoBEyDPpKNVkthl/v3w4xLzci9SNYWy/w9QXSzqUWBb8sQVjVdPjHmkUWuGnjal7EKYoxxrgimvysw/5UiLKA+XUA8h7wt4UiX1hq0v5jjgXD2/JdOA5527oWfIZv7+u8uXKrye/xLJ/60wF1DLG3sLzSUTFQR1nkjf/lh2Mvr4N95QucAqwZvAKEKoFQszDUvB+aoFRXaRwZnjo4G1rYOqBQLaWr7LjUZboULRm2SnmaHvBC5G/F2tchNndCeVv7cbUitmfEYghNDC+b7+Zd1FgARjjqFcfBUXrbfduCNEuWy6FacUuQ+nn7TDPN+zqUG7MLcJYJUqwJ6mFoE8YxZUKbtDnqjJNXW8nBtnXYkVPK/ZiWrP51SKaVjGhKVE2ey5Mp3QpVMRCqDTGhIYSF/fwvP5z1cx3WGyA7AAWvg/JVh2vQzz2sZGErfi6JN1PCYU6tmeXe6ecV6U9RmEwhkwKN2BeagxEeiamxQtLEveNMqfDbVecOYp6dIebFiYHKOke5CgmSe+7PgEleVSOOkmCFvUnHAy85X+rt8+6J8xiOEVzkpRX0NGVSITsGAkalHVP+LhV+u9qcr+V5WSUeHGN9ica4bP2PYOxdbDk7O0i+rSxiWWXy/jkTOsgFYvFxPnFpJ3Rus9++tuJoMZZ0o2fF+xFChK6AFTjvIXIs4uQ6EC0OMeNocyctr3Fkg/rnjPW1mghN0q7SPJoLnoB0nbZw2am7naOl/ibl10xLu/xKUqfw1JFmXSU3sUc0Z7LK7uIA98dhYssiCGM3YinqLuJ4mcx2o1IsUzunzrwllLeYk+vAtHjMjKllnaQvDogZGnZgW6/W4XwBcBYLVGG5l92ytHFs+JTP2RnxnsGKt1o1IMLtSKNc0nxz3f7hW5XKAueLZ82v5oR0dWdDBqcw8aE0mVGs9+nsTkfI9IVPL63E8S2VeXFVRg8X0t4z3t/+K6y0FaBdfjznhX82zeyy0nD+VFPnp1aBAUm3dRggcPbqENQ4VH3iWVlayHRitpJilsR7Mv4UYPbRNCzuSZv8SbJTnmMZReyDUFT6s5RIX/tzpcJJZkVawfOskcr9OgxnQhV96GOIefyWyxnYO32FGlgVDyjnkF/XgSzzyDVT+TsJhczSL/vJFV2S/ByPqIhd5/T6Fudu2NvxPvUqsQ/Kc0UJoMmQAAI4awUQLPRZ4YX7rWatwmrSe/BtwoAFFZZIiYs4xscnVeflyMfYyt9JKWRHZSmDTRJqrgoUJnpVBpv8POC0YzP3CKFZ+sfjBJl1/XKwbLILl89GOOSFI3r5IhkAAVuQ67vHImsP8QyWedJ6McpiklNf5AiTgYJaDckofFcBghWdX4do3ov+TdXTF0kFsDPrR+grxklzHaZK22wxpjMtpgRnjTnx9cnPsYWesNsLbJfBzFwHHsfjfWyRzBfVmKY/4tA93tgO9NcsH0ksl8eVx+pmzXA6t6qXCd9X+ntoeDYiYCwqtDqdq3YYwecDu3d9zpBEL88NLS1e/UDC21GBFUXoSQtbHOKZVI5xurMKL5H2hqu8Dp7VccQ2C++z9pPGNnP/0GBi66s1xHHglCT4QbxX4Rn79v/AHPRBLAqgFnlPWH1BfcXb6cBVfD1JRLTe+graKxsrZ6FDMmIGVS1MtfbbVUhdQdXLh/WCYppHKWWlGAXP/Fx69crON+Kkyw+r3DDMVkh9RZX1qEUUS/HjLSz8n4DLUo2ardAp7+/idPwvFIU6rBa/t1d6pVrF5P2uQ065l4Nui6QHTRW2UkpvOXSPyY5KN/JHMgKJRhnh3JiPgY+tCts4GV+M+w74OU1sbrjL36DehnZoX58mZitFCcNFwCLoX4dhpTm3EXfU7Iu0LWQtp5TLM8+BZSJPrOrPCy/NjOrr0D7Da7dh86Q+ryqzm1i2ys+xuTctQDPBJpNikJg0retl0OgXaX5MpA6fO29P4AUe1nril/+CvPdp06onGtb2rZYv1vPiIEyIEFvISbBvyiczuYLLpxYcJsLJETjlFCBC21CRrd0VEkaGw9KOQKBvjYsvIZ2fKIoI9A25Pc+9+bnMTU+HZ53F3mBZrHRK0htVm0oxlzctOdMUxb89GdqPkpygyorBFi0SOINebC5WbyvzLW/fDpWvQ2htRuKehukrngC1MSiOh8VNSmUHmWxXVjgQyKa3dVImGS88jIVS7s31fi7yW2HG5UclXhTjiPC+aJ9oEmk4pEdZrktqLWzOGoocn/3dt8/J8sw7MQp/P0e/+76XRH6LZLgOpIRHYtgq/Em1Z7v7Fcj1VlfQD08w6UbbWgD4vK3zVrZym/J5ZRfa+1DKn0rkVph9HcJyL4y3JeyT5I2TltTXXZa8ajgL11cNul6Yw/no5AdPEbuuU2wzlSzfwflYJMt1IGU8EsfUfE8ScSNyUMWaQ9QenawGfJGYv8ympMu6sBWrjKvm1cDvp/Js+3+q2FEuSqQeCbv7kFe16juqlOJII3psvbiVqd8Vvm9PUTsJcHb+lONaKIhlrK4uQgli1xjie7a/xTNcB1rCozFsTcmVoGSYqSBIbgucKOxxFdyce5mPVh4TjOG2h+79EvO9GCZzJBCxXe98jxSkibVUrfa++1D2AZBHmgNWiUp06wtZUVnXSeoLdmmMW4bhH7Ttb1dM9sVnL6nZCauJDfEC+XtYq4ZVeW9K95JaSy2aacWisjJzOq/US/hdOnt+DriytrJLy9hy6kF9teUgSz7S0zZEnnSJzJfM4WkY6yuVumZq8HXoouF03XAExZMA2UvisCOZkp43UdInlS8ZTs+S315WkRxngs4oae3cOLX1p658rwB/i2q4DtSER2XYoqIvQkrLg7bOW8kIbnGSuio3P9B5XLwHO58IruaP2YMtvc73i/OiEK1IDsHgFLpb86fKXEgOyzHI2Ux5y9WTfPmpc7BArGrJGPCWuQ5Tp477aHtErJ4Uz0TY5CYJshoKvkOshT+l9txEZR2Zt7wyNWCupJNkEcQ1dLK0uztNNfUkvpqJQJ5xlXTvLnIloTHbN72rhshC2tcBmXtI3hZUD/or8E2Tn7OpQQx5f87x1kxhaqximnkn/XbsGXKz7F+V2NrzjvtY4SbNrAhJBdixfnzBPu/L1aMhEIwLzMp48mUndsPTEGVzI3BYUN2xrR2VmlKcr9zhmAheJLGbYlqJj8IdXOMUsBkEeWz4FGgbkvwci6HPN6U2WxTD5TMSLoNhKrG+cMuKljZWDEOBuO0ZOMDmYe3+yjn3uxgj1jzW9oclrU+Mzw9jHjPEvg4huR3A20rUQbiqJMT0iYe05EyiXFIJy+4h3FQqMXAmbRM8zUghjl8ezwkRr0NI6YWgtpbqaq9ZNlMW1yCT2bN6LRyHrUGnlncErKK0z8vwuKzXit/fp4m9pNVaYeJ1CCu9MNRWUw/ia4cLy8s28uHp4ZvOSNFCFia1qLHjWAk2+kjLlrY87taLXQqJzbmxeKu0c5ux9r9U6M4RaFnyeqe0aFXXBazR6XOxAeGrVK4y5a1vV0866U9mEqcXEtahJ6uSlZxIB96ilhekWqogU9A5yfRetbEWIHkiQzZFe63kShSde2yyJab6GN+LCYwQ4lsuZrTQONStUuQp9Z5k9ZJWa/jJ6+BWHS9saqkn6VXmk6v0QlZMCe/CxPMwhPGnElDH2GctHFra5TgIiPKbkqzsAPk6BNR2/O1IiSfpUeZBrZw0QPKyM0/xbtfHJFoes4RgY8Vd0vDVHtK9AOKVgjSLTrr8CgW3osGUEn3lUQJ76fIcqPKNFbNK5lrtUWtRYTSqkqEECYHRhZwWoHDes3Qi9oe8YoSKOSozh2W0cZv/rZo+LqegHSQj65fzYi2AVTNjykASqcf0CML/IG18u2KCD/M8WGjByBUVJPpBbXbGOUjjPRvg9wjxOoSTXvhpK0kH4WlyP+syx2IOeX/O/N+kpPzMjLjWaXspIeplwueVp3qmIrP+RB/HQxL7NnHQZf38bz8cg3MdDJRn0Gwt2dWeq4STzNMWhnKUFeNwIFqUysYWJOUx7xSWBNMkDyzSib2rRbCVAX4dWn95rcJsIfkkPONPvApBFgCgc885DNK8S4HIHCXteYacwMpolppo6OMpSe+njIXBEVwHSsGjIGwlzVPexMyoKVaIHsJDkcOOal3BYGagsimOCUc7Nugb+U7X/FylNxfb5a5NdynbKrqPkzxcZcAwPW3Agi16mM7qiPLyq7cDxOsQUHoBqC2i+aIbMz20NTotGStC0zpOVvjEHYM/xRXesjB66FXialUc2PeO9xA0oqF4STamwE2tm3e//HDCi+sQjjjRi62hupprYfpqZ7RA7AjrvvuyEhlJViBHzsWi24RDO4K2E+GvZwvjrlD9nKkxqJHrwKR4zIupn/lyG1uRFkRW8nus87hku8ZOKSTteFqst7oL04B3kqh5JEJGu/OUr0S6Zmx9+bG4G7vbAqovuGZpHR91sTQWVW4htsYokII9mINUHep52am76e9pkJ66fdEMENM0dh/TsilOuv6VnOd8q0xtJ0mhxYCwUVGfAK0RJ08m+XymNQrOVDS/XQnRz2Zxsl9sQMleHHCj0sSzMWus1Nc5epsdunwyyaGeLPHQlxo7Ib3MF+c5EVOEPXoNsGL16sh5TmUXpElTk8hApoKOdG9y9WNtUogHykWSWYC31tKS5hDMSlpCrkxLyCslzdIyv13t0NcanZRfj0NhlncYnQP2sirt75LmjIzR69C0x2vyYytnvtJGGSJJFx32X2J3vIcCF4s06WT2L1CIggBcz8yS/8l1A+w05s3uAXyw2EnyRNSrJeZKbm3W//ZDa8CbRu4UVQPH/q2EfBZjsFl4lZyjTeaYNIwtnfpijif+WGKRnpZpoLyYQvJtjrs0/YLZp9OJ7HGm241sRtQ+lZloRkabcncCJAQFu5aa5wtoB72tw7ZJbn8nqT306HBv7LCf1bdL2oqeFCBf2AJ83Dmm7g3t4y1O5TpQMB5lY6umjsRaxJsKkmIez9bkKU9HqeCR58HAvK2T5jRrUNFLQs+ndKTJ9Dd6aBEvCGgqXMxGO+63q4MAc9WnAAygmqBTy6uM4WaPA64NDjbI25KZDIQjHR2UJh6GPx9TiJ/VJA6elYEo4BSzlXHjbWdjcsZs19+z1/h9csRLwizH18RI7qxk1rKXrO6eYLM0unuWxWITLBPs7U1bOfWVVi/txXMtTVIBipbdAhrr+KG9+NkSVkncwoBJKtrZkkuXv//th4mvLx+Nu+jdVk5doZWtA0eX6JfJ+wj9xzpM0eoZ7dQcx56+wzxuMg6cNxTLfIcyZxJK14GAsvkqRzY8yYwddzT0EXaWfOzJenhT0k+Vj5adVTdNBqvPkQUL646nAvpXzL7FKVwuB+FzFqZ8eFIbZ2aPYD0t1pzSuPicdY1dwT42Xwm7/XFP5KHkc/j8WN+Qi2oE1dchBPdCdlt0PImUZEiTVrklxN9zd9tChDB0+7AAdJU2w9Fhc3S1/DAq6T434YU8bCuuug5xmBe32ZKjL1E2kuU9LNcOFxt2r6pE7rirGcLee8SFuDjRHmlWJmDkUxPUH0uazKDSsncWz8GYbsBfQk9TO5pS3MwbqP1BAP12FUdfofSSXL0QkvNKSWxoJR8TWOfry94KrK5DHObFbbbm5ElUUcjFtmxbpkuY6zAJ+0p3NnHFangOc4xr73Utz5nuxYfcERLCca5BlUyjNtPufnr4VpuUDaUvqchKwbi8eGm0JrM6K2uj4qKuPdrRFlzdwMCOIqyYQ8/J0Q2kUsmGUhR6l5preNfr4Iwd323Lrb4822TSsFDDbBVb6m68wQKWshhjgC21qLiaMbOIfGzMBKPTnqidF9RMi327DsnxTjK9Izf68iSbFDB5lQ63YxMslZOpm4MuQvr+AzLPfdqce1+q4GDl11PhKXaJyJTwLtoSCNu2PtRM91vlORCfNqETB1cWHtPitrDeulwJNiSN1w5Qf1c/v1298aRPmtGEGX3oeXseTJqRF4KFdH8Cr3RMM2sjL79H3WRhHdHsp1KdcKX6Oefed5o5eEbsudUsmXG0hoTiMTl4Qz8X/oFt0kjcwL2Ve2bOSxDOiJUvP7J24nBbQ/I1p8FwTLo00GzDX824jkPNSMw5R09PHQoli0SGDPLjGaVH4Ovo3QqWr0NwbUbitnbsa83ivIQFJlFSZRPocUjfC6zjJlsKJ84ZQ5j6ckaQeUTvUaYt43n5ttYzzaZyfBKayVFFqaztTOmZ62MW43ANkgGdfUdtTAEaejE4TO2l3W7/JWHaSvW/Dr3JnFZmtnDsC804ZiuC4DgrE957CdlsBh8bhW8GfXg66XHawJZaUrldc9IxNK9rs9YDv/z347xORzw9aK02RjIglZ4VvpfVt7TnmRj7SaH7OWllskTXgVVySChbRXNFN4Q6iHtClp8PFhXldRhODG5y0pFXiQanXwNeNL1GRrLhDQqNSRFcB0rBoyBs6dgTmtk6Lde+4u+4R8PhKGzElNXohZ28TcGzzvVrnFMz91+Xpa0Q8TqElF4IaivHvs48GPEpNkYcsSouMkW91KRuoTA6zOuccPljfUqrVJ8S0QAiuJhbpi+V5U2fsKGb+60GrFhII2vFI+x/0sEF+HxyqHOXYii+mrQzS3+XMb9d5dDXGe00Nw8YNgJPmRVRiDzjU8T6gi5tUkPXgUryqCdbPzzIjQi6+1AWtIza1OTh7uAsh9AkMjI4r7rMTBgQ5P3Th6wWmzuR3uB4rgMl5FBIjvZ90so7K3F0g8S+KeVM7zJFZSRaw3/CztMviB3CTu4NId1HlQL9Ka9CB8MIs+CkuwLy8K2S7XgRfHW8WJhQdqzQRZzI0ZDu4cMcuxLxd1X221NBT6KpmaduczqViq80G2IZQ+EgszcYL3EwU2alsbcNCzmmwPRIyB4Ws8nWDqsro6XH+RKYq5gVttTvUd8wIqo2yjoM3oWiVTzZ2Zd6RwjY2D1QWPZ0nwP3StW3meZ7HRoSOf2LbPXXV4s7MzykDS57S0Ugo7KOg40sXCbztUNbUk3nI0IMo6o2bO24lz+9pC4zNShKvWZhcD+69vqrEkVOksra5ajFRwd8kxmyBeCTYGyLWJbopeeFE5dOwIWuO7WnoUMlVLHQ8EtU+gSUcSHrCvC/1TxqBGUkvkTAg70sZeVRkzGX/CnaCpxwc6gmM+AIgb5wGLk0K5mEwQiWQ3vWcfCPCWzhvKTvVNxGZGb2RpPfAyI9Z1L/lHM1WM7LJ0U9DtVWgU+qMYI+agByWvzbPbo2yPhvAlo8SUXr3CGwNzktzzXqfaxJ4RBHKWzHY0/c33B4cyOXw7cfK6MzSNupErnuumaRSwZoI11HXrIx+WkcF6etgJ4UUzt5x3MrhV22W9MaWpbcPM3P+6nUYpMi14FEsUkXTwXzVTNm5Fbplss3DUOgbxrHKXRAi+3FA+47UZmhhcJrHvApueQVgfl3qHwdgLUJwx0B+KAXN+nwpXwHzvLoJ0QuMa8eYwAJuoUyIc9qAp3J+IV3bHuLFLoOHJLHOdn6r6sXk8oYsAhbisfi6+s4iZO66sJ7fdVrsu1Y71JUzy40s/SnPOJXskl/DxCvQzhpB5+2AuoKpkTQvXXVLIDoa9v6Le5L9wIMRG47QTsAo2vLwcr8lbeMsjKR9XVA4h5yt9VPXy0lDxW0JV4h5lr6PGH1CGMpNpGKaF7nTSzMSGtXzfgumt2q7LgOLQidloUOb+7z7MTTgFdTQgmWnIV9HGARGYjGzOTaa98jaELXUUuJUXUo96UflWMTUWNIgWhhY5edRux/uzr8JkSjWahF3MJM2+tJntDUWhgmi+6Uwt8E6W9XA/Y1YydL2WMD2CVJKAMZj4Dw4GnG6isBuxUhX4eI2gnAbSHY1Y0He4IKQOZZ6Wt2ljG52qkbgBMx1CSy3wwWW9Dfs9v4U2/3FwoHLRLxOiT6e4UBthboaodSfpJTUGmSgZ1uJOYkAlxPHfGHBTvSPi8gT5iqtGEjz2fCChGZiIhMHhZdFSvnMTvL/1Y3ABxMkzuVrj5zjXInFuEgSbmSxK6Ve4n+rk1+u1qgrx16EYUVgeh5I4st9Y1w7umd7Xgl1WA1tKWRqswOnUtuZqg3QhTavUijx/CYQ2nw6E46wCl9wA4qrSBUT8sqHYoXle1FQ7mrc/ClUQRlAs6k0K5u3Od/+eFgreuAzRwoZ6cD+OkDogcRNvLzgGdZ12E4fVhAFILz2fQueVYs4xK0nq3gqdxB/8/5HoNhuQ6EjMPfmLrpSWYdNGbK31A62aIvfOXoCm4R16W52aGWWc+mDxwfl/u9v2D8jRDz8uNRL3w1tdOD0orQTVWHKqpD293A8eOaNPhokxrnOmupktAhlp/lOfcskxeoDpNauA5UhEdd2AqSrzfNRs5Qfi2DENbHrMeQg0vN3sj7pJzHSUlssO/+7P0W8LykTFsb7fL3pbeNbe3Y15qJ+6W7PctJO+LknZMEjBHDKictq1EkzoqjTFIslfULPdZ7Qv0L3f3NUpfLb0LnNq2zpeOT1Mzp5cxIoxiIcHEdh4NUY+1aex3YNW5P6yo1SeeRKJ0a0r1+Es83y64GlE4C8zkt4qFN+99+2I/88l+Q9z5t9dh1ko5PNX2wLpcxdOgXKf8ujRNvuIcdDQjb56oQzSx83bDH+1LJrooAWiqjeNlkbBbsz9LHSsoBsw5lskW9b09G81U3L33Lg1SFfSBjUz4eYZr2aXiH4bcohsunJFwKw9aQfcWZ84CCnhV2JMatfrN4bfnDwrqdTZA0mXinYTKsX3xLUrXJrF0HJs5j7mwV0Vcd2RsshkWwIZ4N6llwnBSDzK+EH+hUxnfTbyCPkuoi5Pq4Q94XuvyJ68GqDivPiLM6ZCoZPBU7+yclGhDja89SUxbzhShXt0oy11zeM9m7MdLWsyrOKcEjufNS0j4rSzrkeSF4Jvq/y9Q/z1CwaJbrQMt4NI6dReDlHNCw1tj17rEl+s7AL33BaZnXmuo+KV94Wj8nGGzvWPwGwXYd6DiHvbOlZ1eq5lTa3jTNsbA1YtDEUpI5QJRhjfSdzPL6VHYQVnMMfYKlY2/d+Z5CP0OLjh+uzt0t7Tqyw7eanwHcylciwhHLondFAfw+sICiO8qgD6LGDEdtAcoXrNhXYrJuNjI7Da6uPUqIS9HjYC3CHe8Gn7lIfiB/Drc97o3NX9L2k4zXEFmFHRIGqZQ9XZmbXKi3EMoe02HlAny7Cryn1zsFGw6bxn66+K/SjzPUmJ4yq38scFuJ39ehj5XX98pWoH3FujG+zwzpgSqAbkbYx0HMJZ0WWb+Bl6IhNs6Lw8ugY/iMFFcG3zvoPotguw6EnM3fOSqkp1lG8krKMPCkIWtMEbkyszAgTQo1spKjQZoX5K7tmTJnSd5un+FAnhLfjC5TZ9mnbpNdh2+1qgQ3kVSXZ8/O1d2Xjr8EXnhhT/Kw9XePirH1d18S9SRUS3L9lusBUGIDIomAgPzflN1iMQyXT0h4/IWpQJ4ES0K9oV21uG66uvchZHdRt99m1N3F07IpU1M4RKxZb8b/JYk7sskRlU+ZlTuqZmVKHi2NtrwG7NS6ujt6r8dWoH3F2k6b8gxrFuKfkSmwASx1ehK7XkH9FsdyHTgZh8KxdUhft4RtKavjlpQtLUAUWbiI9RIX7BXBTU+LJ1LGqlvKM8Y77HtF4baw1uVDMxvH2Rq0q1kXxlRJ2zFFdmZaqD+zM1Vli4k123muprR8vFVNMedh/KGC/OfAz4qyrkNUZsdwphLry7atNq3a4Jtc1H9i7tPQjIosC+VxxkJmVxnnifV2N3u4kdgXiYflLX+Aedxcn/+thvuIZBlWKbUbOJJGQc8kzlyNHfvYepsliny7IsRJtLBRpYVC9byVN9A1Ax5bP79F6DYjzOsQkXoRrK3DnXS7AX+4NISR+8r1DMyG5pxg2SvcEWWPj+Uk2ayIgHjwaZzVjyM+M864/LjEjWNMIf6k22MH1aIWDg96LRcCbFihVf3D9lZzn7ZVkU6l/yRCoHuHSI7bqipkxyJFk7DOLBhbMrf77eqOzE6wUWcTwuLUuNsjMwOyS200YMZYQrQli3+7QvRJuLbT3j1GDW8naOt4eKtAkHXPaX4l1cGqFboOTSy9ppd2KsIpdaFP9S187QB1iyAmyM20+VKxCBugWbI8b5Z4WqJgGM97VfErVaWGIHEdymWc6hpbiPaFazj/NJgxIuhz7j6UzIyEqe9ZLW+Kqw8J823gCYOWoAa2obxzfi9wXibLdB1YKYfEstU4X72jnVSHSR2gp63pSZ2yyikkotOmyDhITeokIk15eRpo9grxYRANl89LeDyGI0j5AhYeNS4m6+87m07v/nr8CeeljSo4MPxqPy/DUnmZmUvn3jqMU7JF0Wg9SnSHM87tAg7ffqxmwHxFUvTP9DyZ56jNgFk8LsaQzd0UtjmKhCPD+7GiF1saoaieluN05LScnNPiPdfr5yq/iTYvH526aNbU4U+yPfaT5DhMLsc1eKFID868VCbEgFnffuHDVZVNunOswSkv4x+TabgOzITNY9hatK9di4EMU90/3GDZQjqNuqBibHcuid19HsC057rQQup3uQc2Latty0wU4culHVqv3v2SZH8naB1B3w27Hkk9Ez/HpQ4RARJXQZJ3aYsDPh1/ou9pKrIGMvByahLofWAPRTJtEp+1ktZ5Kz2Ofo6VG+5VuCwvkWHVAMVRmb3Mht7b87nfatw/Z6WlIvJk/85ZV+BPS8WG1yyyg/EIG4X8rg5+u4KcL+B5OVReeAH/MxR2k5+MKTx1Sf4572MxLZfLzHhMjidI+QIWjf8Ma1Q00OjjMLU0lZN4RCn41tPSgC5fmTg67Rb4D05Y+5TWKUHS2SJA0n7//pcfjrW5fOPk2TI7GeGQu9AGQYBUOIRUHs1aBpvy63yRMpbcU6jxDFXRK53B00SYF/IcrKKr69DS02kB6uQh+HkLCe+ySEJsIgfblrCB4+QB29Qk4CDVogEBzgvDLX32EFgUVu8/5fk0zdyMpBwU2Yy0hX73S01vzEQpUfDEZOyyshsjXtrIAkuwkOfcO9YOzG095iDfUB5LRDd8ipIz/r0yAEQ8j4Pd12PvmyHsRANDfg8ToI0M3pHlYSy3y1+czlK2szD8rA0HUlkITM/K9qqkx/m6EMiGtzBeJsF4HQhJh8B08hD8vAV6u1AXQ4igKI092B2mvi371ufUp4vTYt+EtKZOzNjKe2R+m2e4DryEx2PYWvRJu9bRaMyZY8tFpVOpjtSxPo+dQ5LXWQET5lRIOXPX5fI64WnRjJfPStoUpq1E+8o111ZfSw7mrK52ggx3o04WSSJp7aIZPJY89QFyA+ebx8sRJloIjcanT8vOljBty7zutwp5WIRB5o1ifUcAsrWOwC2epVIDcVl6JCP/pgp/u0rsQbi1qyY8OomrsstsPbwVhNxP0wF+zveZ/OJ14CM9/tJWIk/KJd5AGWNB+0emENu2jLg2SkjrcRFctlmSIvDSutrbN3THN+sOLr/FmdcRzRaifeGaJWM0Mrw1/Cq1fRimPPbVzIINOsc6LRZq7oqn8Wl70rl/rvTY/MrlsjEed2MrkSflci7GiD14gN7H+jiyaLgLoMS+iQ9qCBeQhpI9Owh+g8zN/kJYxLT70sg8BV3+bDDUq5TactRbHUtxc7gIR4b2dVFPRzVkVz0rqySqiOXwnuHePA63FaQP/iBJOsXepbwx7+HbD6fq7PKbwWGt4KVkHb4bYBI1rGchDwemFLnskTkSaH2OS2WwUwg+VxcDKQdiwqD0j8a/Cm9J1zLJgsvnFjwqwtZUTxrsCEFjdE74jStPl125YGQkFY6GDCeO67xckFF/X7AT7/1vAbaaNLnkx43Gmh2/0sIwh281ZSOwmam+HYANdvbT6pzBQsMoZeawPzOl02KzVfWTCm+nQ3mOkvERGyxqFXsgLrqZ8py7UrO4sqwlWLnu0W6Hb9WTk1vQiTZUNtLy45Rtsg60meUXc/G70PntCot+vOPFR0Y4pU9l1k5NSVgluP30DurKhoyXCzA9OGor6r4CL8lQEtOSAICd1IeL47BXEe1hnZQ11ljnTFW0taI1EBn/9te4C4fuunx6zKXTbGnAlxLyl8LTQAa+rEO0znpYuQEEDv2RgItwXm640kXAjd5l1xciEJPquXxmyCOSbF3Y15GFnm3r2U6sCl2+gZJC0JVDKrRphoG2p8pJzFoUgBLvQOTnIYgR8V2HANELKO3ECD+Rgs6BGcuKT4D9+06wYBbLqu3pNJ99BaxkxabiUMQmz9Wl2AoyiUY6IzMTPLLRvpou77vVwpmjKpOMH5wU0R89nPGeho4f5HjGvrPtfteov11N2NeQ7RoOj9NNXHIMIUh4xcpa7DsG/3llrSmJXX4JmF0vZuuhJ/10sDNyEQcQY6txN0vkHD8ZjMaJ9KHHPXq+BVhuLcMNZdZ7gdkLGRdGwHv54bETTTsJEX4CBaPerHYi8kHUuI/Doi4B7ETasTzyz8k7LdvZnqX2n3OOFst3HVhBm0R0pNCTdNoZ6alvLuPRPnSysRqpVbgYvor0aBqIO6ev5eXAaD/NZnsp18IqfrsOfVm9Pq52LoSfOzEknhQQzhhpN0od0o6ldiVDKDEp4TckO4XdHGWuV8aTucOWn4qtfC1sbyo06pCiU51JivvM7ACh/pdXNFRxsxQ6XxHzFTSKx3I5Up+Ah6kQgc+F/eui0Lpd+7TxagZrWfTXHBsx36E2mWTH5XMjHpfiyKG+fJo041qPH2BZ5j4OMxwkx4sdGeeyOcxHKkNzvMiKlKdOWi9lGhAxF14WfeCEZ9I8Y3Z3XjWRbDAz1rBJlxa3UwEOmQNmcG+SAXra0mnvJTGBreiexjG3FsSwsXuZLHSsb47K1dXvf/vh4OTrgKsdHO5kA/jZA0y1CIPegqPcgKPWJNMgvERWdQ3nWClYmXnsoayaVgTsJdz7KMJUC8UCtxSkaUSFBXnk2nhfarIdJ5YyZBuSXJR3hQ1rRMXMk2hPYeeamiGVLQn5EhI16MxBH3Gw10lYHdKpQVeix8/YJ9HQnnJSuPwp7PL3hGl3sRXbpEkWLdsxyn2S/tjTG9wvFfXRMkutC4NR6RakqA+IpOqIQlzVvmxLmv92pfCTdG5n8noBcWT7ZXh8IUilufg95HmFerTYvssnB20u0RPDT+I5Q7+mA5yZDBr0+BxyHWZX1bqXpdnLXc+ioROzR2N9SrT7sfU3GaLrwCh5DJStih1EtMrJEGWJSKM9BgRQxusa2cGxVn3/Uah3xlFi/Uu/9xB9IdXAMjXXwTR5psxKB3BzBwrJ1sBXz1KTsTsOcl4MIlxpEE9ENpfMR9K2yfwZ4X8a0/xvW//Hw5rM8rfr0ODVawhr5wK4uQNDuo918i943ThrWeV40n6S610CzToXO9DZemg0wj6ACUTt7d5UgF2cqhAarP+Vlv6ZmHyp7f63H84Tvw5vyHmhtiB+EtBNYGHhED1rAwyQq0k0IeM+pfGlAhsrzroOcZkXx9mSsC8hs44hd+GN4H9Gz6thXxaiZRFbFY967tbcgzTHZuxoFz7foz1YaeDXoeOd1yHPlBM87aHIrEz6FnLhiGgUWEkbavZnJPTqeIr6/kkkMIJcnVhZIfeOZko2vXQd6CiPvrJV8YOIPvAowiJAsUFUpEyV0EIbsVIm7YsiYV/L2evyoDAx5SnN7Odzu2x+9bKpWI+1NTVBX0IkohfWSBY4wGDM6zAl6yNnozV497EbkAc4+qSRKZfME9H5CtNrUavXgYr1qFtbEz9I6NiEOg8vsiy1zt1JMLBlg1qEALiV9mk7MGPUy8RG7fe2Cpkmi0admCFo6TynaS/Sw/9W28i1UiQu5UKFbepzCVX8WApJOGu5Lk7bzND4dnMi/BwKr4THo1MjyZYRlWzJs9WnUY0vzL4wa0Auv9mh2xzRTgs4pRFgsYkUyDHneGJtz3lb1XoiIHBwzFjnxb+MMv48SOLHk1TXSExQjItxVVEUxohLqnO/1SUwOSWgr8E2sfStVQISs1CEJGvlM8vrVfxR2vt2xTQ3UHTCSiMI1VPKoJAp5CECqXzvqVMZYgurVVqTNGrcE5sbaNKB/63WV6SmT5UAg2OH5qqvoJUQXoK8mCRqH3gJOy3gkERgy8CWbKxnbY1dtzR3IdNkvoX1sEi260DJORSeI8WdpDvchOjXDCwaFog6gEAelQywZHiW2Htf54WXrRIOSkr6CG8h/UyW7Tqwch6LZycS+IkH4l7SiuMiFn/ax8l4dG1Ft4siZ0pzjm09dayKdK+uKdhqyunC+MgfMvfKcv2HbzXlBms1yrCT9sWuQFphXETZkNgny+jx3sppfTp5BH7egZPP5ziXQvobALUrDA3xKdXyFdbDohkul5bwaQxbifWVW/bgYjm+coQ5rTnnrM+AtaoL6PSFlNnii63Jq/w8Ux/7fAfjZ5Fs14GU80g8W5LxJRxm8WfiXfk9db9H2+mZp0iPXLBwnXsAyaTKpdfJdJh7ms4rFfamKHUd6v+8ekFbj/T1yyr7S3xoYme6qIES9XPS4UmOw6bDbdcpIhZhQz6el30s7nlaMA1ZeoU3uh3hN6bI1voE/G9XG+HYJIc0sntYijqlnjs9LS6DwwLq3v+/i+Pfrhx9kq/tEiaPVyVXorn5IoAw2+ItwY8da1+H2NyL5e1smlP2DSyj4Fws+5brfDRWAxQL6uiw5VcNU2ZBE4d36TBFIJl7K/EXOqpyZ+Kms6h7pNXYCJcIgCcsbPUoHhdLTlacLRL6spwn4kmK6hTuh816YyptHaVyTynHxyKvtM8auyZBVmngkcY9APy5/7d41svnZR0a18lE8TNXJI+IpbbiFsjup3Wcuks2AtP5i6oeibsYxkClpspK5nvwUzM9LPd1VwPPggDd+85XmqAXiwQRNKqdCv/Oc+GObWrkI7WHvcVNZG4LMicBB/ZtsO9w55ApQKKdLoOHFmnheuNaj2n3Fcf9wtrI7/EE41Omxwuhv0m0XAdixuFxrGSMU+pGi1mGolJMhGtSihAxNhnVVdWXO0cxrZNio5S+ADcTmO9vHq4wiWnnfA+tHx0cF74FL+9bhX6AY6RmAHYG6cy8kB9zJGRqGhHrfKi3v+tj364g5QtYTgKoHVKqQC3eky1s+lNbgZcoL4toug7ElEdk2XKUL19hsXBzadxDVDnXYbDepzThp3KS1bxJhzP8sOjnOJG2oXgH72URTdeBmLJ5LCcb4ZS9gLAyr5SRCCiqiJDCC+40a5woCdVpnZaGqaiWzgZ/97FRmQNImsgbeWo2DwevKuvlfffhVH9ehy7XXldsOxHHT9zhsKHEYhR+DrxU1MbxOFKaIFxb3r/GWYFA+fJJOVN8vt17QzQvhTRMtRB6j2W0G/YfvtXqSsp9rA9i0wesU52YyG7p2MpczVXqMWvYwo6tyNi5GH7uhsepWBzMt1wPu1DL8bEBcyrpXbkeBsq6DqDMA3F2KsYpdYPvQ5a5tGReM7g4rawUbm4pUUOIqWECzitmate79qdO0i9sf4NnuA6shMdimGr0SbyehfPj9axEMftzRLQxKwSHLVijRiJFBVkjOnC8pHuF6Sukl0kzXQdayqOxbF3ipGNwIHrWQmU42JzVLXCe8GirUnl2lrit8yJ0k8vhDD9soxvqpV4qW3wUCXCx39J+++53H85iu/zF6S1mR4/39XuS4jpUCuigB9z7Y5peLUlCG5nhEebeRElZZOGQYXTfU51hcSzXgZLxKBxbkvElnEYjV+fqw8AXUNZx8MylWo8+HiBfQ2dpcgfj19S2MJniPekOVhHkdej263UHttMR/PQF3jSTJKUTA0JLZc46k1/nlFZrjbRQ1yy6ztZsecjhE5PJx72f5EvZDtZ6uw7r01vPdj6C7y0972p5Yz1vqDMIM0HBFw/4SfChTiOYXp6SEFzpoXj53yr0F0mmCrvVqLGlhf1JsquAMyTI/3bkIV+TOUg4dlxpxaF62o73wZZtkkkY5lNp4iuBnxVlX4eo3IvibUXeV/CFxGixrjxqvKO5jsMRFG0ZpNHDmpROhQG4Q39fYGufxue9kPBiRpuXH5160ayTkOInsCTJl8qKl5jYsUYSYEuGIGQbbWAY5dHQMnI7LDzGVLTbGmCPGynfYQaGEFxACGnXOhy+1S0QOOKwiFwNKwGfu2S/QeTaBNIjnll5jaZM/u3K0icZ264icohVDqqBR5AgAMs2IHi6C3+v8H4W1XYdqDmbyLOFOVfImys/dCqR12UWgR4HgFSamLB5Q5l984R4+0HIycK23vneWe3ng3TMOqTr0PfR6RNpa/K+hA+TiScYdCQ9nkPXUK8z/QqXGbVDV2Enh3VavDKppWHCLct878IfAJrW8AHPS7THdKrdV/Hw7YdTi3L5fT+9PqFOUtYhhwsuWadpD47pytqYY4psJHE+E8dwyPGYrIrwvGvxe8GKeuow9TPi02IarwMz6TGZtirlq1gd7iKzzzp/D/+b4u7O3MkY83MBZDPtpk5Y7RzMxevEZn5SPdnytAutPTJLL0n3hUeu++Fbbv1ESmZ27XSEo7Nq+5LPRQKOuttCCE1Vf0Mi8En5E4nfNaYUgMUetFovVHiZUjpMejAiLm3rtLAIQaJuYoqW79wnlmCVsnsEM1VQLp4ky1s06cP/9kP7SFVRdIj6KESVskpdcBbpFcjBkEA6/UxQ2GkZfhqHI6ubMryeN9SpuSOwZvNpZPwL/t+k2y6fnnPpPDsxwUtjyNzBJWkElNKuc4uMrsMe0pbSqiFll0sEwkVhUWM4fY9+X2F/Lbr18tlZm8x1VPmDhs/U26yesvcSHxUQk1PKtKlZyzXUXQEBVxGb+lsOWr1r3rRnUrnMFsCK75livY2f+60qvhVPnu0du2RgU2NWxTfTbEWxQzQbY7eCNQG6o8z4Sk4Wpxh4XoRCiDIfmYOZDUp5/EzXkh4DaxEN5sHPC93G0/zwl3pTWHkJl1+K6pau2qr8ScVvHaGZFkvDdMa2uw0DKk05DnMt22JAKD8lKVTleWt9HihUSiAYpLGPCnVykTa9K+/H/VZr/Tjtmbw983V6zsoBMVWfjYS6GCLgrjjPBspMzPGTRJ2kUg9d47SJ4qKiFPYkvY9Sw9MLwu40qvOa2DDjo8rd/3a1VQ6NT0gmnAvxtdsqEznWxWq0GndV4+9pEt9uYoKfyODUkznyGospgxbgUJmZQfMwtgaAexTnzsnwwvggYgp7oNbh2w8zJf86NA9iI8kQk44Ign9OqwkRYxvmgNOlZpZ8pPUxm8myDoD+ElhE0z6AqeF2W1a/iz8+9Y56KY3DiiCvQ8TpRah2noWblkFDxt+L8SY19Kj4YI1fVy6VSVMKADLnrpaWxjLq+alf6EuMvkWiXwfS3SHpnVSDU2oC/HVZJAUM4FzdpSer5chwSD6INuTS82JLlbC9OudV3yO6ECRYw8uMEr1ULM1HROd9qRsaQZx2nCDlnqs2jSxM3R6BKJ0etexBCZb8/e1Kzr5AbWZIe5RZGTp5dUg6GH3Bm4qXbQXhOigOnkJhK86+Qt05eyBVXejsvZ/zOk7lDG4NGSg/9K2MRHHFK2aAqXhP7zybRbsOrJvH0tkZF6cMDSwwTRkYkmapZQKJyZI4V5Inhlhfx6sL3VS7jKSWUcV53CXtF2QNS0e4DrqDp1PYkrsv0eOgXPhaI8oVHbd0n6g61G3qFqPFZpakZNZKys+Uzo9rWE0G6fIJJ5egMiW3k0JHqSioONBDDY+hsYEE5KeWhANwbfoLliYWjbwHG5fdm5f8NJ/BqjC9Dt2sve7XdsaBl58gzdbkUWGts/lX2Uchh8EFlES1TiqWk8XHxfOZkFHvNT01ymeDHUnP5ctavWmYQrHSmN1vFc3SBwlulwiCyorafhqh1NaUkKF8hq1/+JKDHwE5EZMZYel54fpqSnIclkil+5SQPsqQ5pic5Caq7Zh81orm/G+1VzwTF1Z3DXYJ1N4VbApfsQA0Q4PPsO2SbFtzsjMufALEI0wsgkXPS86POXTMACmsi7ptfiIM2d+DPDPtWy8bzvpffjh46zrgMwfOmfkWfnoGRYQsmmaV/ZIfs/CwseRpSYPxltfArcpHJFiMTjHdI/qX+DyLQLsOhJtH0Nlsu0vODxnWlVX/RDirLn4whow5q24p3SjHOisfdNR678EOYvdkthdcv0UgXQe+yWan7GwTPzsFtzOB5ZUsSixfrus42BJz8Tac6zv2WWGxe1U8ACccnzK4fzwix+SPrgPf5NBTdrrBKT0BZlOaPHGvYFk+hmowgWrq2oKlWhwKWycOafojO5SFU7fV/4KeT5Idm1NjKgn7NZuNKjN8TlzrsBGk6fq02G+fbvbpaXliQY5PbFLGgy3HKpGhcmQNZKLpt1zOYLe4IR932NznHO6fE3omgXYdCDePoLMFh5NAgfCNOaH8fU/CYH2vDocikst566iP5rRYyOxUy+uEVSj9vgN+bgBtg3sdDLRj0J2Uo1OKEh6TdHqrIoS1X8NTc1GtNHLiTAvbYWB5kpmUemmYhnv/FmJq2d2FJLyCnMHS7cVnud9q+Mt2iyyp4hqYAVh18VnYPFGgC19vrGUTdyZEcUhXn6Rl3l8QSpP1z4CmD6YPG7+QYqVG2vZQiiKuhEoZ1g0rkjTDbiv6giC44yvrzHizOs1NFX3/WwWBhZPdq8BLVmWvHjadTA97McikxClpDN9OBsC3q7j7pU9moZTHF7L3WWJOg0J1+rU7qT1qHzoNE2Av6oZPD0Xb//bDKTO//Ob2Xi98O+/Kz9NiDnClLs0HgOihzT08vgGpkQCNbArbohKjPG+Q2FFa6BFV3MLfjhci9elweWymQEvfw46BDt9+OJvuOmxSb1PbeVenPC0bY1uYXM9LgZ9imuzCNO5VDS/hIItzu3yOzuX07MQjP1Epy9wyNr8gRtCWQXocwD3iK6EAYH0WNRJVLdvUCGObzycO8Kcj08x6y+vQX9brR2snXpwSNXqXMcnEXcwD0cMMFgjsbnAsC23rrDVSUBWSsXG7vYUCMimn60BROZSWk3Z1StPq7N+v7z/ghueeNjNb01aQTfqpxE2lVd3KEpXF2u7zkn8cBdqk43UgKT1S05RePaVWet7VxuxPGTTMKsi+DpPx7KdyQ0kjqDVvA5F1VpTBkOjev/WVTh5m6sl1KLh2CrQd4dEXKnnQqs08WBOAmx7rOCynWu34uW/yOi1gAiUknjawLU19x/o3KcfrQFE6lKaTeXBIVMDqz00jrcjplHN9DoyeVkJ9zCUrng7MmeuimnEdcVzVferEK1ldVuHRdegw7HQkdtKu/DStqK2vRB0GSFlwd7JyAIuqi8qMZ7QeDC6HSUTaVAwAfdwT+18SNY2ss+vQaMxuS2aLlL6o2UkEyEMBFJjU1MY+DsPPoZopJ1OWfdYsEysIBQgS03Mx75DSjTaCgly87/jgQf1vNa0JBmrQnhFbIchvbaU1AQ5zO3NNcjDmgqK/S+DfruZ80qitilFHYMNZcQu8xMBhfrPfByUDdJSprXqSpG+wp1jffXzcL7WkDQ+CC0keKptul9XCcNDuFnmZeDbjkYxvE5RWxtUpP8tOl7DSK/SspTTpKpZJpPea720cUtRGXWyfoE07OMpwp7T43+qrhyNgxYL2Yks57ow2WrWpTazYmWNl11ty6berUPqKpl0y4BHsfHiZlQmUUWFKNJPwZe3HUluugzjjiTm2OHkSM4GNguAqzmVLcU9Jx+7WKkIYENzlmrPFCqMsw3nYLKu0dC/oLFkosSBNk8WzZ/YQXbd/+FbfPk16FIMKq67KJwtR4JcYyWbStqWOfFyddrbNKTvHzpX3ImuCpiYhJLwT3Uh7C+w1GdfrwNB6jK6dmuCnMsBQjl4W3OBs2bKPA9MUFtXJ+QJ1M8awqiWo3wd4mE+TssV+yQpPHBVChouNWtYD8L/9cCj3y2fobT7fESddLTNKMeDUtq6MC+o6CuwzyWZ6jArkoBUBxBoZkdSUa6RJvtez/Zz/NoOMyw9K3CDGTs05pfLgBeaqYk6Cfcq7xqWzK8ziEGdc/D8BFvaQ2hCyyL862Dis+XVg2T1W3hbXfTGeyQ5JBhqJJWTJzzpObUxhVuI0b26EbTHhv8Si8qbnvQHtzxtRFapQOPmUuKV1URS1IB1hAvvtM26Bp36419/13m9XXz3psTY5apGpel4EOQNWcRHk9T739CUNw9AMroPE4EkStsR2kuQGpVyltCYbduxM/Yk1LMhYxCD1m4MFb9LYU2w/++Pd4/af8xYWT3QdeCWPh7JTa/xUHJIBMzbdXR1geHX5qXzPkZOWuRtbXaYgkTrSnDkmh6R4t98dD0YFejYLEwtdBaro6/e/xevv7KYfaG4FInGgnQi4nUREF6mSwKwTSsiLsCQvX2NyJSkWPOKMTRjKvqcF8jCVYoP2bwhERGmdFkuNRVQ6chsb+c7bYR2JZyp8N1uk2ryF+6VS9zApg/nVXYqVx+pFQ0edRlRxgaks7bg9bW3hpEVw9HfF78n3FUQ9G++wxAGgJbbOldb7Dl06ywBwnCY5cz3dU/JfUG/MK7wO6oqnxtgKm6/ISZt2Fm3IcZgatxVCDjb59eAXcVnZ2y0kMaRiycI9hecF4s5iyi6XWfOZOFtkPonSgCdZ5UH2B9xHiaFLtEfAkxafrz0hs4L93mWUzltyl02e6DrwSg4NZScYnBISSAVUZWFZvaG1jlEH10kbf2kIsrrdRKZSS9crEU3LbO9KXoq8CZnrzvwjwNGaV0E+rIJoa/T47CmqUaQnrNjJRadkJJsbsLgEPS+WWlI+B09avc7rpbg2ZLwOENODpFZ+kZ+NBBMulIXmQZD2SOsodbU7YFfHVNY40kIbkrv+PMP538fOYXPpOG/YhBm1yXiMe/Mfvv1wOkZc/oAMd6CGnWDoJyRmElejavsmGP+s8E9y/3S8Q6qSM73aNFG2qnO1hwJKjXft9gX2wuILLp9e8NgIW1bwZQgJDsuKDtmwW8e3TYJF7DsFkZyqPtZp4bilDwrDvdbvtUhwo1FmKrF52pD01Mx89SXc+98qdUcgkTUbtcENayNCbls2F5vSdQsPqP/KOfxN6P92pXVfivdKfTxetImonLWDCZbZU+7iK/04zASb61Ax7FUY27qKJ8M0ohGWNWODdBlTuA7CCIK+f3CAnWSD6kmxTWrSPo+j3+cu/Xzullkqdx0a5HoNdW1J1VVgBz0QC3S5PSqf+D4MhxxF7WaY8/o1w1AEEEPUY3atf0rZf8X1W1TRdaCWHCrKUdRPCjzCkVw18gltrPYUTAdvklxD24LPW9/n/RX2szD2Cff9nLkync118E2eL7MTq/xELOaD5iAmVzqiR6UoOeuPo4A1UCp5LkUQ54W3b0mHGk72SLnnrrNBuCbmxBJ4r2Tdxi5E9L/9cFpFXIfpEN40CTuv5pSHw4wXxnKRoxjaasHeNSGYuR/EmRkOf58X8abk+QQ+bOYC3YLfKpiFMQGWsNSmMfF+Wb/Dtx/OM7/8d+S9UyevxoeLHry04KiumcHJdnocVv3He+76zwlMi224DuyEx2bYWRV+FsZk/UZYlTGJHnlnheDZ5bLwwlz4L5GYkKZoahrCUyPeSJ1BwlrhjUWdEvu1tCv3Wx0/NrWzDG09bOvIS7rDb1h/I2OHYlssjyl1+eKSL0Z51SEeu8j0ttpkDjJsLxB4f48RtCnzy2fYHT7elpd8OaqQkE8SRUSykb3tUqcEFxcWiRTWCEdpjsjmkFNJpxKfJvC8kMBucc3XgZv2uGw7rcJNw2C99shlrWeWaPd1mMxkEX28iNcWvKQWjre/2sARwty5r9KU1mwyFVFYbpYW7qnbzpeKfjOF2LzU9rmG7lbpJsyzcUp8hQMcaxH+LvF/e7L6QYS3i2I9VbiSv5bxJiFzq8x77QJpcxkrXAidlNvqj16E7pe68+EQmI3DFhKZMfUePAh/17sS+aH01XPR1Al8Yt5nCh1i0eIhF1HA3rZdDsPJGE/E7yu8v0G0Xwde3uPxbW3tpMXVoV0LmO0xa9stvpgfQGKJxhH/l3dFT+b0WuWJJzX1O/Xz807EfOssQl31Y6VqHx7pv4QQQXhvmmZcrAj0Jk/uE9MnIrsHye/iSitrVAF5iKbNv5n4w7Kwts5atLO35Abj6d2bUL3C+5vXdx2IeYfHt3UZV8Zh4SbzmuWsQxo7rMNkbWG8zE9Ww89yURgnSWRiTE7G+Lb7ex3SXB7gK+l8lc4Wobr73S/V9MHV06HAxcC4lt2EujC4bcKy98LxM8fNabPyPouPH8WANYjP5W5y3bYPoJnvInKgO3zLr3aeU0abwE5Id4x7G6LOcTgS3vUgfWZik4QTffnulx9OOtnltdSAV2TrsZG1MhOgdwiOhwGEhU9hS0Qxa+THzzm4IOtc9SFImrcj4S779srLzwPO8z5JDchKkToilco/SMvSxeMcvtUaVK4qGqfM/HgOhFk1qEnbB7O8pu7RSC7LaudI+VkrXpbL7zkx33Ix7FgpFwlLwaHcNxD/Uu7l70XS16Hlu9ci3kyN9DMp4b2HlEbzc2yD9ivDEkBPUnlo4VaqHs8Kc0YqMNP0xF6e6o9+LOBZe+3yFTZPkXP0pZMe1RsTKOX3MJ8xPbrvkNpVmzDYon6nMOJHlTiBhFEr8U7hY/VOya2GkelC1eCAc8/Pdb9UHNNi1VXFqsOxBmmxZITJ5kW6JmL/1jAPa9POj/LzqbzKJo8graxUEsEHMSRg1NMMoZfybq284OvQ7tHpDmlnxp4yaXuVrEhx2IhaNbJHZDM7Hl7Xtnz4QVpnxUpg41IaKLZRuNP3P649t+TCy9UWPSXSTKw55eEAV64SVnw9VkI7gaq0OZQGtDHPdXQpbY2trUQwYdXfQ2BaYuF1EBc9MdLOjfNz6VipL3165Lx4ihq8R4n8plQ3F4ojIe3zInCMS2Jr8HvvEK5NruQ6UCsOFWPnhp1SyfAEg1AxmRVnqx0B21TAD2lDclIhbZfhMEieukBxifVJt/o5cWWRxdeBXPbIaDOt5pSF01i1pDuLBUy7Sze1VXkVjPXqykVObOuuferZvh1Xf0+3/+EQBVMkuw6amq3BOTkFbgYCdZy86xhTCbv8qAAvT+VJEVqF8mvWUFOekJPqWnlqOPDC9BSTIrlcRsUlYMyEglP+AacSZM1a5YhRhVIycDAs6n/CyWjSXxTeWYobq7Qm7E/5Gq/QdRZBdh0INY+AMxXVg/5K+nnq+AA4c037IAfKJhdTAwAEbXtmCYNCIJCksSL+PO9VNgAaokVQ95SMDJjOtp29+yVD9iqRJK0MvWhPaWquGu9GQkmprM1TOx6aIb4fVPtBOCmOIFRWCaLK7ticBLg22oXvU41YWKAo9aESi2SS+Hegm6LcFtu7SW9MScbaQNf7UlNVEMv1oglT+HoXmSeGsmU0SbCCH19uxyS4fEbJD3K9oPj3EFrPmoSvk6OwV169w/wXOi2ZiWTXoRWE1zrCEpNP0jN8C4uTdb5s3NOIOaMnZWUDa5bpInpShPXysDqDeiKl2+2nXsWi1cZKXrnBgHvcSoX7rYa4wNXSHp4NXBnZpBXi4rLJ85Elx4X8Gh3ym7LhKwkn5cFMg/bYUI4xoxQmwoaEK7f7f6HE3iYIL5dP9OhHR0nwlQeZxq1dSVmy21LZFQiVZKpyGVghZWW8aCdWapjC9LZwr6+O3LaShMKx5muFk6Ncaq37rQZ6gJQsQCdJRKtY9gIYnAVThVTCJS223t6eNqN0YqCYzMptwWGkI/S9KuB5h/w8sJCxtZ2+BsDD1I8ozbrZzuNm+H+eqGfb5sujU13y1aYTffqREJfChVhTwOS6WcnGRsxR/A3WqEJ6aftTOa5FLjJyi95vv3Jdyw0G7pxA1TzsiZmHbz90QFZII61Czy4zMLTBBLvpEYHg/rlT224wYQrJdh6hT4g5/JlFt+lZsYikvqXIkG6dy/RqlpodXVx+MOLFLnYa4SHrEIGBJrbgcU5m58jnWc4aNCEjU/iM67SViUD6+4qncs9UeYmrt5bndWDTHfLd1lJO2stkKbYuIhk4vqUg9p3emy4Ab5V1Wg6rEomEAjqH8vx6AHCxnGIXCCF0KkphIcEKeA7fqu0jumcOTJx85OnB77JZWNUukxXhzIPg/T2v79vNozvl3VnVy54QWiSpc2g/GkRJtd+ojpfSVK0OOJc/2MyZg+ZkkfpZp6yp5sMTlg8bR4kkmrk8xYqwTIYYoqzTdib4VXkbge1h7jr1CwODzeYP16GrvdcF386m83Lv2he176yTdxKeoj5eHIVNu8fQRs1x9TDDSXEIyn9EDfBYNdxv/+daleWbr4Oa5KhPDgPtM9a0utiVWX6PM/UHg56zJAvwvFxDj4kkgOFkQYgt6LzmXasDFpAiPERzSVTpyurtx9AE91vFvsCR0jSWHe1ZmJDX9sftkN4jW9kQ7cwtmv+W2PDtphL4qQdeAbuXBVS+pBwuScoDLqbfa/R+TnaZxOJ1ICI94tLMpHQTL6VvL7ZIU9IDr1mnLzLDGZa2LtYDDmKRJAiJiIiVmkHsUt5VpGByy5dPRXvMtZlG42fdwNKwc6GiDoQEqychDgNM3KTULwrBp8IXu11zgLVmQkyyJPcSTZhdbSIYmBGp3aTCev3+lx8O3rgO+MSBM3Ye6SnvFPtAseKQkFzBElziiFL/R8PUY1UrgrNiz+ngZcmbCfeZia9Qfia7evlkrMfd2kmEbs6hhO/MiFUelANH12Ea+7au+lesDw2s6Tg7nlGS3+PTu1QP+86rCGwFKr00J5/4w/bb3304Pb+uwzA3b/ibnUHrZ9yyTW1kyCy4hxHZXMepidZExzXBdJR1WvY6IFAMIjrPe9jXmRkrto3Cq2B7iqjL8h++/XBW2+UvTm8t2/mzfpjkhFVmGKbnJVUc13Gwzu7tRV9I1LDUx+vQ98frE2RnXniZGsz4wHOdqxV32to2DlOAq1eqU4q6KHjSQFlBH9bIT5Myfzoq2pQWLleIcFQLW3z0xUrWMWaZEi80+m4+FmRkSxu6rmCkl+1go2N43ajF0Fwm9+y8F8bESc4g+YmsWReT+bdkusmsC/9NXN+17b3Ni/tUtMtcS/80EYjZaqhPbaXGw2CnyUNnpkcci/9m9Fla10ssVQY9/Lp5eHQh8bAetPsC6c20wv3Dt9pOkwkkDHdE0+9cipdsVyL/ufJzYGzCro60+Qg748bLgfAyJqwMCz1rYtTUtVMZKcbbpi9MOZF9jc3RubFJSO1w7/CtUv0TQWDRxJ1a47p9hmlZwrrMJIi52115F2gnXZySNOyqNy+a5tTZydHr4nRHGfes7BdSemh9Mqc7UENAlBK0lyTpJfZE61JkP2eNaVdN/K6M+FqEr1yYPKpFu+pJOXeuVjlIIg69t9R/Ae9YouJ10CA9zdJMOzhlKXS2c1VyDOhTSz6lbpG7X9EuJ9qNLZViYYaoLWypozxFe1PCWYaJSYlsSjnr3Xvf6covWRTFWKXXVy27HhuuiC2Yo1YUrm6B7tuxiWifuJbAh24usriNwd2OJDmKhMeXrIlRwi7ggdkOcp3wkDjmU0nST7G+raheBwXWEWxt/f2k1zdsramCbS61rvZLTHqGHVYgwPrVpZawq2nP2naYPS3v9Tgc0CZIdlR29adth53da//w7YftmS5fgXUEW4eHP/H2g5nrVfwHIkBlTCgu4BJK1WQxrHXtdSEzd0dcI1YJsurd8DeBSCyOHYzNOT+HZnIZfv/bD6dc/DrMu7Gn49iplm5mJp45QFzRxM8Ku7Jovi5HHGvu8hwx75MiAJKpTkwqYmnHPc59QeMzRbXrIMJ5op2df+DnK1QJOuS8uGnguLnLl1jU1bUWoK+qHuntJ6Nd5DKJme9NVF9RucwFevk6lCdb2US8T9w3TmjKEh4kPjptO87jsNWvhEdBmMe65TJOc5PrYZ1YD3fEz9E9kqKMbZFEy+B0uvgoR3e/VdcPM9yaFsyRW8ljuX7S/FIxTvs8H3WUv4vi364M7cvWXtGPl0PBnh1zSEvKyFyfeh8O2ohLq5g4kVqJ1aQzlq4A/9sPJ9v68tvcel1xzXxTNzsVXi5orxtirDFWxiiPgmUkboFJx9iPu+cuYk7BEJnNrsbTOKEfh7v2+rwOQpQjXDki/Em0x4qfU7u3sOmsHp7uJUYyZlwI2PctrdPKXNkunw/cwNM0sVc0fgueXL4M76n2NhPvM/eTtE4KiqJKI5Rfx+mcQRDltLX1WR7Z31PoTV4mHEi+Z7m8wvSa7Np1YOMc8s5OO3XTVLO44baU2zoWPYTDwDRnSY7Vbud5N5H//1i7kizXdR059yruCuqwb/aU2v+0EAHST/4GOEjlH9R5ZeaVbIkNEBEIhFkQDBABlrjxg+n5tRehWWtwHbyyPG8tW4XkipY6oAfyH9j9JAoOu/lOkZxuTl5GYuKgmRLg0wDQG3CEfN2S/yrzsZiFy2ciXObC1t36Ol3JIspkgsuyjlWNLZeRQKv33cVJdhGtdtfojY1N4YY2Q/6j6W9SC9eBinCoC0eA6upVYcAuHyvsJSdnXEwPdIB0oGf7bImRx74t2rqURSWMoPDZRn5kQmmGA8QJv1V2iJi2lbY/ivg/UcKFHyprVYL7xFbC+HzKukUEKDGqzB0FNk2YzIemDkiW7P80sEDpE5qR8ByR6Y0KBJwLGb8zavMS3LV01DryW0ocG+4rIGZZHQT0Ky0h8JvR13jHP+6o5r+ymSTM3JCAKU2tZgEiBG2fGqDDf6tug4lvZtSnIk/UpW144KgIE55jBWWMDHRW1YpupUeeWq0he3BVz6UKK72l9PBH9QFgQyQjAddZmfZzAQCSKHDnjlBzzrwSdEsZ8uNqMXzthlf07lDJ2J4qVhvWVEUwc38AcuQS2s2EMTXGnfsIOIyq0ku+HZQmEfUbMeW2Wwk1mq0BcEggW97OI1+AiQ9Q+IBGhmsdRMRAhTKOzHUZSQcRJkXg7RIhry7T7E6E7DTSJGfkj0YCv26lbdlFXYcmH15TEFuKcVBuQFyDzmMQzMvmsnqOyKOYlQcmHOnj9uSX20KwBXMsVkH29tFLTbKNpC3Cuora5IH/h375o2pI06LabrUGajAo+IfeEQmzjBoNedVtbqLqGyr10UkfL/PwNW96ofNYabA7bjgCeyv3GOC3nI9Fs1wHWsajcWwm/sTcYzNjfIEQfayCZfk8AK6KihdUKEDWfUmnZoXLMqGJ/9I/+WGUssk1Wagc5thspzumnQRlm+5FqxjQ+CSM1Umwy06WNDufOG6VcXfISEeFeVJt2qyKxcLofTMe10LLQrg3k3zSStEMty83OneDeVuH6es20asyw82Lb1NeQdrXyVo+TZCzr3LJTPEEMifNm3K+WxL8Gvq1udjrUGWfEbWrhSg2IcBc/LyAutHgl8WzY1Xx4+enso09Erqs8fNEw8KoYlGJ9u7J7CMK0wi2rgPL6JCSJtbqQrOw48i0J0VXlEnMVK+SYbFP5DPCtkcrfgAsqMBRPpf1ncNdsfXr2kyTNLkOJItHytiSqpMESxZmpz8R7jvzImsgegi6UUK4AV/EdV+ZyYSJKCFaTmxvxWqc1KJ1NN6gJjdi+W3Fqjv6crzfrkPPRq/Ho60pdTWosCevmXXsrIsafV+m4ayLpDAhdtU9BJMOSsvMsBJmoXfF+gMexyJOLpdo8YgZT2DgCxJkz5InsXQxElctpCgAviHlTPeauYvE4HLdYG/F71lqifdU9tcsnhVkXgeWzWPlbJzphEvNoC7sqOeSA6Xv6hYJOXGOIxiGA+hyK6iQD6MFC75n/h8FwxMey9yergPT5DFTNtJ+QuYRpXBDQy+tJYlkTZc8bt63A4PPeTekRtXX+hy760d99hMkzwJPLh9r8aAZU1Z3UuGNlmvWjTdJjKkzQz7H3rmQDHSdzhsRalmeTltIBrv8/rf+B8MCgNVAH7jGa3lvAP7oy44erkOw4QUntqzyJMOUxLRpRQicDDTyzSQQW9HCJ9ml176YASc2+rxjkUBh+CHhaIpRy+vD6oQ4kb2Hl4bDHX3Z7reX263Ua27qKAsPQsQOu5LILL7Lol/bPLIA2HSp/nELuTvJFoBdDOnl8dyLVX8v2zOf9uW/HO9d2qrCkwrRThSsxELvKws4hXUd7Jx3GDv3rrbRXQtyJCCHF9zW6zuDCmEESdG0ZJZGJHPlsIONHWn6LKuu7VTym/L7cTm2Eydn10F76iC8/MS2cgg+5L/+jMY2aOPrwDJ7rLQpsjhpMiQiqXybFHgtEHOidoMlLRRy9XUiqMN7WXM05/TRCPgRiW2dTdeBZfZYaZtm82m5yWw9532GprJZQvmbtNSRAB+bnrlQWMQtKoGurt7OvlJR982cFc1ZEepIOLFR7MMoMh82zWMvEAjv4owKYuMEl/ec1Xgr5KS5jAl6+zCzD0uT6wM1AIZKPlQdIK4jswBdE6kqyVG7auL7yHOnCUZif/YP/d4DGtd6QZdLs7qsrC2zcFUZWRkKziJZE03NHmaiDrppp40Kx9p9V3n8KIHhZtmpB/0DX1Gzmuo6+IV5/mImyXbi5CS+xxrE7idzq+iJyAKYSFVjX143Zd1W1lnlbhll+uV0Vy7DhoIsdUaIpwVpMe7ffxhVCFNi8wroEYagsvDyhrHmjCAQCBnL+bU4WQvw9iHmEyQ9EFnLkwG+IUf/SgpgyAztp3zewSjUuLX86B2LJ0a+fIS/KVY2SbPrQLI5nJytr/T1mAVW1wvCbLBRqesy8rBSV6hSEsM17dDgBxJjRbEm0NV75o9dh77xklmp3WBP4535+6Mq4cmoMa+62zS2slQKK0JrXLk7hfymqgyx848rLj6Jke1SYI8gitALde7ReEZV2zA85zAxsWSa8zynW+Rs1O7z8JFJjIM4w7Am9iXHdnBWR19+0qPb8nDnAcMSPXQ24AaEP+pHufrva1YMjdF1MMzzDPbsqhK/BgU9Z5gnVwBcCqswJpp9CeFkfiy35YlAUyLf9k9rSD9fvkQkSCEAaDF/VB+ad08Rf1QLluRAHgh+QVpJotv7KlgC0sliXXCzYGdXzP5N+PgEy4mQsehBb3MF0C8RG4Rw8MNpq6v0nv1ybUb1cnTIOOY39pDlVXAYfTnByXXg2B1K3kZmXSB3gMtF/oLJHHOcbwcoNnzBd5GXoW126BfFI5wt6WVv/ZAvPWAwTMLoOhBMHiFlCyxOgoxWB3uzoPp7jrR6tcLQt5PVxtnXdv8BuW+BY9ZYuYUkon8E+5hI83VAph0k29HY+JqcSCgy6JOpANnruk6VubPYGjkUytz3lQUXg37PAKOo2/n3hMA345PLZ9g9Qt7GJn0ssxEow0aCWDD0/p+nsQSVk1EUG8ZvwYdEjgM2uKgSBvV7bwj9SwLXhNmuAyznwXi2wO4kyJMTV2Fs+ZPIpgc/lA2CnVncFh5/2vBhAYhQFgoX0718Ay1DGNYAGKMpBwOut37BHdXDv8BBtbK9gUzJulya4KFdaaUTiA2vamVT8PPjKmxcQY7nAuYJpOGKEcMywmjQSt+9qH9fu0aPOEm46BgsEw5OFNj+m7yW2SsrFSo7x2iFiZUq+6mpn8qiQqD0rE4lsuDTcu3X+gcGo4knZMrrtnJ6kyMGIN1au6e+j0o4LC+V69Dxz+sQaFdZ+FUZAPOAIvBzSR2V4RvIkDtM+RksgmHejQkT+KaplSPAsW4r4BHta5zQl0vMujyuTUyciAwYPRLkQaAT11EPC5vOtJu1nuhMs9sYN8Ts+nmb8FG67f+pD7pQysurUzVKDbNF939/VCNAWKqjTRzsg3qGQ4FGgBk6i6H5Jmwn0wrFvvNlPz9189mCwKJF7BgIgVteQALkGj2gxjUic4AF6vZ3mLVTC4WCSNlI7ujvkxoGq87o8g3jPYN5p8rAr0pI7LUKey8g5OjctqsVwNEy8kRQ1nSq4754RlWFCDgvw8cUaDhnkOxAR8h1z2+2poA7qofAhOaqkPxOoLXqOgRgu421HpHTyjPbGdq36PHHVRm6okTPDscTiUaUA7DFewAwmuJdxvt7wxKTbL4O5LRHZtsyK1+WVcFKh7bI7M78Rq8DprkowCh7Z36bBsyWCL1oF5/6EQU88CrNqMAbIMaxHcqjgUuTYmAyxxE8gtMIcqq/JVVfjIlPUfiUhlcg7agEsRwkhJ9FQcZRPmzpJaCI7Joj2XHXmgXJn8t2bPJHX46d6uX1/fSahNoyS1+WCchIHhJDI3Tv09SgJTqEtqFmYFmO577uCsIWuTEoiDDCXfzyiP23DqnrwM57bL7NUPiMBmIDmd0qlpL3s/++EfgeWj0m10p91/fJmVwXIiUPON+t6SN6XGKR5xkhtFGSr+3Wkv6oMqDgsIPKj2fgN9fmmmgVSp0p5Tw5byryGzbxcYoTrmGDzN4h23BSMsxGZUn/VPL+fgs0UKrLs1XxXVhMZZ4v5ENs3JRHQf/KoZkhL4MmrktAiL/Xz2UxwGNt0c4zflRxP2iraVKO14GhtBlNT5x0EjPJflG0fZGkvDr55VWM2VB0x+QJv7+tu+JvgnrlYLsef9NU3l6e14GgdAhNh6I6UVpDAt+udq0SL45FgQWIBJRHRCH9TJsvraOo3wmz1vvvf0R/WknadeAnPT7ThOl8TE82cCqogB7IhJ+aMUJzwbpA5GPzxqHWgbI49jodrf0F9m2/mcvnJh0m06bmXSa/sRdWV56cJuJ9XQbAGqdVBGUwy+4JID9hJv2SqB7+9xe0l0U0XT4v5dFYtiL1pGAFd0mNDJAfxJfr8xiyJglycMAOdaz7NpAJaiUwGuiB25H3a3d+s7T2OphoeqabNi/r87iFHj9Z6WNJ9NTpGteRoD41DflqXw0hSD2iqV9UE9C63PKfBz04SmVDLwQgsKGVqkkPIiBZErFwV5py63VUe6oks7zgVI1gsmomC6e3le2oR/XQotrgPv8f9BM3wcbrAE46YKZTYODWI6DGoaA2XGVFI+6S5ja0l1/DMbJcjuSmqbNPIc/UMGe9F6494P1NXOI68PIej28j0wcgu1VuyYjs5GBaLpiQDLE2lrcFgfBmSWUGAp8DrALKMN+J75oY1MpeLG+S0W1qu5muPwjcE7g8S5SiAmBqXdAQ88SAwtUkXy8sy2UTJvVxyROOKduZnmOoKZ9N9cSNK5At3OMAYjuVPmtofSJfLvFzUL73ws1fw/4WyXIdSBmPxLHVuL56t7BBq6L4EQVNeV1G9tC+RK0TEJX+ObaZmJaNjASWKgX4C9LzOyS5DqSkzWE6kKQPYUa0nCSFBWi3oOZrXQd6IUK7kwY5Ma7bSuIDagKfNwn47qQ3ynK5pclXk7XLfB5ByH9Fu87oi060yB6wBhH2SLijYt9Mf95GKBR2lJIGbw/Zb4jUhyR9CHOAu0evgggIDcYA7z0+KxfGfzo0IuIRBekGtiLy9/eE/4Hi09xsL39rdjZyW4vta7dR5AqwjOGgPNAc6rpOpeeJphNy/XVSJoKuaZmagi25oT2wAyaeg4aYQQ3oJ4ID3fr80ZdjI3vxc9l22RuZcqYdzJnFQT9uNc6pegcVFBBUJxBarBPQzwPQosHNGKFFX7etcPOPhFkRn9w1bxLeBW2VPmRCqpx9xt2g4TD6Mv3jL0rgJckqAMFowNp0wZnS+B9Xje6K1xFZ0roWKoLQV8F6R/VA3yBwDTgT1k3liSOzItE4P/uPyupSWxrMLs3nG1jmNfn90Zcz367D/PTmsy1H9wNFL7C0AlFdLzD/76sudnxULD8RfVgii8sXZXgiDkeS50v44HJSYtcUR/5h7dvNo4H/Vd3siKGPbQoiGz/t4gubX8y7a5P8jMZCLmxI6sBfE/iJJXlwR3UGdLSWb4zNGmbDdiiXl852C7DiHmHZdpnooI/G+eidR6l55wvwTolQB2NCeWmt3WO/htiU8d3idDLcY9cBcBhV0Su2BUA1CWCSbD+75qECCBxKe8N4esu1vkWSP64q0VcxerYYHqOE+LLixVFhkzUreIueMw5cbG3LlwDYwJI820MK9UpAjBCUJkQ9pQX0wqC8apVGQheNzTp+MyM+FeFTF44hgqenk/sCnl3d7SC4uVf6PhE8mKH5dZAkeBIGC5Fy4SvMZGqlWDmX24KIOgso2No7sow0KWQGdrwTYUyJDcw/Tr5ERwgk+DSLpjfULO+2dO6oMl0SD8J3CTgURDt5M10N1ruD+pUOdmervb/1MT+uIMUXsDiGgE4xUUbaG5BIUx8TxrifftBv6vlWUIGIQlt5EVvs6w6+nNj8OsgRPPmCzcScmBtJEDItPgEi9t2yCU3dhso9EoUiC2LmwUyhFVUjM98Bzxp2n+VEkSLD/Lxbch5GdQLI+QrOEVce8BGtawJkbS+HbxjqLGkvXBOXceTIrnrZU5M7GyuIoUoEFikakp+73O23hf42F3MdTBhQ244SaGa++JVRuZuOgA9NLIkMSiodyvr7GdjsnHBorFoEJ5EUNBD69+wdl8a9eO1B3apJll8Hct0j422J6UmSKm+zD41ayljBnHwsxyoiGNYMIYVUzQAkLiQKGESWnv9KvmPlmpcvr3HlODbO5ONSEEXPjrasKHtPaE+8rpNkR++F95VgKswt9+mDCo9Im/uW7wKuB9kc8OsChKVRpYIWoYpksWUwW6HJ95OoUmk0C/fygSYfmAI4MbXjSAN+vlob4HCfaHKkUhp4/Ojfg+6ZQIqI6Mf2Ub34hLu3dtzrwK17XLzJrnlcHB1L8xzq45pi2XK3iR5fjOURNEMCoNgPeNJOh2vEX5L43gO53+J4JmlyHUgWj5SxxdUnMXZHPYbuIfJ8tVEzZohEEJXF8iB651K7yn1rZLEbO/dJivkRxv6+8YDlK4G17/ijen6qDsnikzIURoW4WiynoEE83Itk20SMg+keoXhYt5XpB0UsbV9l7yl/RdxbXPnlMOs+D2/rqnwdFor5B9IyBQok+tut6JvEh0zYUc/ei047tICRr1CV8ERh1F231iDP5S+U82GSppRvM/fi90df9uq8DsS6R8RbDOuJj20IFVUVNObbrRzeln0SPoZFO3pWrLvCHWeoZLaOqmag7zabsulyU5NFSo4mc+9dXTa9Qc3iJWTBlIwI3mIL2mwI4Rsw7aSoadDMyQZ9XZD1hMli+8Taws5H2Gt9DgM/nLdZm9ut3J7bvSwJ7M7yF3fd+hMUy1SVXgdvbMdK264s8yvREN909qJBJUhb2g9cBz6ZQ0E1QJW6VeC2WPxdp9ZcPUn/wn3NYk0un2TxOBm7tMIvxUDj0s7Wq0ClABiWdR2UBUY1y5BYvyq+mVD/GcliQEQV+r3tyiPVipFpXwddia1CsTmWEyeDmDdr+QME8hom9IETMVUtl0CP1/Fu0VTV7z1hJ073X/9g+tub03UQlzhaFFtU5YuwJpwdEboy0y8jvxuPyIMaTbFd1MUVFXMRMZlr1cmmWdInhhlYlyzxEVO1osaXG8J0BhW/kx0ATVVYp93zKtpCthqhwiCzMXjsrCz2W+H940qqTxJs29fXKQuCmX9gio3MSGaltrC+FS5xXlfIXQnUFdlbtmOXP/qyvcEvfoxFE1SaLGd9V1DeFPj+uKLakwgXwn5QfoiY5YK6/TecxBWNqxFhS46Yll0C4k+J/BolxDF9tpiWSJKyPHmgC6oqMHPdeZ87qn5NsvnJqtK8TKaodh4iqAGxH6DnmoJ6dtiQtw8xnyBpmyL1Tle63wBoRjooEyqF2+H/QL5g5WWXLzBwBQk20ugCk4jfAqoi2Z02qo8TrgKjGJRmINYPNW/DEmAtRftdT3RO+CTwfineAg0vqSBiELBqAzjUinzgaIUazA50D+qq/dL+B/L2IeYTJG2XhHta6AosEhEKriO7yd2s6sHJZ3spXn77b69buF1S5pegweFEzgc9QzObmO3ryDsAPw6JFGoZd5fyLjfAmSDBgXz7eXfdfSLfME/n66Cw8BQZNsrqo7IQ71WYv/MJyC/tcV1HFrw+eHmSIc5471MFxVhi65N7y7Un0jWTMrwOFKNHSdrqSl+NidVTCJMyg0R11LpOKXDXYcLZwL3v+6L0cX1PZDP3RrOPJCxWenIdJCaOJMWB5XwYL2KloHoB+/ysNCdfcDi2m84sChtw3YYO4OJgVQ5uUfLDfIv/IRdnUisPMkVtKD/SW7/nj+IEkBOtorwCswGUIokcbE0Se/IAwNOXXWMJ2AyU0MXlfBiPDepx/NEHZ1ZtWIzLVFkGQH4igNc41z1jZqktPpVHG++oHyz7WYg05FiPiG/AHG4Bx2H05VTVXofeaHYrNaek0C9BjMioKmE8lLzLL3xfJ2W+DHDcOJx2qzaJkOdQ8iT9r/H4g5pNNBMP6r8JRgdEz1wSrgp4VL+5rNXad+GMLbKw5bW+HNejiSxaacECMk2ydvaQh/1hWPqE+DATzuuQoHoJra2wPQhyUfwQ1BQtZnT1XZ9Lfo2SV2ZM8trrzpcBXC5CBIrcexiAZxO1uQKFh9zk0rv3mj+qAm4JwhKYjJkQaiQF/zIfQG/aHQHpZ9vxyzf163OtJ27W8oV0aiIxqzIyWCYYqCFstyPgEZFvhKjXgWp3mHkzQz8l9BB7Z42XkRfVXeSCBlFZ7ayGnB/L6IbEL+mzxKrJPG8J8AMi2wpRrgPR7BHTNjHhExkweUQSxsxGnsTc/EYDRKaRl8QCZXk88tSf9MSCXGqMfj/+4K1NO67SJq1p0B1uQ9+H0Re1mijpDggAEIAuGUNi9yDE9PyZy37WhEo9cNKHMmULH+SwI2yBA/raravIN0R0KxmmZOVztSmBb5JsStDUZPY7b+2P9j6TZb18UtbhcB2F2UmRNgJlZOQVIAnf9kdytMIIR/e+0omUsw1WazMvokAe4P3tPwqALabp8pkpj8lyJOa+JB0bbeGfS7xQt5sjNiC5l74O+VbtbWaUJQWJWkCJxdvv9boP+s6YrkLXwVHdcWB3qKkTlQX74skUeADnU1hsIruvmgHLXr8WBstXAxAFfBtJaeN9/v++WNfC5i/fVM5yoPOqaf3qW3TomRvHHpKUtl2VO8aMqxhWsoRV6IW7YiJoqhSRlX2kPrkR3cyyIWk1dslv7eJhVMXrMieKChvipKGiitdlQrCDFAQJErv1t4z8CyjzkSkfyXJoJW9rRZXggJYciZgkTPke+EmakchoyO7YacokPyvsc/8w+nKOpsvn5D0K36blTjQeEtKouQKy/QV9Y2uPZarzHTO1LRFAQpg1UobN971eF5WSFDXIk1N7toKYYWPf/ujLSc6ugybD0XA48NwBzQOTg9080gBhVcX2QJd0TThhGaSgCxykUDGc+HlH0dC9ekO+NVW5A2XS5HUxG5dZxWH05YTalx+aO5G8U19xqsdAgpyU3s51lT1zpsPdQ8vE6XQR121lu4irq7kskXa3LZTfFbStHoJbwtyyWMZ6AIdRBT9knSM75MkDlc9ckT+qkBQXjPD72Fq6b7HzjycuPmmRTTccj1vBqooJTZqpdZao4IP7/b3swRYaXAdhgidkMEVpvoatoUtdbYvjlTBAD9dAjQU7JFH9OEPe+gl5TZv7raH0u+4hSrJAZU8DX0meJxC62wJub/Rl98VDAUtT2CRSxJtmWh22jHKXH7fCxK9IoTYe4TI5MdlRFoWEVGlUzIuAavm8wL8GI7hAdBXOED3Oe/meBB2zqLCjForbJNx7t909jL6cFXcdVqi3oq0KEx8q8aAVC4pZJyNDJF6noq7q3q3miezFOqKugzLFU7LY7KzP5mIeNZQUUJ8Ljehc14FTLI/STtmpFk6igwJKgJOCSxKmfvA/iNBU2pXqcmWf/4W/3qByfxKRD+q4EP3Tg0+btUi8zWKFNll8sAuJvukil6Dx+RzPC8erjpGzKS0rgSRTAULif39D/lvv5zqw8zab7wmzTkKuAROUyvkCI6Gwr4PAo6kFQOdPXfeVSct4HJKT+GFa+3sNtxWhXwc/Hc9/x9Zk+xruBhtYILusjo6wOF/XkaOQTuagkGNNu9+frEAqavF1Kpr3/vsL/s/Gpi5fnOKJWWx6ymezUCAjh5jyebLlqrJkgGYnVZRQHY1QcN00sp6Gn6N7SL8b9v5e9WaBM9dBl+bp2Gxi5kTkdPl7IkvIM/NGT2UjzPTJBojUqFdd9wUNxfvKBKmyi/9N+G/2UkLxrgQ58p+M/iM2hQXAmsW+P251rVuMi4ACKlF+HFDq+y7SDZnUIrofoklOWbeVuVXphYiywvyR/8n7Q4dMPOA8Nb6NCRC0Tn9/VAvYZCurxCADecc9AXqk8oXYoIQPdRcd2syEWWHiF6Q4lYFecE0eqHYCxaj3nfGufImSm7AXVw8Iqfiba9rSp8OorgBZY1PLixO6Um2/UiqWJqVMsk8H5XhNqdSPK03yHY4dR2SvQgwEGYKkJZWSuPFu2SsZR2RZvgR1lSl+kWea2pb+uKPIfxNAVoYbCNW7ejY1lnBR+hWoAuN+Y9KkPjXpE5loNw0JBZ550J4fxMByV/UY7LxDXBfPDFtwrqILmhyud94zUpVHgB8t1BjbBJSSLdWXO/py2slA9oWazYZabEoaYxqa4VgqsR9PleWKuBqN3WZXJkhSrOXsKpfJUInxKjIRVTiNLyPfcABXh2umLMf+Jz6lpsrgOqgSPBWDXY7gly+A6g2ZgQVwxTTD7tKaVkNfyG3qUNJXvs5AxxH9miHPWm61Xg/yfhOYuXxRliPhshkpn8ECj9Kjgkdo0Tf3ZUpUypvdcEPZBa3QIAGbka8ol2v3oPdB4aIdllwHUY4n4rEpqROFBT/7oNGTrKBdGlohKEf/Omzwck6F1ekYAgwUq/BzCRLLXfHYJrCHQMVU5DKXXGkzfodRxX3RgRjpCvrFMD7XbtsjwTyVLJNGAD8mP+ZTUicKq1XoiP5FoG6SaCy3roTy74yrJ9qkhZUjy5OTGQONXIIASSLN+9J/QvcbFMvlEzIef2Oq0X3xukRukoJMBZTAFOnKR0QrkVRWB0g5c5chCmA3WWcLgGo9zHvCK59N1nDBR490dpXluY88d/BFSzJkv1Qd4RRry6McmvXYs4qaInwWdsvzL4bAh+R9CN8hU+2ZxVMbUOGKv+uHN/GDFj2Wkdh1aKDhNdwwySiXuprQSMGdAcn+kG257lbGGa8q0uC297H7+TSYgWDewzkD5fP35mRjb2xTwrTCfBadOFey64++nGz0OlQgTwiaw1gtOoBjMHuNkFRJqDz4ubziFuv6+40B4TognPRzFAE3ikzh+YVWxnfwMiFIwosaMyxxXm07fzmMqnSpAt1qjDLk+8mhv6RLkHtUlZx3iSbb9pn51rn8uMoSV4jieXl7DheNhcJVYyQ5xlv6K+Xed4x5HaR1nhTP5lc8OgZuHGCgIwNhCWFC3ZeR/4d9KMJkxq0hLJAs2W81mobk/W4+Az6Y0Ynk51M3K8AnG7v2R/UYk8WH7TvSMLyt9AU5K/pIb2pZf6aN9fnomo/Ged42XmFAAoCe6FitdUT3gwz0CMUJHYACfjM6Yi7p4mH05YglLl9c4YoxbG3tSYvbcCAr3ZVoa8HPE5FvRr081Zemkclij+z+mcFrahHxDmNnjRqowhtFpVm9b/jyMPpyIs3roK1ytFgOxHRApJrML9oZJ1hQaLtlrHrZgRMXkrwbVB7MdVsJq7tWUqAw7i7eeKDcsuLMy1dWOUIsh1726Wg0s2VTKp7r6Mjc1nXkgeLwoGuzzI2074s9ry2P51bzXwm3rFDzOqirPDWWDbD5gBxcAOhmjrBFjp8w3k5DEyhL5FZDpYTuIwPiwcyvKRv6vGdxjypXLXHxdeiH4vVPsUtL/VJU9HEafao9eUen8ryug3lalTWQPWU9SLmvJF+s6wAoirr5u3j5gYLDnKPXQWLhSTJsfunER8HXKWvnmoxTUq8vTwCWdV3XnrySZXQPicwYQdckT+TbIngiYTAp4+tAMXuUtK2w8xV5iA7nIDaRgNulsF1eMpt6811P+FJvylv5m8jN6a5dfaJgsWKU66AwcQQpNtZwgCYAqwYNpEjH7x5lcrSBcGL9TBrKA9MQDH2fh9aSotHfveOszJKue3xrTXe7iZBSTwB/VCv3gcoV7awk86TUufjLgUi06PyHD8MWmNoMsy2uP4nxbYjcQNQXKDBQhcDLTPT5vlcvP/BfNfPn65Bve/m5La73xfiSA0TUR+oWON5CTQI4tHiE+gWtntvK/yfiFt0agbHFe8+JJxS+tUVdB4rdo+QtitUjZKnDkIUHcgPwfOhqdELgHrmUbryg9rSrG5SW8ng58Th3lFD+g0PQ/IbXgWL2KGlbY3PS5MiC7Pq8MO/0bARZmwvgbhI6mFObCUdj6qnaQVmgdyT7AYkDUEHiWzDOuHeRPY0sFtS5CW4cKrKR8dG0Tuub8/CJhhMxMdHSRS1r5Qvo8YLPY6ErZUCv55kUEkaxd8sou6VHjOw0dw4TSQazGzk3Ov8Drkw7BT6MvuwQ/fIpZo+RNqFWH5nFFkHbHm40YBY2Ypvh49rVxBOP/92jED2a1dxTVlz8D9JyTI5Rggb6Hj3AWGg98nLLNYt2f9wqWb+qltFgWaQ9mmy1dRk5LKGw46OIcvN9Wzl/w3K1nBD83sPYB3msxX5cB7LEIVccjfxBUi8vn80HkcWmparA53I6lSV9QePOvDmd1qP25MnIhnO4ZbFPWmaZxnDXocGB0w/BBA59nBHxD1F1tBlu4CTbugwyKaBYFYerhK1z3VXSsZDUirf2FO5dI3Oc2hK3y24d1Vguxh3EH0aVhi/Qm08SQxMBTV48fOoNj4nvVvKYJauzRKs/rkzUl5V6Fh8ez90Yg0QtfJW5Fu8NdBJczqsmrV11lonetwvHc0e1gYi8ywicHWe4hBuhrwrE2UmxoC14ne/Y4xvD94FzH2Y32R6DG9J7AiPkN8xowlI/fjvErwzNZO52dQvOKLjT3+6PKiOBFkCy9UY4CPVY1XwKpp/UQoH/ybKx53z4fg5d5NNLCdw24hf5v/8HeecSYUAFmgA1RzA/cGPcRZlyUpIJgSNCKx+zX35YU9pBXq4ajIBHfK9+d1Q16DgoFB0snTusknGSbWBy4oTHp+8eMV+gpwsynjBJ09vEq/CAqi3hnMFl4HD34b4hJztmdJsB0S5eb6u7afxhVJd+iNRmIYyAyC1uBB+hNvI3NDTt9Af+sRUrP65C5KQosT2KvcLWBhqMwXFgzKwWoP/1zsHWBvCBkxs9uzeA5Qy9nMjq8hUitpzEBtddLH4gQKR8MwCsqmrIgcs0bKlLkC37Rt8aloSTkR9L9DbvyqtHVfeWM8jl97L2Wl/bVfF+FT3iH64S2vLImaaC3IGePIGSLNryBIVGcV95diq8luVT7jnbI/mFgStcvkDC01OYsLKPQqOoZzAGh33nnLrocRnZniHzwbHWxsj68ul/lqlSh/6l1NI+HKd+rz0CBpCZ01FbAXv9rbqGqyiIVWgl5MXON+PyxfP5xNqJiLOt6W1XH+zzaN1DyRM6Of1Jq0AbIrgOkIIDQThVQX4VkcQK6EHa1a92Vi3GydrTuvdVjLD99OXroPE4ezYDdE3qT7JfP2JK+ghUmMPzP3J42w34oy+nox2kZzL7CtVUeA0y94qe4aZU7cdVh7lisgHdJQAspIHy6mfel+myEXelc5vsjEpbVSQRAZ1eaPk3yZDdmkSzmxs6gkLKC4HNmNtwyx98OU2ML34uuUwf6rYwYFCmWjqjROfHLYo5FdFM2JQOTcHrlteiOaESYYBMqFLt67bAN4KWADU5/e49shvMT5nRtZDYEU6mfNi87WH05cy4y5+g3ny2q2JOVTQ2JmphqCtsRmsZPURA59yd1h8J0CxY4ToIxDxBmcmsnYg42YSy5vsIeYJiIoNpWdb+EwVg4zZ0yB2yHX4OR8PyN2UHeEOyGtUpo7PRY0sr6gt9jFVeEP+ro3FQZVsYfRJSm0WNXjqJQEzWS1HAo8k2eO+a9kR/ZyUl10Ej52nqbGbRJSKRXuHQxawIaWlb8TPlVIRlNaZFnmHsmyI+GvyOaVBI9yeQvSkTuA6yAk+GYKtjXTEtYniZ+XpcYrXUdRXZo1qo6zTOq9Yf3Wtn6kOdnCUUr/c+Aw8sByxO9TrYAXv2wbYrgOcigM9BWg+17JbX09f1gTgVGlcVnr8LNpL7InhZ8BjrWG7R3yPRkpGbXL6syFMh2ZzaiYOTmxKwjoiWJf7anwfk04PpFop78+7HyTSs8vOBIO0uwNQOlSgvrlpUK3Pr7TZ0GH3ZXd1QdcNsHmcbUzkJvVarO6NI58etijlV0XQJQoIyn0HCcgWHOrj/zCwioqI5LzcGSMETylf0ObIH+e30qwilmN2FRG4qKaegp58/+nKOp+ugK/F0KDan7nPwBcU5beopKkeLkpC4DkqCusLjA64G/1TmMnJWijP8X4D51b3o/olqyUrQLl9W5KmQbFLBJyHwMOIgaSFx1DboI97PVUL0VfKPuqvx5N2xqFu+pRzoPdwxjwdN40xHxOvQCMVrnGIj0icEG5hD1f7CBZFTWZ+HygAgoq8DQv667itpGyYqvg+aUd0tlx+x1hbHcB04CYfCsEXiJ1G5rIukDKfMEDUuo0QOWbQmpBKONBU0om3xZPhGOY+svHvhWQd+QYBHUg8mO6CHNvxzGH05IpHrICpxRCiOsvCkRJyV2h71666LCYioVEtk4MAhj/if+EVu28ISTPWc75Z7kiioIEVytUx1mryAvoHPw+jLOaavgzmQZyZk1wa7pcRQN06mDPT0l1X5vkwOBFALHXzntjCSbJsmsB1/kO7SvUdadOPrXYfCaK+Q2paW+1J0RNUyYdq6Tsvr7zEf5QjI677ITtZ9Zeep2s1GdtL5Z7o164y6DroyT4dmyyp8GcagdplAp5ylIdatzoB7b1N8tUbof9ZtkbZlfssQergr95HSa2oHO9QF8sz0PgLcUcXAJEQDAIMtOqHb+VwYmJy/kS3gG6KxVjf98kWSuLyET2N4xlZ2lQtyMJh56WUqtdO3n/9EtWYFqddBWObo0GyE1kd02TU1UP0mUeVchqa4Dh7R0NAbHGrYLSglG6BUCDtnj2p0+rxtMt4iPGEhoZ1gZ5G84wGgnJQ5B/ZBiYvUYMuUuPiqEleEkni4L8SsgxmK6zKlosUbv4y88gWAwJsD9qSZn0vkGO6+C5KQFy0yaxRsAIOrKPHW5e+PvhyR0OVrijwJkqGp9AWYqOpuqShcJg9Zgx/QaxKBt7qUr5JG7TZ7CbGSgnSE7+6ua7+H/+y96XIlZb4EzVRU+QKszCYWigqiP50ucrkK1GRdlY9J/nx1JcTSrcSiQA/kWu8t49E+oamTclduVyZQ3+jfYfRFKWDFKaRMuiz+FftBsAuXcarQU1RbbVsa4BPyLn9vs+km+f7zUsCvBlj0ISmS8PJ+8sMQhNUIFc06tSwnoyH5Av/dUXVckm23Itge9OYMcy7HpQgoXIutBnCwzVR/c0U+O+NzOXY/B8/QB1oqaP//YXOUdZ/LveXCE72alZ1dB0mZJ0Gz0dkTmjtlPRP9LICgppKLAwAk4a8ECUHvb+UbDsqin2OXvT+AJEu2Kq9VG6Mc2VoQVi/4wx1Vt21QlSi2S8h9alDLrUSpMUqoobBAUKcT2p2itiLDVXCgpLvT9j+mSPwz7FNeJir7CcPzVU7TthcYjCzg558gXGofAOAjxaZxPF0HSaUnwTTJ+ROXjxptAl2wLpOAT/WgMsHQ3nnxP7Jp6sSA/b+kqF35Itm97557AC10h588urECQ9+dJg+jLyc4v/y6UomQ5MCn8LAir1vHcEYIk+A3zs+H9l7Qv5egK0StW41ojK51q9h5GvGfyiqXeZcwSSKtnVFBpOqeLfnQW8Ljj6oKX94btkg8QpSdaFE1dhf5nUC05ZGjpjpvyP1b9eLLTHxZiufP7tW5FmgnMDXYxUu2nnsp5hMRl7noroPMypNlmaTDiaMYmfAO9gb5gpvpKXLbgR0OewNaroetBkNJeoz8mjjf7pP6lzoea71dB62NLc1x8GYfn4a8e0Sa1IDNBCu0rpNhetQ5t9BMPei2AGwPJ4POuRA+PBQfiVmsbOM66E0cfYoDOJ4AyiHZY9akCFYPZRdzTjQ81CQK63U9MaC7cPDh9wQTdA/nI5iFf/RKKFMRyyIJ0g5pvMGX09v1oswhyLuBNQ7ICoQcnLSm/MHXG5z0CVjjmOR4pIh02/o84n+4DhiAWdWaouJUbWgvz/vW2MLfIPoqvhwx9oXcs8WErn5UVSWVT8kbDNsv2ibc7Sohl/712GKLXd57jny+uk6F+AnnPoAzTQD18vFWD561a4T8miKAQiNMbU6bagjqTyHXIbqgRY7sVtPWfXOqtLWWv4cWtf6Rj7JJol4+5+owtLbC3lfkA/CscZmRyrRbTZhhTZ2QG+jvpO2n3hWh09Aq1CGh3R/BOZzcWE+ROwsUN22f/7L8izZOR861M5RvufuPKy/35eieTZujkaVAkqWvMbGI8OPwf9BA0TQ6vA4drryOWDbf4vMzEPPLkYT7yhnUovZnIRUgq5SdGJG8jVR2i045hFCsDZMbGA/ec5pHgh4r6bpcxY0n0HEoR5ehRPPwibIdJk9dws59GQkWi5oc1MQdSO+KHpvY/7DTTOTSH8FPYpFdBm2hik1JyMs7/vFGFdGQ5IPOGmgDUWfqC9GQmQB2JjIQl9xqNwT+Bn99vPUAz1qWRV51BHZRFFENXgZBZrvJeZ6geaba+Dr0+PJ6gtll8n5ZPQltHhewXyv/VflL2IzEG5cpiIX2XQO9c9TXZny0UHsi6DBD1OsgufAkGjbcfIKnUbW2FBOlkdfQ8uyBbgSZkbeEwHHs+0pUqYk0DV3yvYPqExtx88S9Die0d6Lbmltfoys/W6IQ1KziNJClGfZ14N9bVeoYJdl5dy6TqI/l75BGzp4/CtGfiDqMLeo6aC48jYZJOJ34KXkf6sBHj6gYt404W1Rr6+4mG0HZ0hBZdilpKWSUpPMO6kp8OonaSC5TSN6Di+wrBziMqqRPbtMVXZNzBUZyqugrmcIUHgzMnE8hqi059CWKXoWcF2JAJd+yVpQi654fqG7PrNiAQaqKNiL62rxTIG/05TR5hqYZ7nlgjXlYodpMNceWBPrH1Rz7GuXGptt4nwE7DFpQrevAYRnNiMDohLb6dzQ0Guxoh4CpADr+7kPxe0m/qR+4DnoDT59giw5PIsUum1DR/SKUbVeaZQqmuLYLyZ37UkwCbpQNQH1h8PruEbCEqvIo8QvhOkQDwdh2/OMPvpzt5vK3J287cxTXfsLo5JdWOqq7JdCDrSPL8W7DJvMrK2shS7Jrn4CGQHMJ+t1RLeGD9poZN+hZLJVVw4cIHVA3nKcA+m7fw28OxGcdfJbC6VLgGZ0hHFLQDf4osorTjdJ7omgzIZrLl5x5CjWbdHA5Cux+sv616wwIXD0t5DJoPrq6FAWUYrybLstA1PpgoLG3vb8QVgdpEyO7hEscDox6UTru6Mv2Ob/4MWrQGZ7LngjATe3SrXL/H7fA/lSQP+RQRrYABijWvIrWIk3Iy1hxfl3dJWjq39rWv8tXu1dxPmghax/Pl682scUpHuXqU7TYUttg1IVzBkr/dZ0ailLXiBeDFsjjvjEE3hb9zeOnnl8y2Fk11UF3P1yjv9U8h9EXcR4E3EPZUlS+8ffjNTZZcEhR8EWguC8LoPligH3S1WfAPMbMYtj0trCEHcTi5YzO9y4aT8JfU0Nw+ZIDT6Fgq+1cdR6aTs4Yl5dXD0XxD+QCEtqGVeQZiCjpbYPk4EGDX6jR6p3Q+209F4RKcN2AwesECVGamhBWSuZGrmyWJAlMUSLO1L74cpOTPAXqV9kX6PWTmracr2xcmRCJwZ9bpm1dd4WUD/Qnqsjk7L9L2UrHjo3lzRBfnuHYyJ879nJW5uVrLTxphq01OWlTBvW9uKu8hy0UgdFTiEMPeHn+cc0r9O8uVA+yNiymDyPtQSAEYv2RyXAtoeXist3Rl5OZXgehlSfMsqkJl8oYnJLU+CccJrWsq2QA/5n5dkV3ViVc2JmXOCk6F9SoWdIfyLjMqXkdlFaOMMukmn1murLaf+hdZXW3bVUkWxyaEGK9BeildJ0Q98fZwwOppnBvH/iof6ZlEHm93A4vXkcYB5j0gUzQmAHqePw9Oy3HdZ0OYKkS+hpyZI19X6hYoXsE4JRqvk+AJ/5zprfQxfr+EOShL65lwLyEsYlV9//jFNqfyvKx464FjUqh9ak8rML6TsAOkhjWfc9A8hr3nNqM9i+SPoNmuHxWwmMxHJW9r8rHCskQgmOaySmgKSU6MEhcwE1xsP5QSY9JvIZQM0rhS71778qMSsrl1Mn28KXFugl/b0zxLnm+A9bIEaW3FUevuu4NdEGY1NhEVGEcAxJbYnOS5HQQWHKGIbCXo06ZnUQ0D6VTEe1KJTRbdRDoXF2BOkcSMLXfDRweqbiMjOQ6iKwcUZYDyR8QfImKgxb8yH7ZVl4z1Z16MqGQNDmrPFbuKk9aEwfkeygsuO37TxRM1s58HTRGnibJFiX4IgZMjILO2jxAyojb1qTB22XocSOzq29bk4yii8yvKQdE/nCezzAVxtEmRyXduSTFBXS/8C53VBlvOQ4zFTn9/4BUj61ilNwH4lf6KcLsa3uDfyuEflxFjq/g8ZztPYeMzDgIwhmUy8Wq3PlfyPisNXr5MjtXlmdLcnwJDxz8ekHUix0ybZszdGaBJ7PeV5LhUrd10Wxs1Y3vKVF3v3ePi7KKKtM5eZ5z4Tr13TrVH305nc2h+wAtRyUnJqYcISp5MmUiP64sw5dxVJWxDYJENDOd6zoonsZmyn49Elzv+0I6nyLvK+Mf3QPl1I2k87v8RhL8Mknbf6Ivd/TltHe9WOCKWgQ1mETQrqiXVff64xaa+oWp0MxUzG/ExJDXaZTf4enRA5sKZzRbbfq8AHXliDaAZKFSV8fLN++N5c3dHR47DPB6fod//qh6z8rypp0MSrDlpfS6TkH0ycOUBi9d+8pXLZrUJyZPRKZlCufpxBE4JVgnRYYjrX90j/+V5M3cnq+DJs3TsNmEnE/gYU+Qk67wGIH4ua3LyMmQi5462KbjlsjJy8YDpCsYkLb/fnmGRQzeqPxJoEMDw6S1+x9GX05adh0UaZ6CzQIkT/AlvANJp8pMksRLT3kUPmVsfJz3knf1dU+JW3AS4TtCrPBh1/mgf5JJR18HV3jPRd52GPAdCcAyBCbbhfThujy0hYUscwFOzj6P67aoJ9HbYuutd7kfWjqrL0doY3UWkRx8y33dUaU7ACMm1fWVNNWxD+RtZrNATFSo+vL2b/pmB3w4/gTf231NbEdAOsjALuIf4qDa2kf7MFleTV8xiBjVs5CR0eDXH33Z0el1kKM46hWbi/W524p8MU2NoStaUm9OF9wUbXLRjWEOLYNHCwB5LID72OsjagvCdwFPAyZBcEI9pdmYacu9/FHlemXHa0lPrAqhVl3B35w5rpNJtq646B5LHvbjKrIOAi7bE9FTkwN5KgibcJ1ZWribFj5S8FvlstehvNYpx3UU+ScFv2yePC9giDuR6ezrZDwafp8+l9IW95XUDYUx7Ms8a/irzhsmw3r5hKzH39qSxIOCEcA27Q6BZEXVB0VkXTJTtQh4ztLfBjmou1IUVl7LuPuXTRWgBUprqWgCJL/iPn/w5byd61CPAVgWMCI/n2EZkWeIQyXca3qd0ddCz0RGZ1n1HnLYojGXXkdWMuHdCsPaHu6/B05A6rqTc+GMhfZ8+1EdRl+rlCgALuRmDfPYsXIZrKCmaBUyyfbvwC87AmNf7eGIQwwpyTuBIn2dQKaHdC9feaJfs6CjyweaPFzKVhef1MgTKfnSIsW84nX5PAxKWmDv+IaE4HCI7mX86wQ97kc/RImMsGjzwipgabtjeG/s5QSa10FZ5inRbITdR+RRxA4fN27NNadRxrpOy22Z8MtVQtu3ld2YCxwlvxLT3p3oHthQ2LHW5bpF+e5SplGEaysBPUcINLMAr5N63XYTsixJm8DZXdUfvKc83NDWd0Gnotu6fyJas0KN6yAr82RoJrF84qEbdB5FI6LeV+WeBLjEatPys4th+fnR9DJxe0LrqRLu/a8f2XAY7+c6uIQ4piKmS4ZvqqE9ZZJalgz5kzVZeIwBb8DnYZT1MfCOyadVkBEv09bHnVAtk7zr5Tf3cpqBOdzKiYuZjW6WyN87PEHq+hwW7OSM+v9RQaB3halHVet2KPrutK1k9YVijI7uZXi58vNwnmgO64++nCzzOohqHA2OjTH7mPTE0RCyFnmhy1RZl5EXgo4QCHIiIPct8QF3x9oHBD9L4LcPvT6KVuVIcsJwVa5fN3lzGH05KoHLFRW4GgRbUudL8Og8CaBW6z3kXNzXSQPZvTLpYZmfsZdj47dm/I9qwdsDeGLBbe5O10FV46lwbHbdZ+ML7fkp5ksQziveGwDfIe7599b7b/cHqEC5uQJ2yeVetPCk7wCrUEgOwXqhoyZxFW3BuqapVUIAYqkRiCXycVU1JxGOSZFZjJreFWYS1ASBW0Djp1sWH8AG4A2jw52q8v6zITyMvhYwvrgqOOwWmOeoC2+fkS68YJkkamobljDDUlNSfFIgWyVRXoYMSCFREBrhdZtV4flUtWLNzMuXlXgqFFtPdNIfocEYowekiSjY4uedOG/VqGLCyGKu+2Y9t5jKA2a7F6w8MGA2QuzrEJB7AbxdTHAqPui1hKRqwA6D3rfsDQUr6uOYWlsyXqrkBo8c/D0MAD/857NajENJSH8tcG3t3TfaHdWpHyQ9XayYHBNJW45gSSCfSdROdTkG43ZO/2b7fHbtxMbZ/vaexwn2ZUhX/uHcLAwubk9A9rLW+bIhieZvjKASF3/pjkKvH8AhQGaCbyibd1ICH45KcoiDi0CvBCw9FeZb+v4fV1B/EuBjXYKkmqgCG3WZlmcmUNviXPLVtm5bkG7lf+oCOj+6xkGUTXEO0LrF00WEyW/JtjP6slVyl6upcyV4trTIlyKBBsYv4u+UQ7NtY6qKDWryKcq8i72u20b8iMhvKbtSvIs3Hih27TV3Hdaot6ZNSb2PkNiAiom/6F0lctxdJisU83cIX35iwy8s6GnFZE/+4X777qD+eslW4YULhjb0vom7zq5RhUyp7Ms51vU1vvB+H2B3O/Q4DX0ca7tEWgNWmJw1oSiN/BeiRQuUuDxRoStBtPmlAx011cFUIukOxXNZH0vgiUgKx2YrkPyvu3YmT2x2E7Vu4i8Ei9bCvHxJoadAtIUlJyHKgDu77hMoBSj7OlDHTj1Y6P+9bttQ7zS1DCrzyPgL3Qo6w0HAtk4sibimtkus2v+V+zK91LOmd6a22VUTH7THaN8xdX+T1zm0uzI6Vcm5yjKwhJ2hKy+KfnQFxBK/JXbJe6FmhKJLo3l6ckgKs7E+bwhF6rJTVeA13LQ7e4JDrMGedMj2lVNbvQRNbYcvpjiJL+BPitbiNCyPK7YD4A1eR7eaDNAgrvtKIADqHvcthTTQXxSp2An55WrKPAWaTar5JBwI34a0BulB6SsWxnUktQY8sXoX1bp7y2c8YK2ZGY3as5tWFzbS+GESbSe+YVk85a3VdUc13YPIhprZhPaDiA813YOwkebShZqn5btniTt8PYWvv3Bs/ZwSEImnoKVSFAjEYv6Q7CFYx74eYmE1XkF3ib3y/dGXszVdrqTOU+DZmgpfgoEMvyHw1g00aQSDy0g4m+HSN3H415S22T96fq5vCe3Yh1KfbVypRhgsQoEXzPvM8wa1QAcwRlwC0UxxmKY8cJBYAtExF+zkZ+O2oNQXoHZEF5A8RRyecvmwrwMmS+Yc8CDZ9cKmUIbshp1/nXC9v9DqWt/tOohpHfGtI6TzhXeRDOX6e1nq61lliIpQ8YVHiHq0siNJtKtHhhHBstR4N6d5Up1k0qOXz6Y63KstpPZ01wkxV49BA2a5f1D4F9NJNvglaYfmXxMmNixNdH7PtPIN9a/ESkZAdvlqIk98ZAOxPnDb5UvkTqCHooS2GjCzwR9r/NC2A8ZWbd1XFr+ahWXQ1vPuTvOE3TSLCC6/F6DXO9Dxz3DtNkAqyFUXYBzGvjzC35zfaMqyeMZtk+wyBGU6+vt+WM3/Uqdn7cqXr6PzZHc2/XhgKztUnJFHB4Kfvk2sJdrUYBpwQn7fFU91acblkX3M/CeeDGYrFOhTwfw0LmWgiiUuIaZVx/vj1s26dbYDyHOiXxPOkRqS1vHKdUpHme4/PeaHggX4OpKhlKb1wAlA2r0w+YlQy4rKroOUypNe2QSkT1gyYQYUxDgHasF1GSxMzCNIvWH18k+FXRCnYCfCc0HCfj/04XrPzQ2acSzuAuHs7rPljyrOVxGqLQUUAuuyIO4MALtrTx1ZhGMrL76FXT+ukspXXnm+n14VAGwiEJHpegTNcnsAD/pKm76Z2lnb6gTmtA2zOUiPscQ5jsyP8a6Efn1uFzOZf2lFvGhFVNY9JUJCE/JMiUa9K7QaCmX0XI+T/kNxsquCbvv+6Msh1K4DAecRdqaI6qS5gocvphwaOAzaxurnMRAhT/rz45sPRMiQtGityP5/77FClpkYhmyRTY0nx+Y3/UGF+OUbEdBomQxoykubXtFWAnlwBRO9wSwLEvNhKBe18vo3eJZfiHUGICVgB2GmnO/0ZqmVvXMk9AhkMtFWdqNch9GXszddrvjCE2s4/KNPV6JtTSG3lEiNqwSc2Y8kOUXNGlDbr2Evsxz4o//TZOHDk/LXsibjYL4OqiNHpWSCcD5kh/ZdjQlj15Ln7cYqYU3F2SF7G1HSXawsO94MqmbFnLlj2xFl0gTvIzNSKjewLerM90dVng3OAPsV/PcQqs7lRiPLBOpRwAxwC/2vo/wXG+SzLz5b4znYO24vCaaNA4WxiH7zXM2L3tv+kl72UtVzln0/97nnj76cFrBgd5jaQdnOMrxWtA7BLuT5cUtn/FIbiKKgS+f5KatsaiULQAPQu01lcwXfft1Xnj4jJZCpofZ7j7lH6hYrLbl8+YmjVnHgqBN8NRDKFEaccjbvlnSRdRLkt9HiKK7rYH5mLYdGXxd5gOWD4CBcAg6jDAJ6IDE21OkOAuwc/4cOzDjKK0pP5Rtx94eaqwByJQcxKGrnUW6Aoz4a6aOXKAeRwDbxEMmAhce6TkIFiV5HfuOi9wr02aj44n1zSYoa7d1fliiLrwbu3DjrW9kEz2H05XjmIOmDoiGp89CgxlP7y1tl7D9u6bhfag5Sr2g/etacrEYtA4A+FOWqeZF4cPWvL5wMy9k41QWzPjbkMiUF10GC4EgWHPWRr1aKlHRTEpFBvalwH9dpqCjW59gm8qB138QCGz6Whh7ht/f/RNxkHc+XLz7ytEq2BOMk2ZCYbFINBixsLEda9jXLqKjgKSR5hfrXh8JdcurnYzf8fZ76MU8DIpA03gAImRfqJ98WADP/BKHaLlIyKVhHdX4QqdviIUtstMFG0AJaMN/H3Y//icTFxNkuH5fzYDxbdu6J1EGlJ00WgGrEDRujU1FpVSV1AWXuY90UtdycpTLtJDa6i/um7Gsk8NjknlV4Mm/ygn0Ooy+nhuI61FxAwK4Gi+yxwYci2zraK46qlRuNCAA+HrRshFAI5TxQBO+LRMkxsSpYzlPm3V30QcGJVd5zHcqBvPIhu4DkVHACM0a9OjoyxPVplFmAPZTkIR7LumtDj4PIz+Xbt7tYJ8lDogQRRAqTVdkD5zZZOYxqt9BKuBkV8jKVh9oLI1Lp7PrCCnm8hm0Q8i1s/HGlhD7Z4ZEjFpmis3liw++8Th5DM+sdzbW5kMqB/zGCS2+fncPoa3EDMMfQOtmO/hlLrwUaj3apNCneFTTObuPICU/yQ7ugz8OJNB4n4AgDO9l//8hoyky6Ll9W4YgwbJD9BMp3tNiOipOhZfSuRJZdp61CfskLtSX3yKyXZQo4KW2td/LygVrLFEhdvp7Kk1/ZugpXhgFlQ4b8FxilrMictioEsn2Q+hO2o1WbibGBk2w7TcVwgKbH3Wng15UKcI+UxQ2TEJYYFG2YtNwjEUpF+oXLyTP3ofVFdfvk8oGLtt0LPSE0vLzlBoM4YVQO7aba4EECso4bCeAWWYnbYM8ffdnv5zqoahwVjk0un7ho2S/B8rDNap8pbhMayZUBUtOuOtc9XQYYYWyG+LyDX/noL5MSbYQkbAzc6ipEBW93ZXf05ehkroOuxpbhOHLCk/ywsR8jprkMKb/BzFG2QiggJv5iqPsY7loi6qZUrJlTvIs1n2hXzHT7OqhLPDWKzTS4xIScbkSSeIwU+GuOdRnZnGpU/ijL8l9tGgow3kTNO6L5Xu+1Cg/aBdsB5HUIOO3w1BZU+wLsxv4FQc3boV2IWx2ROoUGPIHnWF23uTGgad2yKgj30++R44RBsV5+/wOvXYJtCOEbSKA4G1oX/n2WhE9PeS56NGT5p0Z8WTVQuG/HvqvGb7Iu6t1c/IlevWKWDWD5A8nW6DQYhYhb9sCJEhOc4AmJIL6IKe7+cdXUrvg6czpT9Y6CwLBQu4b6L1p5U50Hu8Z9WzmbUNgClA2P5Q7lNyxDpuuJRtow/9yprD/4cmbbdZid3my2xcQn8bGdKVuZtd4XMVSKC/lv+U5lPZFumQfUdRBXeWIsm2l3iXnYGBXS59qNML4Je9Q9c/+H5UnPq4MdocPW+C1h3HRf/ggHKM6DwTuJCwhr4j7+/FEcf5n2oK2z+AAOjEmbRcNib7DEcsI5sa0DyhS5+rJSX4aKYyGQspxa/qcaGTBboYEOxkwHnKxocUW+GPR8xdLM6ur/XL1mqMWug7jME6PZCquDIGsGCqHx5xEnx7srusQIKlKro2mQS5KtMffBt8xlKWb/oF+y6QSn3bXs5o9es0iTaj4Q0w3K58ToFwj64uqbHHKI8xj9whaurJvihGaSLhsQYqX6ufop0JMgdvblJ5Q2knUYVe0iiuUx+xHXVZpk6dk/2PTrH/ugo1nWXGf/N/PrU60natbu3uS4mBUI7VHnwXUw0riby/+yUs9kza8Dy+6x8ra67qTGA59Y9AzBU+i7cR2ov6D1K1OuqQVcXE9paLkLDHPvqm15RYpPStyaulI2slQ3j+uPKoyLPmuUZFW2x+yLymwonlGyVf5h3tLKb73Lj6cv8eUonomlVwYH6DmPfQ6h49tt6T8yGjIsAa6Dg4DnOGD7ALm+QREyugH7Knwu+2eebV8nSKim/gfQSxBXwX1lN8rra6YtmvxPuLt+WM1qo5lI3WzlrjOoxizy5VB0zj2VjVLVmKWiSK9xC5bIoISdmNvAnCkrdkXIMkPkZyPaiAhjS4jrInVCMCwfY9bGDZzj3w72IMHjlAjrHvYxUiI5icpxxrVykL87xfujq1H4AHtPfrwMGujpudcibJkhMpWNfnEyJu3v0+x+ExanaYtn4yb3xTMFHIIOHmjyee+q8kS5a8Fy10Fb62lxbZbZZaUhRUV0VHl9HD1vthpOD7wvWtj1rgoPgCOyLAa/ppx7975yBUUEpCkS8yo4qcMNbqX9/ujLTssvX11oixEdhc1JkDNAJE3FDtiE8Z+atkisAcYXybj8/WrlOHB6wpGGB7XsPneTtYTG1tzbR2clvpx1420y5w6+7Jj8OmhrHSmuLbI5iXIqpPQqXKxjGa5zIUD7sOrgZO+d268I+CgNPBN1de2O+EKNrQK1VNU9F6zpWvvuIPQLyKVYio9ggo1DtaNoB4IBoTOD+SFZlgoJLL2DLzBwBQmVNV1Ir4EhR6361+vUDgksrxOA1dV1X4kC0aUJ941pmRT/hTGTBUpcvgmm7ZnpeSd5TktQPBVtWNxgAb5sf0BrBNh/4eJF1qda4kycdSOyX0tBnBLuxVqPfIm+v951sI1yXKZs46CDzxBCqqJ/nlE9mfdlJMtmD2O5q0QrdXtbdXikV34u8X6/m3LJftNI58gfdG7xaXAhKuDhj76crek6aAs9LaKtLvDVCOA1IjgUehLLyg77OgXtyFXoLg+0pm3ZEpBnFxXA1/u59wTtNNUi10Fd4qlRbG2tr8Ut7KbYFVGaEg9qhhRRGNmQ5CsCJdHgWPdFUL2e++yl3NvpPWmrYb6h66Av8fQopr7mJMdBdw5cBhNGjr5lZDZwGIXl7Dq5GPSu6IaC9QgxFfp73dOeX4pXzbPp8vWlnhzVJiNd7pIyLppUwu9FlqOe74P96eBegWXQQspKGQ6aXSEvwLdE2ci9mXKWeE7bhUuGMPALM4TGO+rzR19OVHYdtIWeFtFmI07shbxY7hboz55BSP/TEl6Zo9wuuXDamLv7dCmAabSXEZzS73QP/l8KOiJ7m0A+Ovu24zyMauCPGnbSOvL4+xvxRX1CLas/HrLsrTm3AVlTW+SLAxwxgSk+UNwEohHeNqKcJ95jn0f7n4UyXAdUwkExHHnRSY7U0K1XJfB55C1UZn4yg6ojJU0cmkFx+kjGVbn/yfmf73qP1OGThH+ap2Y2kkuuBeCNvRaOSKNdTKsA1q0u4VpBDY4ui5Hb9r13Xo+jxfC1G15NkIOpAAadsnVrcibb17j7q8v0UesxCaC1j0rNaFqw1dvuqErX8ItI96MaU75hWtK1WCXdHVphHpZXsKkO8Ol4n773fM88OREUIWzWSjwVkck9729Fo3pUEPA/5Hj7L+93R5XwkV8yNZ9OoNp2VwXUJsKqYQAMCfVdS/0NE/h5+SmPt+3bHfeXxpQAdf0dIWrPdzteOT/gZg81D6MohGX/GbMdRl/2CXUdxDieeMdMy90kHkh5j02PS9nM1IobV5GLoN0Em3nAImSuu8qOhQpGfEs5VPLdjLkkRrOAVWrnRp/hqL82f3fw5XT9QM1mJTTP5Y/WwPj5eA1mjeePW1TpF2HiURcFFWQhIEGY6zryjCpj8cRuDasLCQ2bS9HTFR2x78ptKDES32tUUBNa9a318QcV8isSwILUqOiV1ura/hKgygSStnYm42mv5m92wIXjXfDe61jimWCgAAAnnlwGh8z4qFh8pPSytFXXQYvlSLdsLc5JuwNCAS1WwXWXuiAv1MIBZeikBmF6oIurAaBIkX45QNHRzPs2/X9ftGyHZ9dBjOJoV2xcyoWx4F3acNRqEBmKNqCcBFYCg7zB+PufCmMmyhn0U4mrVHf0F0ov6/1cvhbL1W6ZXLRPXaMHUUm8bYf9kYLYuExFG2pVUqVZgiYX7MItIbHaJcEU6+7I/ITtK6gYp3MbFig85DX2Kyi/QI9UsnGSdbVlP2whZT4ydUKygIUH3UcAl6/KIMSiaEi59p2okIDctsAGHF8T8UQa99TvidbNVJddvhjN067ZWkxfuwmTm6rclmy1rZSc1nXkANZmvchXW+993TeibX3h10SANO7hj7Ip4JqY6Mmzgkx9AZ/OmAa/shejmJU2vPpYNPgNOOYqcVkIe8vWqHzRgz4hdyLwbN9LpzIS2T7KJ4teR9ZHu1dtP/BqMQurLrfjp9Mf1PHSOHlvyNJmAWzmhp819YOKQ35+0OvI2olK9g+0L9NUEWVRsinMe9Wu7Aw04ZF/i502aDYb/4v9nFHtKTrQFzaxI6bsvFVrVyNbY3d4DYIUlP087NTsqzTgx5Xi+wyhxygaBKTeNaPabPIyaFF75/yedFI3zYSuQ9c/r0ugLcdw1RsINdmjlrkP3sBurSNhL4AA5j4BzS3/KXMO01M8LzQzLABjbg8AHAKLGTIHgHfU9vZr8UdRutsRILEQB0sXAD8Zf/lcojnYTAMGnnXHuWap749bWnsqxZW3CO0SS31xuu3PI3z+EvMCSYpTaOu+TfadoJICiVhm/p8T8NdqN+uMvg5yNEe9ZlNTJyoLRGrUruwd+WVdn8s2BCM07HXo2hu3aE4mA9I0BkltLZk/qF014ZbrAM94cI4px/XVuzgBB/kMur1qy25WDaVIrQVWkmyxY4NIgF2Ggr9Z0sW72p2dMXCqxNC0Nm0gE1XJhzf2ckrLLrcSLVEyCtIMHyOQZPgn3/b/UAq4ytzkyNOG8hkdSdllXS7eELbuqwREAtq2Cl0LP5WLbO0RKLAkUl+hI93hrD8K4S5OR3mDmRhEk72kcjuXkAx9SaCtApbBSA0P1RL6/njKWl+Ii6A4d8ZKEUr4qBMFtrNI5qMqJOT8VjqggiUILPRCoTLigg8JxwPlpqWUvA7KSk+JaZcWnEoRsFviueMMn+hauj5HBL/6MTeFMmpXCqTzSybIeu5V6E/6Sllr5/KXmrcybWWxD3w7OLkFq+ttQ4H9A2k8BBEfROaDKmyTOLsORJtHzJnyOl+NB/FLCEN5uYhEMK3LpBFAGqpPTVAEDV9nNEihuOGi8OSu3XxUhmvVil5uZalXh2rX1Z7qcIEarn1OJl0IaX0eEE+orK3Kv81l3xe2DdrAR77CuBduFZlXWpqbotYoIDqY6yg7jL5stOFyNTa+Jscimk+0dEOVg0IfEuRO3S4lDIAouSgi2CE9WjdFNp0WHSSn0y2W/yWLYaKsl6+scpVYNsfmc3LyoCLTB2C+Mk363L0wIygNje4wOd5Kr94pksXXzKglucexv1cvWUHW5euLPD2Sw7L6rCyA7tZI1sCgIPflUolQtwENYewomYtWBKrlOTxQ6eMte+bdaPqBcNMSS16+ttJRYtqSeleBD1ZYkmH98wBR0b5Mkf/TVKEJbXHdgvAA5LXxS4I4vm/7v67XMW0RL34+aqWXCA5D2dE0WTetWn5cb5STlwpU/FXjXdY57c9DJlJDLi+OZfkCkXMEAKDK0QV5v4MeqmSBOuaoVFUOmMQr6HFHEfRAjc/yBXIwaQbtrMXAtQ+NhRJSL60+sapb/GoSv/qEzq20Jh9AbSWmmes62F+h+x8Ay7VjodxVni34DspJWw138vZJ0GNuy9dBXeSpkWx1iStGQTC02H6Z2FD/5nUZia73WRNA8epZgz5MQacpdFKx3jur/X76W1/v8qU1nhTH0RadtEhIiJuGlOixrasLtgDyI0kbIP7LVSHCSM+FNvRrwvx2fux85P8Cq0iZoEqA/k5fD6OavoYZVRCOVJfgltLXchCrH3REchPX5udgTLau/KRD7029quQVSDCT3g4uU/YCIEowtY2lxi2OkL0ARCP+vkhefZcty4zsRYnpgXADID1sIDeC7Y4us3GZ/iizBDMsC6Dt/kqS2+BXU5c7Wiq7z9EX3+0TzC4f7fQu8XwdsbuUhtxRLiNby4dVwe8BLPtovg4CK0ePZfPLJz56gNZXPApc0TrhsRcsa7vMwy9tvRe22qZC6ihx8bxbzz3Rb1mx2XXQV3l6LJtk8yi5DiKBHWsRQcqGvlqTopf4GJTTECutWisAOkuOv6mfy+tKH9WqcmaxDq+gj+/iqMMbv/NHwWBlIsJyuIEzDrKbF2Ww1E4GCxTklOx6ql00GS+fYnIZKVY8FCC7chLWWRTXlKukmbgtyFUKnO25XCBYlgQDvBEpMXCrt5zv115FZonQ5ZcUuSVItpuQ7z6UkdDC3IfXhw4y7+vInErayhVw+soF0bYGfub6OcpPP97/5P4G8zMFdSrB9PX6vUEVL8mhxeAUOan8hBX54iigOzvfJkLlrTn71jv4CgNfkeC18fC8UOhrhrfPtVjCR8HWr416NKhuc+Hr8rBLn6tafVCjiQhf9ruyN+1vsduPKy47idGsekCHHkRCUNjXFVeBbcIdupWzXI5vTG/J0At3N8SPa+0fRjXvGdoFjxOhJtRVaN4Ds9Gi/poS1vWxTycbkrK1lb4W0xMHes+Xjva6h3bkAeXDdbkGLUtrYPa5v4VW37ufP6riNW4mZAvkPqX19fqzLBsE7aiakNlf3lDdF+HrM6w+I+t427pFccgEGhqW4zoN+pO7dP0Be2GCbNcBlPNAPFNcetKiypYfMKcRdvda3207osyYlRZE9ASL67bYX8vKRoDJ3DDv3hMST9y3D2oVZINHYZ2alfijL4dkvg4NIZz+EbabiO8+gkYOkzUwkeeF7pcadUAgg88DlEd131V2VTxHdDnBUv0L/Z4VnVwHeZGpRnIguQOAh/woqasbrKHfV5E9P2cthwyyhNq+KWLprj1o24wfFauPlJtWcHodxJW2FtNB5XwUD9LlQkU7Uh/J6lfJIrYm2V2rhtxNVxbuKns//i0Pi4Faitvm90S8Z6nlroO6zlHjOfKqkxxLziCKl7CbhZRW4xIs0VKVB8MppxF3Uw1oVzap/E/Faqo0LcV/SKiijJas4X36+6Oq3JdtGyE2WiikPkNbwn3EnaCpYDWIqdD2Hvel9P7xpNW+EtszgrTFIVgksm2gbwO8H+Sv0x+p98z3cx3kdZ4cz+bWfS6+wc2zFFV74oBc6kCYnFNkRxFYXvZg8nWAIBQ1NhqQQd35zifiNUstdh3UZZ4azZaX+nJUBLGhJOVB5Smm1acS0yTXxRzLRqIWKfg+8DuGtT0oiTbuyc+TpuqWl8x16AXm9Q6z9TW+HqfAL7TqAkBHj/ru2yJBIqIowEARnX7WbSHCkn/LVmaQeN21C8hutTS1YG8CnjXi1q8dRl9Oseh1KC51alFtQ4mTAcVEBVXn5WW9FGUOAZ2gYWvn1xlz5r7uKocTzi9+HKrWzD3vumHDjdcBnvTgTJuS9SlcbJ9TS10bvG31weA6Da14lAuXZDG9S0MlPihKeQO7uFftP6ndNePNy49PvXjWkdec5Dh95sLPK1L79SChBGw1LkNuNCJf+S/eZGTVCJK2DmD8Fv8BGmCIH1eym1FIvJ7AYfRlR2nXgZX1WFwbn/fxfEy3OGjXBmGzbKVzXQdHhqJr4MjndnyXIwMnOB6FhAbzbj3/S/2ufUBdB3GZI0ZzeMkTjwl5F1DeCU1sbap27ij8jAFgMeHErKgLO8E0yREGv2cJ6RP9kdNb6a3Axt2YKviTf7v5ijcKxRMcBOV/k+4pQbYZNd5HI+GEHgMEv4eEa0r5mwqpH1eTdNIwIS+miAekW1zwPxQ/mQE0oGB6oqR1X7Jijc1aouySH/nP711L7BV3HVaot6JtWc5JxmNjLBYmo/dFO2teH/rAok3g/kL19aWyunxJlifhcgT2J0F+T1Stkl5tdI/9Yd0AGhoh9JCJIXu24uKNjVPQ2oZsaWBpxUcSpASP7NZd3UmYPr2TIGdU3//IOrN60i/Y1vuX78FW02i0mOso+/1/00UuQ+MTOl5jL88ODnNHAl+9DnxB7/Wr8vXYQXmguQJbq6GEaoUA/uDLwSeug5uq575qm4uczEimKkUKD/q68A85j9G3Z/C2Q85pVXaz/kF11vg6ucR79brkD5NdlSRjAJMRkMykXb57GH05B9R1IKhtPtshaE+E7pQ4ri5NlbyD1aqFcgX8Y6r85WOdF0AKQl9NLeX8bveum0OCfGY5cjYhtqU7y46A/cGX83ou31rG9qGxrVV8K5YCZqdyzjWEDaWvy8BMF34puCfSrr5vGsPgu5coo8R61/v9VvJlojPXQZPlabhsZu7E5A0AsHOBSLOG7ecgUTDcLAk6oXhqa8fgCYCFyKZe/+tYhS4y+KnyDWLj3iZLcjP//iiYP0xNNoxDa/QBv2AG/9wHgnIwknqjnIBL1mQKfW7O5/JQEBoAR4Arkne0SuMK3Hwhh0IOBTltW3dNWLa4egVwNu+VWzBRZnFuLITRQG73ut0KD6OK/sjDZDFi7AywVPuBwmQ0XdFO2yON1RreLPb5cctrDtU4trDCEmLobVvtcV1GDoT5R26Vdnh6HWR5nozPJud9Ml/Wz0B6r2E0lmFd15EcOpAtmYAsY9bPE1oWBfZtRUBPs/D/8n+0eStM9VPWty276dZ+HEZfZoHBdShHQJsO9pem4DdEhcUz4j157cCRUZDQgwoCM3TjA6Xs/ByIF8N/XEfOVoDKFBSH2uNfadm+xWPXQWrmSdNshb0jxx/ai63xlnnW1Zm8gqZB/M5IPkgWsJRsiHZipv9Dg5Qu3n2HoR4lXp9WX5nSUt9U3mEUpViIqNhRCrMnhIaJilIsVM5NqPQwe3JfrdDt0q0ft1TKL61CxTJ6LBOf73K69X0ddDgq2oZblr+6fKECXl5i1MqwAaHn3YPv92gmAgPZM8oqLyEcsXRMZCcmUd6IlGYbA39Rnz7VeKImTXtPz+YDoEENUyFOTstbHhdKoDgZEnjWWstje5M5h9GX0+TyokMFjHJXUyC0eVYIynSu+HGdInxnCXBVE/3U1Nqlt+VcAegLne7Vzwm8/r7vkHiLTTo7Xc3bvXrht4VYVq3AdagtcGoRnNoqvxILxxSi0kpv4AVY4io54p/ic1kuihLgrqCep6pngEHdbRgetJyyo63roLOyVVk21ehRk9xP4p5XYYx1DQhq+H4TyaPF+gFe6bmqpgRlAvcMRqbZYCOxLrckXl1kg3kf4/6oqjhyQ2N1bkCSwIa3iiNCt9O4YYFWeCMS35oXX2fiylK8IndPI1GROYaalhdqiXcK/5GG0YozroPI0BMl2kzrgZhtcpoAk2Q4FDVgw/EI3GJWrXCFJXFaty1ZbqDVFPKSSvjoN/BAw2uJZq+DyNYT5ZolBqeKBHl0gx0KSDBpfx6+6cbcFrcdEtfNfVtsfAj8oRYf+X7yQ2DLVKWhMI6pSgJWsqtXvFGtwkefHMQxZUA01lm2iM9n7Azw4Z7TFWKyNW8/jsbspEizu3k5/l5wfcPZG5lVwVDrbkD1qN0e+ofIAVb0JItxmRAgHhhDTzgA2iPGt7+4iTDaKquTKsvSyHm7C5g+Caqjns9YT3cS60EFg0kaXQeSySOlbI2Rr0kaUIax/BEzW7a/Xc4Iu8y4ulzVoIUgGmXMwrJQYsjxbj/6oGwZkztI6AuCHLEWpIjc/3Amw6ujMNSWRCit+N6qePGLTPySFNlF4WtAr7PYtREF6mZgVAJt21BjNs0SkerIjMq7Whqmx//9flTaDFamSobLDgNxsJOxupD4oy+nxOg6tHf22kHbPiG+r8jkyqTmDYLBsoRPg2ZOLavPScW727cNWhaJ20pIGu8mVA90nGZ8ch2kVo4yyybZDpycTCMcNbirrO2kKk453GQGIgCjlWMvugEGbVMxNeCWI2p+yDigSWNvgUAHXNos4RpLx+KOagkLPLWKYuOyRMJoy4EhoM1QZZGFPJMWtt3KN+TvY+wnTN5u6eKZvEUWDw26lUuqqs2J3+d/kBMNJzz84vEfGZjdLt/0R/UApGBHz//ZVsdZ5C/qtx/hLFw3+eYhTU6NjV+Tk4iDgguCXf1YuhSdVFoKE5DtyP+2uBMNIGX/iqCL8U4/Wu4WoKvQ6snUYIyX0Rho61jc0ZcdoV0HpZ2nzLOxVh+bZfPx0lcgWVUlQQ2QPBxg+1oe23UHhKoNcmT9ljEtU6w/aB9usgbXgWXwWAlTZ3GSZXTQ4Z23RUBZt8P3rIMAf1KCYRe3gTEfdVGYcmLdUyDZwgjSZxjtU6tYJcXdKZA/CiibEC/iFXit0iL14qcTrLfMc0h4Id1SwNoCvn2o+YBMy8sAXYSIMea3ZxvMPdjvA5eR0Fr7t8itJAUL666yZstH2f4DA2Zrf74OEgtPkmFSTD4jBWF8RFhOdQpOyLouI/FPjmrxWSr8zNZtwzJsxsZU0qcJH0QJOOlRUaJCVU6PxeB6gy9bNXodRKaeKNVWGbqiRCynAPoeu0krsIVflwFwHVTZL8fPaubaoS+VCatfs8Df+26//UDAYMablx+eOtGsozDyFUnoTqsG7zg3ZFnWLYaFOUVQ3Ety3FD/Y0/y9vGO6P/xcfxnhembHHRULFfZnvsuYfJHX/Ybug4qU0+VaotsfFHOhF13H+rChz64ZV8nwrp7iUFbWiJZSAdHmwrPDkLV9/CfzXDRaGAGyhQhLEjvdqPuKDQ8oBkiXA0wK+VYwEyHhgfTG867//RZ5OUobWp+flyNja/JgWMzasQZ0CdYo2+NEOJ89DMGkwTIR69fYdvHYpiO5p7jfvrL9CnsJ4euF3WZbQPT0gTQH305JsGI/xE2JJqqQZ1TQ9J4zrQ8+HE9BlxLgow+4CyQJ+25wuLBRTiwHaMsSOaRwmgDpxGtU9QtJYxwh75/32/ZXnLXYYl6S9qWGJ0kSTbAYAESixDNWaF1+OPlca9iemTcY5VNXocyS68s07bW8a14GtNNvGt0tpMgYeZ1nSrJMcBh+Vy+aAtt3xc85BIK149D4JGS3VKOXweluadMt2stvNIMtGgH5aRmGGjsuCs25PHC9oxgKIS0eleIzBEz8VuiH078gEB0akv0XqjXkZ159v+2QGdQ8c+EZGAqN1mB3i0EDJaR2NEmZk5Ib1/NL6bM5aZOVJbtcO8YBAAvSbWrRBIn07jjn6gCoU6/U1cApn7O3X7mMPp6mQYz2nXS7AjrNJB1VPYnVX6HAf9gMUBCpM2Hi7JACcXZz1amogyk7XJbBn8Gvk4HFXI/AH8r4bVO58uX2LqSXFtj4GsS0K9GVoRGC3L9mfZ1mkz9obVQMr9z3dZIqWlJxYRIpH10G5enjn4XIDoSci4s7oYXvfrtuqPadHVCMlfpkZqx4yv82WDyBQ0/q5Jk91oyFqPo6cctMzpUJZkOt55IBlEqciKt+ZAducc7/I2yKmb3aO3NKhVYgK7w7zD6cpLz6yC08oRZNkF3IvQk7EcxHRs8yCmjylYElTGA5UAqVAeEbOu+IJaHdj6SwPtu4RHJOgJ0C0XxXURTb82HN/iyBbPXQV/r6XHNEiO/IgnKCHVBoqRE1mNcl2myMweNFUEwj3VXVuLpl5TMsnwYdym3AWpzGSzXN/HnDOmm34Ocw8o/Spi3UF/a6lcSEPAwyl1lhDZN6vOSPo/p1YY7egqoZEPT/UZOC81C/kK9Ze1M10Fd5amxbFryRGOi8WFVPU1FMcz+XNIhQDJcGjBcU8eYihOZXtCsK64f3XYzABraMwwQzv/oUzH+I77c0ZezMi+TlvcpfBuVdkHsDAVN5p/LQ6x09tHLZFRGJvVpljW0ev1Bdj0G3WJYIvSp9vltxGOrq66DGsuSbjmieleDDzwDrxG8ijyZuAsCZOLxAMbMQ2u3rQvDQ0N4MGDwMmq5b/i/bTcV0T9mLnWuRD1JLSoh2ZMAGYcANnU5Aus5FbHZSJ+99LQU3qYCyDxHbk5Q/5R4t5x/Uq9lYavXAYr1oFubjTyxlw06yKhoX+haE4/FMQL+P7X4kC1Xo8PIFm4qo6Zc7KNoeyb6ICMm72woJfuP3HSleu7gyy6RvA4VlU4FpuOnc/LfGRCnJ72+bKratFQ+RxvYuUozB0wa1n1b5o5JA6S09om32CVpDgvTx9IJ8M60of7D6MvZli9fjeKIVxwuwucu0My0xeUEChJy96SGwLbqIVk6tMLrrjhIq0qI4R17//0gJUliAQ5nRQr6wO+KXXfw5Uhqr4MEVzINybiLSm1RgsB6kgwvZglxpyrasvwG9eil1KVCWkAAoHWt7sn0sUXtvCrdEl10/8Z/xCKXr0OTC68phu0QcnIUQTZW1ccEB5YuaLRrkc2AtvXY6crSBuFNQ9nfeV/sZ3f6IqK9ISO0IfuJukyN8D7K/FFlL2VzQP6wwkftoEa7hdJYV4AC+8jY/Mehe1161WdjvRZdjsUVuZVINVFDZAIl2m1LfyBdtWKN68CvO3S8za+c+BgJ0saSRkLIoC5UgT3L44qgZCdYVpYIpiWxWQUwkol8dlCMWmWd4bOhBD27ua4o3htUByKZTVA3kC7La0mzPEP+GjgCuyZJRDJWhvmt9vpxBVZ+w8Vg9mf0TD7wCvhUIPdKkjbdXeefoLfm+7l8fs3j4xx21SVjE9pM9eVX2NGqo63LpMkexDjyZTGu2YIopne2s0U/X1SV3d4+rK5JS8riCkpQ9Lyj+MMoPCigkx9sLqAu8lM9KPgecM7hPTTYpCi7+k31+uSqy8XSr51GHvgLOTd17cu/RWzHuciTfbXtki+D4k4ILLBJZ4AMt1+P8IHOgolVonjj4FSXcsMbVOymyoNnbQ+qqOQt94XdsGSrKnSX+2oHY5Ys/bg1Qn5NkaMMsYQkGvyhuwGWCgIeOVPqvXnmb33HE7t+ocQS4Ij80mU/12AgQMk+UmlgNYpcmRUeP25JxaECoyn2jS1WhlXQhkIR+ZEjaIJcUAIz1m0zNkFNtKdc5372P6m+h8pKDmQK9xDYyNlQFnGDWoumNTLyltP7xPqCuX1k2QWiPWNbr7IZ5Q4js3xIo7J7Bd6j8iurTuA61BXYVQh2OdWp/ErmYBtahVAA9e4uNFPyaOYQABJV/M+bBvp84mOZovWuW36k27SUktdBWWnrMM2CKr/+qoEtrgQGZZ2NtIvBIPiZ6O9EbLssTThuKvO1QswNHhTT9S5beXDwmanjdUg1vdTUVhb4SgTARuzVo5JfdGnam6i8HPq4oX0t9GJ705UlErUqBGr5j8oNWKsRopIcomptRqjv7c8ffTnJ1uXryjwZmoksn4Do2Vtqui1in5v7MnLqxallnBmVTHHdtksCt7ZLSQI/O0ejJTUmdmNZIWO7Wt/z3x2FcAGmsSMvE2yEeorf1czekZj/8MyW5GAJFyyhgyss8HUIDSQZ63sHScvc9mUkysiQM+IyHSTFum0Oku8Vva0s2HIHMEcrRCk62vcSokR54noAh9GXM+Muf4Z6M9oh1n30y0PLLHRthRHo3BgXZcJeMH9jwGXV/F++RYDnKGA7ZLmGWoBGJRGN/Bibobo44zJyxiO0LlxT2m0at41QzzV+jprZ9kfKXVMqex2ktZ4U1yqtORXizMw+bLyKhAjv/tFQqPMqDYY+7+nS0AO78EuihPJegf6geSAV2pUqW0Z0kgOXuAIgvPO4DJXkGv1tm/XF+bgky4GSsStiHVlAYhwxlGJOIGFvb/+B9YqFzFy+NaznJGtbo/hWKqh5kdWc+HnES+7rOo3yd15fbtfVrG+ylXcp6mzbUVFxi3+ebH9mc0uU7CYAQiOrnXaXX63uc2aJ749bUuuX4KqKYxV/ygQpOl3kOo1deFn+tBhq3DUh19DNEov4o3Xm73WrllL0OihLHSGqrSt0ZYgdaTWSd/Vv2i2tUPYs+01WvyfJJtSpGneVfShTX0HtW0z36PeJbNP4gtdBVunIMB1hxUmIgf1TZb6y/fWxLdkgqEaNx0TMIalvXbetnUE8PpfZMe+o36+Nd+zVeXm+SJ6NkueNc/LSmZBkNP59Rogz1+cREh61b4JTft/2TY0tA9kPArPvXrAtWyh/l4RN8HuDLqPW99r3R19OcHodVBW2CsMjWH1CNnKeT42VZX9auyV+KPz8NOROqGvd90WHq6FW/VCLf8DemcAyHlLMFKjKada29eRh9OWI5C5XU+cp8Gxd+UmHDpd2/P1gl86pLtuyF8uRMyny7TyvliqackfMHnLEjYjcY9WWuTivg6rKU2HZ2gJfiyDRW6xDASfZenZBOByJZM1o9/khy+5tSIOef1VrBdCH+q5YQz0dvbWjZBwkNSRnmHvv80fl9xdo86GvZbKNl6P0PcSivQdWbBau7KZJu1Xh6ddUnmow0Y6R8gDET3B2X5/DyRGQEKXfuuXKt5GTBUWN+LSCgPhou/Fr53Uex6WR2sCqGgVFp9p2pKEAcXD1oxZ/C5btvMRm2X1W3pMGeWElovOG8mD8verK/6Rg0wLZrwMm70D4Nsd+4uQnJxc5F3lyeX8cWQXNAKfgeW7iANhTVMKnwdfmQ7vya8WaoRG7DpIyT4Jmi4l98TEkLrQAVg3a7EubBtuLCpE+1hbrgea6byjMmCh4kYV0d12WcJNy9K4t3JHVsXRCjz538OWcTNdBWuQokWw67kTfQfQPVA3TDHHo/hz4Mt9yAKjY827iKmkqwGsexOMT94soZSCuJWcPUxys1V2wdBh9OZvzdRCWOUI0R2Nw0iTIA2tJk82CjsZ6WEjI1Vdk2SEAzKubKdxqshYEkYHvd8dVSOloRSBXVHVuRsfrvf35o0p5dpSFdxbCyjNOarocyXYA3kD+DdXjPNIydj2tW3+b3uhjhIgDpS7rMjA4Bg2DuYl9Nq+74u3h9IPBC2CvT7+SQmYD0URe4sz0Ltf1R1+Oocj18lui2h1UHUW5r0CPhLGKGvvJKuvLdx4TCaWPep3SVcRD45tckGfg6/SZQ/2jzNdcpNeBk/c4fJuV9UhcdjWTqExT2Qprr30ZaDuIcANZzzltr1P5Q4CJ2JKgQUt33O+3XlVWccx1KKbxim9sNynffQrtShFG8foSc2nrHl4n4ClS2yUb7O7iTUGkfiob2mfgm2B4iIMNwhyecIWR0jbp80YV9Z2yETP4A0MAj4KF+nbN2YhXAzHaPZS+WUKflzvxeLajsWeHgIcakR/gOrLp5H4Pfxtytn8Up2lBPjQ9Y4e//qjuf2gQCGYSftJy1jH5I9g9KttiQb8uSUHeO9G3QujHleT4XeqcrnaeI1BEyBBIw4M0kHV2d52XaC6zsRIUt8udYta3is8fVc+aHKlVQS0gjCbisqyRWB9hOLyFQ9bWymaFx49bU+HXYHjGpp6qgM18IJmInCO13Pe/R44tRkXldegJ7fWQth1VDgYsEoagMxn+vMmDeV9GnjlMwNjJJKwqQdwWuQvEoKiUAZL+0XUVHlTY2AHrMMOThK5szYs/Cs0LFgDySb7RiSI1al46hC44OGV3hOZ9ReKWRMZXpbgqFvhUwW430g9Bcl8lMld/s9BUUpPmbt0stwUihshbblvgh3EvV/y1eN2UjF+uwNxRo9slJYcKFLao0SI+Cfdb19Y9klrR4ZSbK6v+x7prhUhAM/GGE/dO+v7ep9QOTy9fYesJck1W1idx0bqoJta3wdM2hbftdEEWxZg7oXNRWXdFrlT0c/yKP+M8rWzz8pNTL5e1SfkTiT+ADlbNrlAUs83A5iS+i6CpydyMe++T4ALya9qbgYy7494P+k3DhzNKLN8pa5XfsFRPlTkMgW+kqnJy6SFnsuQ+LX2isWdBIw8e52zhvj8H+MrG1YhFN6VYES401M+xRXXP88OwLkOX9Y/tcELUKo2EbFSngD/6cp75dXhHzjt1aOkTjW2hSyYYtbKuyEaWCJBRFP3h2PB76oMa06lYbmEiUHfTXQneKgnIhr7F/9Hy3yypT0y6PKZXDe3JymA4wrSfkHMtc9x+/5O2U6aXLog/tBTn4+eXRastJf4sg4cf11LBt2CILH0N2qRBfnJYxm80gdIOlnKdhkNm3TfLvo8ZQDFZmx8l23U1lJaMQQ+5UohfLc9Wd/TlbNPXQZvjaXlseuJEZww5eImxyNFbWACgxawTBmlJiwDlUa6On2RCuZQACMklPyLglJXigS3jVHUja5fWMeiO6jnQAek3NWFq7CqhIXCF9gvCXJRi9L1Nf4vEfzxVti/i9jo7OjXREEFkxKMqEQ/13nn5QRWLVWVyHapSJvBAJEn4PKBnAFlBCRLh1jrT6jpeJ4nsnJEMDTYqhfEpWpbqdSTqn8iSVsbc5ocHzxMpo6UevA5qQ0+daFcN+lWGbLdHqGegQUcai9BAE7aC2mZSF3PqisZ9AwzO9HuGHuYd03tkQWJVgl2HyjGv0sy0CDk5iowgwbJ2KiyaDennMnPZwwFKKclo3gVu4LabKqLk6+Z7WeYDF2aFCzsgSG4VcvCHumANCeozt64KLrzVnXSbx65Nupw4Glsq5ByaQDvlXGwafteu+cHzamQbRLt80M3D6GzWxWdp1Hsb0rdIleMyM8V3kAC+arAj52AMu0wk4AxU+kFWbO/3M01+F9najv6P1KtKnLh9qA6jL+fMuQ6Uu0fR28yDz1QgEA5h2XkjV3yXcBfZW9c8km18YamJVlDMhBA0DD0a32o2dDL6R/eQQQRfQqz0Tmv9UZQzUDaF2lUGXvI11Ia7QWbVU1fNSYUAQwsLjPKHH7fewK9PwAYq8y5zRstU6BoGN5i1h5RVFZf1fNPb0g2k8L4oiCr3DgS/P9UM/fx1kNt78ny71NIvzURVK+Ja1edD6VL2dSLLDXUjrTG9ywJKaFFLgiEuvtMaT/Iac4JeB+rNo+ps2P0E00Nkil9K21Lgqfy8M6UmRjBgebwyREx7hMdD9eKskPkLQZslIbsOkjNHoWYrrlyF1iDdDDEzbtsqNVZ6HVmZY3Wxkfm0xB5IPnpYdLL8bbzbUD8RtJlf8PIVZ55AzRSdnDQqTcKhmnTTkWxfI/oBwCvllb1lcGxz3TZDMMiPiTvfAkB5G3yraBepuEXERrkCQHd0NdNCvl6JLqDlYtu91CVEpUIH73sAl12R+DcJ4pMOPknheTw7RcIUfMqmVXkdeUc1fTQT/72ey1RQXQfFlafQshWXJ4Vmg6ZJ03cQAqoN6ugtHwY787BRaS/boRR2v2+LkP7RShUwO6sUG8oIVr/wEd6aLnf05UzRy1ddeSItm3f3efrJNxN0waBOXIFjuU5C0Y2ujA6wWD/HOTphc04hLTwsP2RN2KwY3GvpSskt/teGwxt8vbYmGWyx7M5oytUWsClnLdqhsjZzC1rt2s8ft9jSFQF4mgFLY6C3zTgJUREgy7Xdf/sTSZshIbsOgjNPoGZXm52q0+SQnW1xpnmGrteBFHoQ7BwMLlb6lxASavoHGL58QHqPME0r3L4O4bkXztu4s49TN5T4hNWVDIvijZvDD4WtqlEoEpaZa8zkFRkRzMBuP38j6rEW5+WLblyRjk08HHiKJkkE5tfEck/KGOIABlyLY0H2HJJe2/YEitq6ENY574VMT5qvwUoxU+nIXRuGPduFuTbdg9AVuNd3T5EvBNiHXH2I1ikUdhQDkazf7HpEyeOM86OU4fddlNn4swA/BKMW8KSY/BNmyqhkAzEXS0lammGSID7p4JMUmSQIJDod/pUj6fPFQh85MFwIwMCXxTt2qUSBEeV9dd4lDWksv6UOyTtPN+BJ70J+d/TlrLfrsD699WyTDj5J4aErFhqzj4U+hzbzkqVc8kcE+GtRp6WivA6qS0el6ejNfX16BFzGgrjV7kUPAMweasxUGd3LAsAbbgZvGFVSywT42AE7YSJg9VFj3Qoo6i1odwb1/Ufw9eomIysk5u3kILOv43fCg61sOtJSwPiKk5NCxWxx5XmkoLRaFXCyQiAX+7AxailzZY//Z+1KshzJdeRep6gT9OM83Cl4/23DDKTS9RPgIpS96PdLjHRK7nQSgA1A8k672dzDsWW7jL5sysXyW+R4LXUclyHflSgh341Y5iRJzNzOdSqCAV6+JTk6zrQBEVjj12moxDx+/xeuZJZwdF2Epo4u1XYNc13GIi1VYlQ5LHhBWirBTiOhWNGvg86W6chhwR2JqgoqSZ7eE82RcIguk7K2Gk2KJL57737uIOgs9f8SHLcK6Uzyq+E6u0hzCVDyy26OboHgJClB06C/+HyTGz9F7gUT7sx3OWlkDb8sZHZ6HRgk6SGCR57QpYfTopHKh42J3NWkbqMwgcZ73lp6/35/9GVHJ+tCuvBIGjba5qNzA5kP7c1lXjkUajnXkTdmYFfAPwUzXqOfilp52jVxedHS04L5K0azxSFeLuXYZSjbSmNXmJwRFiEX4Z/L6bgbEMK6PNENiPdxbHIIigVyrA79ljV8WlJ+0YLP7A28+PmUp5610VCONOT9cZSvP67W1FemwhVsk4XlrOv7U7yA5Aqj64HscmXPWWcEXoVMJGF3/PAx+TWby2JQrQvjyiFo2XKLmzwDiqSh0yKP1Qyy0TEl0dQU/cq70l/oCYfQVzNIHFwf3bd+b8SLmy+foi6Ct6piv+ubzgJKblIf3tLm+4i3IzMTmPLJHw5ZxMks4Ashp8PU/CxLCNAfqMcXSk67yrwuVWmniu0AUzcgC5l8UEqE7Ai7LUcMp96mhfecw+lXJGdxbEqVgI3Ik8z+RQNee3teLtnCI2d4yNQFyILIrWxDZ/liSugKbO+oy66itXHbk2aIMuo+i+QcfIY+X7g4Gfz55bPtPXa+Y7PkujJR+Bw3uoOFrXg4MuLCogG+jKw6rTfj68zeR9YvWZFLP/mcKBVlBTjm5q13OaxO5ueOvhyTjfXyu+N63XRttYmvTkExuWMTj0w+e9uHIiJxGF7yOmj/Vk4XX8md4e/AumKI5dPE5PdqTmt9rgsu6+G4Jizlo1h4iQeIPfiXsnUEpQrB6i3UyLcIRLgNHhe0ego4/fA/URD8VxY2lnR+XaT2njTfNpm5mdLIMsfPLzAELTGN/XGA5a1+nVFpPLKnlRCKOQSQgdyeN+ALFzu4c1bZ0Hmgs35F5k9BFaQX2pJFRAiJ38OWPvtiY0eajGR31kmxKCLflrSDe6E+Am1OaRgxUark50in0ANNPZ+Aizxe/yGLhGTFUXi6o2B5Xn537OVkpeviret58doWKzdLFtk1atS/R1G17I8DUNTOaVs5eRJIB0O+TVJrYMlOnlmvpI2FQpWKOoEW9ugguKue7qhWPeTOU7CA8ltHLXJXPeTAnqBlSeiK1oj97V/5F0roo3I+iudYA7tCoU6uF6o+ch15KcuT85FOQR/97DdhvfY35uOP6h3QwB+ZRpx07VMW44SMZjAzkZ+Z4p/ym4XK2FrLmzZTnjrr3mA9gVKTT5iXY6WzE+qedfd8Q4wKm9PJv8e9ePYhSOiN2RjoFu2uHmJP786r3qDCHhKD0IAArOPct5AfHVTk3+H3wJo79lOuNHRPP67SyFcmef6oHqZWZMuWkL9TEZpybE8xM44m1eqPqQbdAWXH/QZcRl/OK7ouLku2K5NjtOL7skDiE7teBQ3c+PgzddMJ9Ql8m7l1spgTDXoaP5WzNDw7cHxF+7RolsunZXo0Tkdt46tzECnXsqWSAxyJuK8jF45M/sD1DloOpPG3bEegmuAQkZD72X3oKycLK9tYl+zEy2YsXM5H8QpqnYj9MCsuorElAGbtHkE7Adlf+7FySDicdnMA+Mp/EH9T1uM950jdbs2c6YhZvVFNfgPgh8q0HaZM2noN+Aa86bWOX0Ku8ezEf+NkPjR1g7JMsazHK0HhRN79PLgisZN83IEvuo8jtJDoCwgEfeSjOvghFZJtLKjtvMSeU7ciEylzkakbkCUvGM50VEhQkt/AGiQXnQA6KiGofNc9LQpWc/cqh7voM/qHsSqWeN6sRuSwJ/f1xl7OeluX9emtZxuV8mslTmnFqsTotOhwyBQC+SGWy+PHy3FAWjPqcyrbRoTzFnK6o3oD5FdSxcBuDCjf7vNPvjX8jyBMkOB/jsPi/Vv18OMqDS7CBLu3m6cULijZ0SUqIx4DEP3IfkbWgw2QAQlOaIN7eg9eRl+O1GBdpAk4JkrdLE4Uu0l7ztDvomS/ywJIIlkuyPT8i1PLAjV3leDg+rIp5KqfQ8n8VOc3ScjJVEHWzYR9NgRFW5vujoLEC5FYAEVJW6rQGh0kXrhr5Z7UaCtL8KUbl0n6/XFZtj4rFyyQdvoVIsmt+zItsVCNup0k7VHP9Aa0m9QrTItWph/ifDAUWLGVsEo7B6NyeJh8/ujLIQ6uC9HQIybaNCufloVCby68DsDeuAu6MLWevZE+hmSqq5p79zkjwjuJTn7w+Hqm6gwYjQat0FO+mRzu6MvhjS6fZ+ryUg2i5Y2VCQpzzbrqwkyb85aQr0E3T3scSbWU9zJUYb85f7PVD0fW3y9/++msC8nOIeXZRJsbLweFgKYkWVnkCnHg8xhG4I6OTm2j7sUFv6uGogi+ZkSn949u2iOw50IDs4xQPe75efz+6MuhTa4LzdKjZZo0Y5+VDHZfRDjMFyFpdQZXkWA4Dg2YJV1QJzNmzwCQx6Y9YNv58/tle2/0XIDtLIGLFPLbm+My+nK0k8vvdu30xratE3yrBZx/c+y/72B69H2dEsnVpyHC6XUzMl8XRNc4gEpXddObxxa1XagstMYFDqCoHBqbN/hylue60MwcVpqNs/q4LMol7J/Lt6WeZp36poUtHJkqCtFpASompY63EeuzGcsXCg5LMrEuEgtPkmHrDH1dIqAviapUCwfQ849eEa/cUGQBycWeFkVt/VTigTz/0dkfeX6lot6zEl10FfCgzDXfRtI4+9OJ2ux40wbbXGzO4Qh6qVJDgQAVNR7Esg6eLL4v+hFYpfN1KbR7hXkbaLsBcyiEag6Blr1vU6pYWbNjkA/y78ED5LglcxbdXj76CP/akspSS66LutJTY9qmUb7FFDLBqk0LZZ44lNYDEThCZn4bCW3jeGtA0dit8nOQnT66EP2mi669Ja0LtcSmonjwog9GwpSNG9gEmrab26H1thwWaO40sbeEuFtZ4O2fKWp0DP5JetRv5Y5ADYLMl+c4uZrxaJYuoy/HI3zRogBUKbRIYAOxvg8q07rgx7UKcK0FBog06Mf7H13qg/afxGUkA0F8SBNTydf13JRpZfUgEWXzhog2GM8M9veyXeMBrQu27EDRNrrmYXHIGCJzQJl0hL6DBpSmJMOKup12aCbbnhTbSddjtiGZfnJWvxEtGDKBdVEVeCoEW1V+U6FXuaNNsTE5vrrGB7Whb13VxiQJvoV7VhyyjAEDT8H2QdklcITyXNMu6RUUvTdzxx19OSTZdSHVeiRcW1J0kyBJ+DGCUoNg7NDq/lzeqLa5O6CnljNvK3RQ0iJgCU8zpqhYIfjYLaosC73QjmLXG9TqDQSMsdAPbgKrnrt8lSvZsxVyDFl8p3r1N8f3x2XV+ixcr7OhZ3IBKlxj6gGUNIb6NOKVjEOba8p6UnGyXLn240Xlj4K4CU5eJ98OPAvZv7UFU4ahEFi7kY2SYV6IL2LyPH9cYqVPxIRbGdG+TH1QrIcWKu/WRMAD0oPcre1zhrUJRyXMKhl4/ui/9M3eZ4UYy41IvADGqa7fqvEjM2XHtAEBxtifo1xd9JSTyGZ/DFCnwcyEp6yslw/KvoQejGcK/OK4vsdbr+YPonCNODLloG6IcsAPdhImlVjeirqX/yxao7Xq3H5h2S1Ew8occYLsFS3Dzbf3U6CO2sARlTYJiOqZVTZHtKrHrPATa49g//etB617vS6PxnuUdmX5Vom2Mwkr89B5UVFh4gn+TkxPE+ovSJsWS3JdWJUeC9OWU/jyi6kdDbqeoLIfaIAHVF4CXsJICa4naX+OtVgpnpbPAbR/UBcgq9bDncQQ/MYxx+Pod0Y114OGBpV4QIKj1nqQ+1RkNWwLfuBZR4D3N9DlA0s+EOUJoj1qBGg+4BWQ0YJeNc8XAEqZLcQHjZ5vONtibs2WO6qnnxzl1FRBpSPBXk1HsIqtVyXVqZY5j6Twb7KHT664kTFsl1dPE4OOBxVldVwHgOmnD3ViUC+nYuZPlIN+hjd26w3qFiDhF1j9IOgh2lfeGjAdeQO3ABcb5IYcDX3vxrT+EtTe5Lc2McTgkex9J+t7BOJ7HeGJ22SIPJDZbKsx+QrISTXddQdfjkBk+YISV4Biuwn57kOZvrgtcl409ny7EhVSPpUTR+bAnlZeiq6UOHmUSqH7F5w1iye2fF6Zw0Kz5cQX9THuYea1ke7n8zFKn0ENG0ExVKCkItiHTIbfUZLh8kx65U4HjWzQUxwvOeLusZ/+ZfRlN8YFxDVhyFMYaODYDbtsZaobflxFga9AQCUYmyK1zZBl7L+HQZAsQb2Ogos//DoTMbZKISsKYI9yx1d9Zy2S8LqQih0Osu0k4zvPgOGZ+7YCgz6NyyUz00cDV75csWq7Y84qMUzX4pPM3p7Nl3BCMLxBRW9v8vFd5r2M6s4PSUNXRxZ55DMf2F6yDjYSJrVxe+r60YldibxVLm1SiHe2siAQjkg0BgVLvjfhtUsN61KasAsZVinSL1zC1bUPIsKAUGpth8hcRoYUnkUv8LhP8SRISIRYDP4YkqiVz9inUZKAtJYPOLdc+nvzcwZfDklqXUhVHgnLVtTcFDjyZbR6ENnGMmmMh1QfpDTui/CtflszyyYa+9y7aMofasVvSJsWS3JdWJUOC9PWk93kZ+jriHJIIJg54rGl7+hIy1mL5F75aH7lmdHyJqi298N+/AvFkllmXZeyrF3EtctytzLekBM4KJVB3s7teAeiPEogG82CK+uZtZbK4sSENCCPp1wTkWVEYacNYtFAcmZ8mxX5oy8HVV4XFNpDrW0c7obbye3qZ7+Uk1PfsAk4E0ki92P4uda055VdVJ+HfDUJAcOz7iWxh/5GMG3xkksMe1oQ+YMvh1KxLhQMj7Jho/Auao+OPbJL7HOhF0KKep0i/2iL/iluz3teOXVpHkJWxPgw4P+i8az9hNYFifWQWxuY8IGMCfRhsOxQ8bn6YeAfF0i/utJ5dlZAyk9m1ZRrrYI68kx9ciSRQfbyQUJPkRD0bVfhDb5sPe269AX2+gjbkqKbBKmD9J2ZQrWUd6PW1BDpVL1MzufABDCCrxk5bR4SWD4DoN9znBKsGGQX3/SJCCNapr5gasoRyPIEFCPyaiuZyyKF+SysG2tL/hhWmAykkPtrqBtp4R91YyiQNpx5EbdN9Q6bKc384UKPpkr/kTmuzrQ19nb8ii6jL4dYtC5EJI+4ZLGwbpytXslE37ylsFlEBdV3JKGkjYEhWfesRXNh7k2xfXRg6pV1GjbGnASzY2FXZPWr8EdfDhFlXXqE2C1FHEOJi/+E/P4KyXaGWdfQPuWwyQBhoPLiI4xdV8c9Gijd8Mvgdzwf/1e0TYtWuS40TAgrJP9SV2L4WW0H6o4IqFZlbjTYIzIFkl8n+wiYgATC80iH5ckEmHmRvEMfxbxvSFsWTWr5rCqHhGWz6nwSHqpDsjtrxxIJefp+JxBtItFhwDwk/nwbXk5aIY2qPJjHs/y99Yil91u+PNBTE9rWIDcrEfRVavv6EWKXcx06NenXkahmqxsb8FJdEFjKtT9Dma+CWSt9Wpd0y0nPHJjFRWWYksTN7+1w+aj7Mqh2BSX5NLAPys7+YPY49O8jHCQ/WEsTfeEBT7HkpP2yTiXfHQSKA8RpIHjGOxWBPhLEQSIbIEZC7Qohq7YAsjAfH2ZxURlYMzXogSj1mexArZeRp4zXBpeR46aqwFGmDTi9dNoEjeIzkP2956R9u9fl8ThP08ZZ/MqHVymxKiu6WmRh1qIk4Qk26NN1G51o2SeUhBrWKuN8C/D8UW0lmye4oP/J/k5zYUXxWJHLkBRBUVDAwZv7G/6tWPhxJQK+pMBuVebo+xI70yO8zSDP5/yRyCAA1VJtiEFLtam+YSxvEGVcEAwgkGPpFJYZ6jqILUn7B2Kv73CU445tSJV9cbAvJsapQltOzDqQ9Yx9HTb5gnkdwohwRMl835k+yd/LZl7jRyED8iL8UvmXTNUQF4V3IcMd1dWPnj7wAEBNc8Zej/oMUhF8c1jqyL8YZ/X/Ldf8cfWRNz2l7WnqQCT4j0mNBHARSQDyc+/7PYpnMWbWhV/j8XFseaArJ0SzQfm0asWq/KnkTxDDgdFoiCG50elqEUpEQy8uR7R1+1j+XzB4LMbMujBsPEaOzSe/8c9R2JmKkqLZYjtmxKNim+SdBMM1HiZQKV2/T+Z5/T849tAcDTs5qxU46v4A2d6oongdmOjUl0vu9Twonuxgmjqwejbz2aH+xn19nNXHZT2Ju4eSonSaeWTKTdIt/Z+E8hZJevmcao+DbQuqfP0VkL+iyN9Qa+5xLiMrPSrGEXECv1vSSNacN5NW9tb2IUBvgcZCAfe9s1wrYfmJ//xRBTMyasaskqLXVakby0hY0IXFVjQB22GeA7TaAnlfUI+mtAlIDcIImTS/OwZVcp/RsSmM8cZPGBPjb1v7NF2HrSih6Ri40Vf6q58iljeoJ//AUTrp/djBwKv75G+dxzqgRQn3Qjri4L/Zbj8uvcyno9kdmjxlY8ZXQAcDnIOyV36k8L8mbFsU6XWhVNsEbNsUyDURghh5tDgUHsfmEk9nYTghF4Wvhxw3Ke9ZUXNr+i3lCWp3rmM7IBkGZTgAxBHeB1DK9rnvD75Mmf/yPQE8CwHbEMY3kIEvASNwfI5gIZ3rgOYB7W5BT84ZYt/zyvtaqn4ur0R9em2zdyeeqiwgaARxrJV+qteX0ZfT3xusRbBJIri6iIbwm7V8abIcfzxeoU9DBOm/wGUPbpYS9G3PUhQ15ERHsJnAGoed554WqkcGZxBPxfnUqI7I9AG2Elm5KVF2pAPgXUZfdnVpXcxQPfNU2xfG95GpiGno5YqAqUxtVwKoRHYJNGxhRqEO34m9B7XvkXyceWb/k2oPLRNzJScMBoIjq9kiuQMzHRShBD2S/JzMRpd9NNpjhnkRBQMglkyhnZ05PCs+EZURVmUlLmzbTrickMcd1IgHFPCivKo+SbDViEfWN2quYPHJcZPPBvw3zcunVfk0LMfJ2CNF08AU9VaE0ZLyl6fm/ps2SyZeuC74oodH2vj6DY9vqMB2xW7kqGuK60vkiH4gp4+NPLG85804v7U0Ucv2LP+T9LbNz6wA1JHX5DLephvu6MthSy6fXemxMR1evc/Dx/LOOSsLqskerPidXEfOwJmU75QkYdBCaKODORw78Hlvsok/3oCvbHesLWr5zliekZbtjOP76PQZNYhIbHGvhA/4csqXw8aI1tuyHenCgyAa1g9R7b4k/3mKdr7ptGLBhctFFz000kPYfUSeoUSoWvUC01PBkYDTNsyNU8ub1zYOLomEas2IA88SnwCe3OzEhhL0hdZe6QHKMpVt+aMv0xAXoq0KkBcVUHUUK0UJFqbI68dVVfkqLNz2wXkT248f8RddOuhoCFEYitt5zyvvBrA8zDsBqD9V2hJBkZk5Kh8wmCSn2YQ79nIkZevS3dbrhmuLqF3NNeAwkl3w5yBG6TkCg6eEzJHKcLQu0MUF5VRJSNMwbUZl8nkAfEHeNAmTy+dXOmxMW1bli7Ak8kMojvIAnkY+DWigB2T/KbAVghYaUVyfpEBhzXS1inif/H0Qj5Qn17WRlmSzx2z3MvpymCLrwizxmCg2seDCQ5C8MDc1s6hlV5NQWd98KYDFg03hdFbJRA7/T9Z/G/+o3G+etetyNntnuY3G+OgNRBwFpgTcyVBcbfs6hxgwKS2s2n0Uvr7o9dP493KsPv3mvqBu2lSZ5VNrXCqOTS3yqUhoHo5yyX/6FcLox9BDIm6WzeDbVZNq2dj3R7JgGICgj0dRu5AHc4ek5EKnOw1v07vi648C74LJTkb9ilWJATHf4scoseB7kLlO4O/Hhsd8QOoGYKFXNEx7K2YdYQNh7LmCrrS4TqBT9p4W3b6jzivvY3/2zf41c8teb8tfn956dvAoP1fycisjFdNpJZ1qXf985Jo+gv/f81YS0EnYng2V5iKD4QZQB+zQaTiD5IytafBNTKaPz6zxmTjgg/bEpnTym8HRiPs6cnKW/V7IAtl9CSvAxdKKNrhmIfbfkHctsuy6kGs9Mq4trLoJsRo6FCpGJgFe29cBnhPBtSW0Ec9Bgia2g0JIHqOhjfmvmEsWV2hduEUeF8kmF97IiHI3KGcaxASCGgCBMYS6uUItqPzP41sl20FJugJQFxv/pnm8oRZYF3GBJ0YwTVRcy5WBFxq0T+pAR1V0mFeRM7hrxxp5G2Y+s0rSllT/U3fXr3/RZd0QCq2LrsjTIdlOGr7zhjzASEAR16/sWqyXwYvT1OIbmfdQ+VOGXmQyC62I+9Mz/pNUWYG8rn+D6r68i/v0u4y+nB7QkO6opq6pBFkip7AJiobS58eV1nhKHHRWlVOoqWO7zFl1k2sAivS2BzT3k/9f96zo+djVMaahHv6MfxMxDCQ5EkdocRfUg1P5cEdfDrVqXahYHnXLJhb6RMQCOZDincgbNuI/ACE1VARIkIy7OQerHRKZ1H0agYg1P25AUSNVOaRI6EKjv/LnBnijWvsMcjog0Aemmrq6E8ZIl3pSEkDx6WljOxY66qKRN/DSloR6tcUEqAnBJTRiA0TyPz9ftpTM/pES6E/iubLZ5aNbvIwq4QHPDccqegpMeBHv35/RZjCRKixru6dTg/1b4/nj6SpdcNDDEg3oUYOiCYpRpsZTIkVlP35f+MNbhoJs2vA6klM1qEICy77vfC0m2Am38MyuTPuVbA9L91YXGMLwi9bUWg6fD3PK3ys37ErTulSmvEqWXZu91XJlUWUUC+j+GTcMHAD9szTDuCEE7W+LeTtMbKvG6WAO/yO432LWrgsRFwcAwkgaNeQSVbibeQD0jfajTc/cH8vGAe6fAp9FFwCuLill0dgCxkD1c0H/lr5lEabWhWDlELIcpayvrEX30QIKHW0aZcdpc18nJwpUsYsOOh78p4QvNFhK/2kv+z77v3HPtuky60Kv8eg4BrPYpyHDjzLnrubsGXLevi/SWm1zpxA0O92Twpg6aMpVdg/Df0HesuhSy6dXuXQsWyjoCwthyD9YFMBykV377SovzyIyl0HFsqZ46F6Swg4eZwO+ff1J4Ph9w3BTJ7gube2cLni2TMZV1TS6EuVzJOaqPeYSjYl5KEDk0+YO8hIM/GEHRSeDCbXH037hG+bO32SZ5TNrPCKOrZK8iCrlpvClgGWnZP3j+MkH5Kv/AUNB1nOMHFsDE2DC65Ck23/isWwWTpdfZ3Wqsja84sExgIEKkvvEWdnIMu3ryKzIaWjrRVbInjYq5U4BclU9/qlid63SyXfPh5Qe3wC2O6pRHEiIiKdIK4fB/o7i0FcNz7ihig31zY4z/ka8fYzZx6QdXy+PGJXg0QcUEJeRIP7JWv3qDLdIcutCqvNIeJacxtXeYJuYlRKeAY5vVx4QLtKolmauHnEK70nTGGHnzoN97/6F9YglEFkXQYkjQHG8QS5WIl3CFkB06MYlF1EGGGlmzI9RKYZJRN2zAg4HxQbkqFLyfGqvJbIjNg1y3fZWQpKzNz1/VEP4Dlsp9USTEbRX0RCeagzl3w8oCo5y4G9+/49LqXcZ+F5DHo8RjnonEEuSnToQsX9TwLYC5nUJsL2A3ARYbngMAiCtDeK2jdMrbmJaTZCgSSonDZA4qxWlBqEMVJ4B76wKSE9aF2Fvq0glt7+0N6gbH9oZDYIUXSbIYz97lG4hpiik36d2qvR/Mzx/XE7ljYNpd6PwtCDoSI9ISDmeeBH+TQJrM0XWhVniMVFsPvmNfy5ZpC47VCQkySz7c5iWTC1rp3I6Mcv36SiKacbbm8QVzwz215xd8ENqU04tPZWa9gsDn0SeFjJsAFw9aZBlol0+vOTDURWdYxspwYB1oqqV0Goq066Ll8lp80LAhUF7g6izyor6gC8zmtawPI8gh+V5hhi7eO+OvpwXbvnvp/M6O/jSBY4yyyNmOUWnLTmA58u/l33sufl91SvVYgovn1nsMpFtbyDXSojlLvxbEpHxQpd9mdEDYD0ersjG9qyyfbWiZ2tDLPE0XZS52AA8IVlWeIZS2e0w7o6+nGami5RedEuDYD6ikgTnSDwJk+r743Jrb1zcichXjz+su3OZMGhgH5lc7WWU0VwJAkf5GOVOCb0+PPeQDAGfZ9geGDwet2l/8OWA5esCrntgvM2vuPExpjyXsgN8yQ/T6S+AIJvzEhw9biRwyW8KXElg1Z6uS1+olZKSaPLQekyGdI8Jb4XrJM5bFeCNsA95E+z1wVUfjJ20rclq6wBrbrU0rUC4WMsmdDdG03onkga8DAqCoovps72ETJBpKDXAMCM8V2Y9+99l9GVzq9al/YXXLsM2BnB9BCbYimObGgBT1XUOZkavqN/i8u96WuLmiS58/DryXeZHq2DkU4UnHXMvrEAUv0/K745q9CtPGxUxvM/wjjv1a3n5qr5vsv30diTZf8sbf1w9oSs/9AwdPXAANeuIzQuqR8BaH3k/XFR5wMnBrN3gkDqeepc99rKZYutCLLNpaLaS8KY8rEi19Y3Dm6I7QgVeGMFkRHmPZO62Z01yOuAWotaY8id08fuT34bJ1wVWd2B4m1jk85Ai1YzU9sK4lkUIvYxEu+PwRWYv7VgRoT1U0H6DsnD7B29BMgPl5E2aAOL5oqD3Dn29URS7yU7sOGtQ3pVdMJO3AOZSp3MUi+ApK+Zsa5t9NfFNfYytPys02DdnFYEdqmaE9OR/TmrzdNqM2vNGElv7uAFyuCTtHST7zLZWlfToVD380ZcjFFoXYZEnRLKtJHzrCezmQIT1+nIaz7yvU2SzZEFEvg86dKu1BZ479K/8uMsZMj7e/t8ydyymzLowazwmjk2qd0n4HVW/UlD16kB9ytjV9MlDdyh41+XtmXXPG/GG6YaUJHd4mu3DN4XnusRkhZXtXMc4aM9lVLFrCTbBtENll+jF1u1UiLJZe50y3s6ubYKrlpbS013itIXh5H+IjAqrLnoJkL5lI5AAqId8Poaxd4CbG+MoIJgfW58GNrJrJFY3akWK8N76vNHXboiTmX7LwxiAc/o+9RL+4SDa3sKhVVgYvwuq+xi8IwfyaqnYVweE1liRcw7NwL+na2tzoIBiCBaU7INRqx7wkkURQ+EcSUp32wQvK3NQ5RsKbXMi7Nsr08rmNIkKoWVdLfMD5fuCtGKxRJZPKvE4KDah7EZAG6jAqeon7PI1PpY8Z8e2skdWbc0MIkBA1s8vKVth/GSs/jrnscCF5YIRPnhhI+o+Ap//j07W2/ppsOWuXqe0TfvXRoaaaUL1jdbUWe96COUJcxWkyWSlJbpgEaHMx6HlMvpy7JAXPx8oq//Hduapq/rUULb8uEqSm/IEeS2koAlbzhzbypm9hRF64jpVDiR14O3YEmVxNc4rf/6hVfuCrGjxA9eFT2jTDx33AN9tILJPWVBf8gIdVNnXkZeDWhWERWjPWc60aFeo/D4ifY93X7ZCJEaBxuc0YoqR0JwK1fzRl52RLd8IzvONs7W0F+ktjjVgIJlB0RGwUf2MEA2XB8p6JmXy0PllAEmEx8OXf7uFWDNpL5WArq4747mMvhxl3HKVdLbuzlOS35TnXdZcyLyK/LSmH8PSFKgfvwzcX2LekxYJKQgNRYAVPTze/F87FFjc0OVTST3mqW0h4FsOwN2ste3vhkqS+rtFhAZzsGNdlXdyzjMrWjPzwwp/nyfKJS9ZJxO1MT2BIKOk48pyGX05XY4X+auyBiIbfYMlF/Re27zWH5dJ6jNPSWYi3VW2lQIvi32ZpLshWLAVVME9qxyQ0LFhVolZ5kd/gW+IPRaXZvncG4+r4xBJfeIpymSRDqtIGlIfIe/ryBE4t8UVksMdawQQHhkiRDpfPfe9Jo+Rj3jU0rSmCxrkXgCX0ZcjoVxu3zu3TZ4tIvRFhyj1VDA2qHXU/EavI/OhHgRtZB159+PBzZANAn6Xie4+2qrga2abySRbF+aZx1SzdISu6FCiPJRL645gJeU9F8HRyMwBANG2MMKXQV+mohUJ+SY9PjLdgbiCOzz6vHFj7+Ww1P3Bl30qLd8+wnObsNXTvtoaCqDKGmqBQ2TpGlBC94cep5xWloB6geHbILSEJBymGLB6/0zzf01rM2lk60I782hqtoTmJrmBphFV1A67m6kid3weMhVQYC9KjlcOC64Bi2y6FCUKiB8g3+8VOgassC4ghAdamOyjG1lJwrk51LUjIEI60lXZe9i2njtoniHuaeWAmmUnX5JAPuU56HVO2k6DNJQvt+xC4Z3uu6MvJ8NYl4zEy2BsEoJPWkBhcFLrN9hvSSExuUxOKG7zSOij7lATdhljbowzSX7w0UEdDGrkMWhmyHwWm/xZ/u4gED7wW+C9Tt9JCXS3M0PBSwLnfPl8IpnZTRFMRNzHoH3MWnbKyMZljJO0RwWuIuupQ+dZQHs5jDKZCps98fYIk8V/dPDbd3v5D8d7ljYC7SPWXi3Fqr3ovGhiO5UyK8/raUYrkXEqSl5rUQlcJb/pPZfRl8MgXy7hHCYdlY3Yme/J3qmJGqL/shMydIop244O2QLCPhVudTl4lQlXYA4cRtt4eMwf9oK/7xArX0cFOY3FIvnPqi3BayE0RU64nJ3yQxWYNiFOH1K8QZAggxH/wUY9426f2GFak6dWf8ktGnteieNDUso8ap7tuZ2hY7P2gaTSl3RM8FO35MId1fId9m0EGxDZyiz9NMmUDbdgP4dtfpSN63Az/iZ3/nhsyhv50nax8zhRBI5RFEIc1OT9rx+vdAgMWNDKuOmJXSAjeodyzujL4QitC6fI4yCZPPob7V5+D1JaTCs7ofYcYGgnd30f/yDEb8pSRbwEW2yGBYn8sH9DV7UYouvCKHUIqKaIxNecIOCdo+is6K2V3lqURG9f1mpCVpsTzooOn/r32OqfbWK/cZc3scJ1wRY9LNImVng0DBx0kJxvDYi8DcehAeqesE+YWnbbJdg4oNeJUuJkZ+hPv7WvRLcWSXb5nFqHgWuLYn0RbQGBFBQC0tck0C9vcW2gaoKxgLxcatqIaRPtcpQeJyfjk7QwItYPYX44WIOel8ofmYY7qjugRBAUkaHruWzWarQJxKDAWZx6DEna25ud9rdI8cfVBbpIl4OLGSiaTgpdZtbeVZJbaXO9b0kLFk9gXXgFDg/BkdD4khtEhTNlzZNlYwzbUQy1uph4HMOmb/ac9rwSxJBB1VE/yOPJ2Pmifm0Q5NaFT+fQ7yw1vK+dBxuqaHlQG5juS8hKS/r29NHUopozFvYUo6dJm0+lZQKaSThi5LYDdfg87K4K3qAuedmRgXwz+g58FLrkZTuoZBhryaAeysxfxGafSOwTjz3TeocEj0bdiRsqA0DUCJ6v/G87w1raoXXp3+b1e7OVU77SCj3HsCS4byCZ3cosym+x6URyHzYfCfPG1kkGQvkS7It/xVWxyCHL55J41BNTN+nLLCdOAgQXjKHkBUvnMrJAwCFHzIW6ST2+/bJBARegiF3+5VNkC0OIgG1NMsTBXoCyeYEutWmq7ujLaWCFFQBSUsfOGtH2N8FPCk/CpLX6RFKXdwqeR6b+Grb9suuFcxm5L2xjA2puqBv5lmmDPAIsPKB2Tb7DR/USRXSW1IoGtTDFeWex3uDLhoiXDyh7+LNNpbpRr7pEc0WnBWFbC1Wo/sgK2QFyRMv4M2+RaTUTwt1sHwH/7y3l8ZLBbpfLCsikPnx5J2UrQ8GWyxkRfr3m2DahwKV3OGwQkz3yw68j71AgvQFQwhzzQ6TxRbxrlczWpcRml+Q8SP0GwUsOFZqCI4imt/kazFDkPVdxSGCat+fNla7I6m2UFAT4Puu3uVHL51K53CtbRuLLTqD8Leg6ShgA9LG6r5Pl9aHAnWWPqXBPRzkmsmEfqS9ym54HYAGwysMuJ3XRzvUtVLiMagAQZFOpKi8Lc/Q5dlelgZcGJzHS8jnnKUz9LWv7cXVkN92Z3bnEoQJTqKcNLRJYFCl9qNMzGaTUII2oMtSa3pU8f1T7SnX0/+skRMlDCQrdo8078CYQqCaKQ7PcXlOHV+XzsDwNrFNWYTurCewF15E9rD67pH5F1zNocssn1dkMPEtA7YmtUUMYQ6l9UIDsFSF7LcqcE9fAGR1OH4cJlCzi26Fq9tlRKKr6WnKIziC3FjZ9Oru/N4qKX4KiIpD/CKE5Glyz4ofyfQ1J92e5QNIVaFYI/YqcX8FrSIVQiCY8JCGu4lq10gGq67ufsSL07zPSdk2dsFu28tEemqcQKlqzbA0q0rz3DXAGXw5UvC7QsgdF24Qyl39WZaNo7KjFCnbRzAKXQcaBFKKzjVvZDSnRorqxkQ0QiTY+HAa/qeBbp826nE7eaWbiKz4cAwPuoEpH0ID7VI1KYPVXwVu8LayI6LQJ6Z7+fUdE8WRs/b6foMWKXhcWtce6thXUruIaGSQkLYnzjjhP+0F4TXYlYwf4N+qscIPI+mmUhf/kqsrdbURncyPgwHCz9VPq8UeBXg0Q9NjpVo4xPAT+enw+ZJtCw6ss7yOs1bmTmWiXiy/d4KgOSuNgniyByG4mVPCwJlzPIylL8pPLnha0UGSW4IlJ3vakLHVZJUxuB3ZtFvjBxdj6JHfw5dAq1sX72bGKtvVDvt4IlAxAfPx76Gff1+mwc8+8PkiCqnGHyw2Ys5lfB7WJ/D+WNL+Fe8y3bV3eTu9tNvE1P1XwUgsjE9FZ0aFi6J/LjShPZw5ZpoNs1Mi/p0Awn0q/P6ghj7yalKKAGYYSbd8hTwF1UdWZZJme1OQvNdePq5/y9VaeeZtTRyXYiaOVOq8Ey5d/hXRY/NB14ZN6/FPTO8O32iiALGPVop+sLWW/8TLy8kTV4YYuEUfa03YtrbIq2Tc08C58tElSiqQnnVbi5L+cmM8ffTmNq8HbK3AuCto1EwI/FRaaNL8fl1jn8vAY4hXS9tBZcORyWIHy80vXy4RQVf+KaYMcd1A/Bx7+Knn4nrVlEaXWhVjl8LBsEd1NdCfJcc9abYNZsX6MmiEkfgwssfoVGJRZq1ylqnejvPrpM/T9bdXHBJbWBYiyYSubV+PzcFA/14QP8aD8+Dr2dVKGylN3XBRslOfDXjXos86yD4xlPsWZv24rYPGk1oVW5dGwbP3UTW/VJdMAoQWrJZY2j+OynH2ZVMGmLMi455U3Fr+fxdNc0+Ppf+VN8DdFeF0IxQ4B2fEOcK0G5EzQTh+kIM8S3g4EOHLyjio1u8OkA7TjrJggjA0fB1/B/aXvEBgNjPESBZcq0vBHX7bzLTQaCZVilKrVbGooqmZrOn5cHYWvu0BT4Z4pAhn0IT1yDMn/AKCjGxO2GO0zAlYM7iBEcPJl+0fB79cpL2LLOOaM2stS7nZqKk2Fe26lzwxgAJhlqw+jJWX1taM3rSnI9qA4cN7dgQsxsLxlSAGY2g6Y4e15K7pu6d9nIGafgMfvOR4WqWJdSBgOacPmU9/o1w3J2DauDLEqg2RS1zn3uYKQ7Ng8onsbfz8oFHLdZw/5L2hbJq9qXXhYWKCHthUgvFDaluyVAXYUepkup83Yn8tLp3FVR3dNXTCyC0iQ1fv+HNSIZxYv671yuwowg+QbK4n6fBev3FF1WpLnXQGeU1oQWtuSy1HhC8EqVYdR+H8XTN1UhF70o5AYyg1CqwXkvgfGl+Qftxz8D/m4HxQAdb6CP+4oKj9DWPCYVFRTBuEJ2ergWaNP0h99OSqX5YtiPA2NKYL2NdPgriER0qtLVrqrA9AyppS2tgZlgNM0ssAYRL9lAx30403+vfLCRIuWjy55aJRDp/HpN2BrBDZg4bx1bg+XCCS3oTzUiZO0fR1ikE3DG9ywT7Hprw3CK+rNvaKCgd4PqPKzbF0BRSKIZR0aRloawpvlTr+86JcjCylwWc+KiFMj7eug43RSmEpi5KBWJST19YidtbF5Sc3P00xuDbV0AJna8Y88Mbw7qDmsBNzcgivKBAkRneawsjMlzFeRnNepVlomvdHnE974h7aHm82MgLPVZB+yLcMY7fHzv2LgWvy4deHTOfw7m1LrM3Cxn1XWfDAtOqqkfRks864ptewkypLktLK6qsaJcttjejBXWqBoErt10BolUpC4aziX0ZejiV2X7m1OtzdHG+RriQDLSFQ1+fdsID72dWQ7BkypzA/ZnvqeFwgU/C0SK57taTIoG+huAMtkRwOYsI8Af/DlVNnWxQXINg1yVKGuiBQO7JmKPFB0ZNsJR1yaZZcYnZePfbcZxqwD9cXCbwNLwicF/bd8NZMfti58Mo9/ZotjXC1NQRm17wJBkndu9n0ZUBKjBr4RXk7c/BsyV3ozoK4Hl+YP6Ob3u3+gO0YCRE9LxVa0MyLO5zaBTHA3RypydABmgdHmFvhcBAcTtSBUnTVJboBptRNJ/WyQ8PvT36warEuVwatK2NSCGxVBchG0VaWUExcq+3PJmIfWDhrw6zNtw8GxjewlgOyfRYxfMxdMpsC6MAs8JoLNJvfZ501vcNnCRjCK93XklRpDqxjYczYDAjFFpSUjXkhZeJ8mc19w1yy22PLZZR4bzVFH+mpKbCUF7GHOO4Lq1SoqGU3fde7GKviVbwMRUys7lR3zozXuN5p7Q++4LvJIW07pqeJ9FT2c9+X/8/JdzocR92VklxyEcKhdqtvoAA0YC7yhiKEB7H+msr8n7Fo82eWRaj0Grm0H4dtHTMT+gRLWyu5LJe/rgAsdtbgF2/n57r0VYlDevHzWnw5LALyaamtBf+fTnf3wVi+jL/tsXhc/CMc+wpbGukraRj1b07bziAh323nyMvKI/DJdYs/96BFkBTjEJZJ8JTt/is9+67dgyQLWRUbgyQ5MSwTPPwEmHdT3YNIKX/bj5oAor2j6LFFIVVAcpFHZYaeWNYN2332Y7JS+/XNmmKrDanC83S477qhyFoM8bR61Bf4RG7ds4Bc3sonwOEIvhzxon8w2m+jGPjJFYF5WhX6skmEDL8d1Wvp0Fv7CWdrkiawLr8ShoZik0hsHFYqZrMchSoL5XCaCEa0Hv+QVbfcdQ0q+K6q4RaH0J3ILbIXm4bg+fyFcpA5064/qAuhyQjH/RAWGPDNlrTaItBqpBRIn9HI61/7N8P/xKPW+DX2wbes9PmAgyUsJE0RM/we9+aW5nhVnLTcs88I4j1RzI+F0vF1tA/Fpb308JGPtdccaKP7ueWWzyKd4UsLz18uXDqTlyKpQYkqI/VhM+YMvu9ML2OodFA4ytkC3RHamegWL3f7j0slv9HN4dtBvlWzYpOgFqSMsrYIugJLne14+jERegOQs7cNWNja6iEk6VrN2/QUwtH++OwjSTgMkr5xU3Cl0qiNpB6WgwKWJ5yG7r35ti+Pjk2pcEk4BcSqyeM/QJinSiesk1HuTLnF0adDr0+Mc0QNeFclR/9da9Heotb3Y1mVxeovZZpVcSCh2SmmloDptBuNg/qdJR/9oJ5NyUuEhzmqSckGyeqs1/NGX07MXpIUk53pGJQxYdQLBStkJFsnBpxXcaAjQd1d6GWGLV6yvQRoeUWfB/iNH/OY+wNeI9o0ImFL5UGrJSuxFk/lxFniu75zfH0VPgQlSUd5HqgTeWvCsgT+NvpAQENFu68cpEPsF2VsBF5yE3k4tQI84fA6UONOOssnbrrLFSrFB7jotm5x+kvV/j9tbQPm6AOsOEO+Q6X3yvWwGEnF3tQAoiD7Lvg6MEHeimWPb/o0NbKl48sb80VPgm4TX5Iksn1bisVBsCeVNctkklYj6MwN6vKgVNW77BASO9QI7j7flNBTi3Eck76gp/k/G/+vQz4RY1gWS8SAcm1riU1Fg0FN5MMi8Oe2CLztKokK+HZ1lyaqZk8wbIw3c1NG5fhwAX7VF/ZtQv/xeZ05rNEdOeJMf9ky2N+SNcrBNLRBLjDDQUV7b12V0dTkd2cqQw1nnzfIc00dX2FgI6oRR2DBMAsl3ydcfVMQngNmiXVv7hA/5jnzRqpjfoo96TjNLzP3j6qcvcmsTSDZg51MflaipUcotszxlOl8RFi2G4LowCj0Gom2ecDNbAA+qb1bQSEkba+M6MB3W8kvBTX/PK5to0pJHh+zs2URQThsakEhykjS0z/Ggff6gZj1y6lIwnLau/Dx7GMRi70vIAVJsB3b7W9b048qI/A4EwWxY4BBikW3vlosJD+azHe6vkx6TJrJcVolLQjGVFL7wImPzrju1lfBWtwOm0cj5066jxpzPtPKHseh5U9q2vfoXtCWLJrQutCKPhmTriG+644ZaoZ5wWELzOPPLywUGG2IGHMTxzCspe6QQNHPDfcrUv2ilZ4kjlielcIUXtm+G77OB+vfMxIuxFLqysnEdSQa0SaFkm+jJcgQfAx1dBj8fpcRn3P8NYdEiCS6fUugQEE0DBd9vAZ205Iwsu5y4G8fjMmmiJa3eLZCr45lV3qt9dyukk493/yvKlsWpWhcOFkjWeLzKYYfDkwL0ONbI1sfnUcKiWPfnwPyjbv0lS5yoBACUewNhayz4Krf9aRr7DWfLYEotn1flsLBMXaCrImy07McxjuOzJrXJjpXFH7knkx3hd8qLPvCTTjkTGW/pHxbh8kOIy+Fpd/42oEf7WV5GX46dLSgLSCVkhcuxqSfR1oRbbFWPH+qSSTN4Vwm0B9TCW1HEBhcZgYEQWwtgJ617TpyLABFgZCOvWPws3f6SdG9i5OuCqTsQvEmLvrGo4cwVFIKXzG2k87n8XnaW69puOanppiy9Gej8AId2+fjpMCf3CJ7lATYvKqoAvabuQ/wy+nLoJOtiZetZ39qiqJuISiZFUqiarrEV2CiYy4qbhdfH+6aEMIg7ZZcBwodQizbGH1HMrw1TTYx4XTBlD4O26bE3Ou1EEKeZbW9JbTj4R5nZPyteoWvwyC8HsoAmwiPG8D+qk9+yj020YF3QBQeNMDmFNwbiyD3teodExfvvwQcaKKHyB3eA13vS2qJ+SaA4szxFd6nLnsq2Xz1URqzyF/OP6swdVc9MyaXoHxHBF0X2uMErSdQmRHTY1eXJbtmZJVP7cXVhNx2Z6d/lpYhQ6ckrhoISQyw6yPybs9wiya0Lqc4j4dl8ap9/DcchNt5jTNT20uB1QElQQBvUz/gm/6F2pGmcfONaP0rYv4/lLZrE8kkVHgfDlkb5UiqcJYkNBlGrSpIYHyftCPKr1rDlj+vQedFqpobW/kTyH0VceYm2jcTgKkf6UN+eye6oCk8lWwUpO9LDfsJcX02DZQfoSrhCzKZvgFdjt4lVNyKWDQ8baLJOW+XqU3sKIbH4H93tb9E7q2C2LgU2ryBn06pcFtZAD+m2Vbehv9tuIlaMatIu+39K2j6eDtZy04Ma+vS4jZrf6L0kvCzSI57c+DwOnY3eu6Mo4cNAC/7A9EaVq1fG8iTkopl2JLyeZtCarFny92vsbkk+oqyIXuVsEVXa1IihAl6pzNih+0zyoLSLMPrwNUT+KArL/p8/aHu9JO7xRYVOgSWvN2vNH9UTgFXYQbNXCVChmdMTIMumhxkrdoU+z3L+m+P945KqXQ62Y2bnQuPoxlkCPabBodutib63XLBEEusiqvBEGJYpgm+hMOD/kVUPIqHGbKdbHljVdO/Enqz3BHNm+hfxY0kVnmZbX9C1LIbU8hlVHgPLUUT7CmpwPiI2UNJ5ctd0gdeRuAYNV5Guz6z1Qc7b4BqmpQacxJ92M781GwN0LEs81o2uld0SuAR6Hgf9fKKVuErpLKmeL43zpXQQMM5CgnPCST7KkfahXEFQK0msLEtHLf6QItSx/16C6T6fBVz0ZWMzGHl/eciVTvLoJq64oy+nae8iqhuhOh5sBAZlpPaLMNFeF1910VhA0KhjEQOWWDIo2olsVDa5Sci45VnPnCNJaC13dyZEzeMpuJfgQFn4A5EKLbXAmN4n32X05QhD16WBl9fwyxYT3MQH8g43OBegJJ3ZT1M/l2gyIeIEvlOHPudEITvQsf+A78hRHPK/IO1ZPLl14dXZLDxbFeyJiBO483lOfceDnOibEThBSSYhEJK3qekQ50wsluFzCPU+vOXLDBrMBuxjeq6l96HvDSpVHwfopsIBztd2mAEqiTkYk6EUUw/H3onJbEadz8DzdFDemYrqZ6FVJUx/A07Pj5jvVzoNM8Ral5DMjOAcPpVPv4rwe21RC/qokGjdDOhoZQ8yWi+OoD42+Dbo0LPTBjkjP0RaqUfQN1U0x7a3GR0B5kl53VG115MDGJKliXwkJi11Kv0SUiQUL2fZmjsHVTQlpK7eNCGrQBI8IX9MMR0ZqryPCE1lk+25HZlHRwxQ+beT3//rR27SItaFRuHRLmzlgK80QIG/kweDnFAO7pj2dWB+WfZikOh32/SjTwECBX4OU6OnMDHBzhE/LGP30VLmCG9DPX8UPDU+JuxT8rz/D7H8JE8JPvqSeCH3Q6Wv4nngMZi8Np9I5hPP0EMOKCm5mzjrFK0Eyy0SEcF15ExSTi/4nb3A4IgYKXRQn2/8r8UpJkS4LpCiB0HaLFqfddtYYlZmy0CvjrovU/RQx8IYPZxJA58N/1r+s34I0yQMYCAvn2aKMCR/qKfSexl9OdvMumxL3jZmM+luzDurhmBVHHRWSaIKy5yI3lP6n5ZovycqWcyg5TOJPOaRrZ7zxXYJCdDououj99z7MrLoZtbHAZ7FnhQB+wFru/z+pzDlG2W+JYVZvnLGE9rY0nlfao8lEmC9z+vHVo/wP3OP5pfJo8WxZ5WACdkdP2eq9QfmGNDc4ffJXsTtPcIR44hS/dGXA0Osi/eb5xVn60ZdnelkqYnwl/y9LGltuInrdIRckdeXjbEqq0nmTbtDJZJESRw+/HW+KfJagOryAVgI0yQAKgq0joTfhM8LfaWBhpF7I69V/iDS/T4XNQkM60J48AgStrjN08JpvWnGPa1sz+osKpeRo6cSiYjqC3f84CUE1hc6gYGgJ/2/OKAM6GP5SImLrNhEvxsxUBZ0KwpeEiw5nhLytEqsO9nfELw2nmkk/JPIMsKzb+tXfDKLv7UufC+PH2ar+29uAJMSHFI2oGtJ+2O5OWlXXWSz3tUYxIOyTvXP5QZ9uIdIuAweBhw+YViqhXa01txKAnf0tTnw4G2R0y+ZHoIVTcrQhhNLjhWYpJxhW3Xz48lcbqoY21Xbo6s11ouBdmcUCVGP+3MDcDjwEWPXTHoM1XNG+YMvR7K3LhI/RxFoizt9MSgCADxyyhBhUHg0onKao0hMzQb0b0eHKAtJ7UUhVCcH/8+vJ/RPlWwgXxDljIPD+oMv5whZF2sDxwnB1jf6ekisORCVefmBokDe10EPprCNGarmJ5h1yN/z8kgcCJD+2f0kLNztLELTDAxq9xOf+qNAIZBzSipQWW2XB6JMDNJ8YmtgjAMwG/KVtLmihVr4OIGPK+BA69SQSayW0Shk7uuMQEddXAf9WRSHLZTtFsSLKGHIL3qicAmRMUkWs0xm4JI1vJ0zLqMvpzPLosAqbAInnUtz3Z1ZDOHVjyt0ugmjZqzcFiC8Qgecvj8PElWhVsO24ef1l2nlpInIXED/QbX734inLRLbupDePJKcqW/25dDY5WZlpFvYGK8embRsuWFo5a0N1ox12t6JiuFzOdDUZO9fdDqzOIzrwnn0OJK2ztfXBZPpArkdMRqUjNK5TuhNASBZt7MfCuYAbW4DQ7J/fqRoX2hpTOrLulBlHGqNQ/q9kYQlBUKsy3kld2ynL7oEKYQokRqPumW64DVXtJZTQF928U//rF+T0Sz617rQxTx6maX1uSmDgCjsSXvfipyGbUGFd0BrzoQV9sMaildQ0h7BP9QubMct+yZIK4hyUj1Nuy+jL9ubd5GaiCMS1rzQU8Sg1WiTseizBG+sQqBZWZmMcivnNmXCAoJbE5mPkpIO/VzmbeiwBtEdthPyiv4NA8XifKwLR8TjlNg6p5suCpE9nz7M0kPU4L+C5Sa79NDspw7ddDEv2i1nRehKqZowv1F4JtYIszt5VvCuPSvfG3s5fWihIpS4LgGU016WstnqEWSidj5S5uFqCRUWEkrYHHOWfK6CYAKoJXKsWjYvBcUZlG+0JTZemfbUkMq9ZtEV8w+1BkL8eHQk7qiiMQ2+04UCEITI9aAxRVJFpL4Jvx8tMHYE/rfw5MeTerjCEM9Y3WO44ZyoKkaRXeUj7fumw6XFjl5+RxazfYsj7/LlYPBUzyjjB3gTjS3CRZ+0AO0xm+wlnBUKVCAYzDgvMWuHPvEflWUsrtu6cOM8Lp3Ni/d59Ljnko6oMQnaRO3rN5B40tTkVuL0uq9fqVKJalgiIXV4dvtDQy9l1sueyJccwWg6a98f3T3LJ3qG88mNSk2fsm8kfAl4xwNkDOgSs1fn34K7H0/l5mribKzLQsY2Uw0N1AaWYkCb+Meel0nJ43Y+1BIMMc2bd+eOqni+oPnqJAcqgDOatng+ofqZyZirCP5OOxa7am5T41zU1gN5LVD4h19H3kNCOLKTSkj0Sb7/LQpr1ZfWpR7l1a9sYpxPpNPyRZq7Il/zONfBm0hpMlzaZnwLcwFgb9oluqP8b6O331LPDQho+XiRBy/ZzGiXSE2HvNE1CkywcDyXkY+BCTJAQNCosTQC5TbbBiTRQ/VZ7vym3muRfdaFHOSRiWyB200QJ2/43CEMNod5/MAngOzKkAdeDNtXHArkTr4n0OL+obv5qtxp0b3WhR7m0clseasvh0VU0fvODzsKHvlcR/JRlllxr7OC95w3IXXQPFMexz9SEBpkv+VTAx0moaPw8xWBkX4aUy3nxukMxusENEwgUjUHkQWdF8ddb/x7uVkxfipPfsdHsPD/deELePwCUxXii0hQKYvI2jitbI5pXyUHbjT4Yugg0I8/4xgzMmGGfVN4olFtEFkJ1LkxwkFl+lR6L6Mvhxi2Li62nuutLQvyZUQFnG5UculDJFGonogw2ZaYEfIllI8kBN0uvIlKa7SSwfeRROKJSEaQPtm+Wd9RLWi2w7/yR5VyP5QlS8AKmMPp9QQWMY5+MKTldNqAuUVS9mnBNxqx7cjlYQkoArXZNk0Zkpjn8q9T0xqJx3Ybz8ouFbvg646i4Au2waSgRe6AJDO72w++bgM9nXcAHkda77Xqw3499la/lb0y0lobfK+cNbsj+pnhasUWOlVPC0blg+gg5BdyWo1/xEcwCADrQhfw6AW2MtBXEmIf6YO+opD4NdWQMDzMgz3Rke/LU1LQsOHkjDlqUIQQ9sm6/6rhi0F4XD4/0qNT2gpnXxEN4ItLinxK2fTaUUp3PKTK0wJ2RW8Wp3yDnOeujebw/P3fkPD+5r4tnyfnsOpMRfBFPwzcCdpkubGypDe9D4WChLAKwHGq7d04AiZtchcmUugWn/bg34R9Zpi9LmG5F8bb9EifTon4ARwVrnA5jPS24DoVJIbInKrLBtNP+hBT2i+EPPz44ZhUi9bvCzQPmtb1wzj3B1/MpeQQ4ckMRiusUeKWWpWR8V3BSGLJ4qR2dk5mM2N9Jq0jZvGOlQLKax2KuqEtxRPkgisrXmyIXMPJbvMh3PujL7v5/OLHMD5FnTMBVwxKODdJiz5L8EIq7B3oK5HvsjXLGdqOWlEWhEUf6nJjT4rqeVBGpLxA6tv4vUG6vdaWuza9teyx5Pz6gFdPsOoP+q7ITEx5m9yBVMJHi7+BkAg/Fk2IGOHI6jsW6ZdRrXTK+44cXjaYKRl/z7vQGWB4XmkKCYWLmuWZ4twfVwx7E89abkxeKanCwibQo4qM0A+fVIm2y2BkW1Bc0ZquRK5bcOGPvmw3hOU34vL6dtlyCF8+Mf5PbWXw5xLjlHLUHBk3SFUeEnNtxmZnzzl0nMG3kUAsPA2jvkr5LU7V8jlYHmXLFsL6wlkkzpXWop3uWikc0/SMx58148fjP6bsU75m14y/zF0E/TLlM9HEdUEfPbTSpgj7hGIJsmIf+5hsyihlt2z0FYz7Xsn+eGZFwDP03rbUwzPZl1ujIFbrrelzlnUzTrHTH305rccXP4eFL9o9DJqDxm0JaYFCPgxzg23QDojdFCZxV9WcNFSGC6pyqK3VSGxD562ZBBXcPMmJ5pOBDmM6xnLycVAuB1DQU/DxR18263X5HFmPUmuKIV3ppKIEUS9ewH8q+yryXo39ZeTLFm0eCxp3pOCR7CnZKp6GWV+1BjLodMsl33lcPccE4GYaAOZC1XxCwkhNYHgdFF0SP4+T93/PC7Bzi7/kIbZ/lfD9L6C+XOzdg+oddchNTSLhPOMB1HUCO0f9UPWC0+agu1N1rJgW/aSLhhuojvyPVdzv9j2rsrwulWi7cO3QTm801YmgWJ1jsQ7H+Rx2AFunAO63ItuD2H4cWwsLqti/wvgsTG1dMDgPs7Op10rhLuEwnmRPi38uo/YdhQSm+cHU/rWUBAbVcPCkxV1E5ALGhTxRSH1moAMAJCCcHbfWUhn7ql5fBYxcPOxTPP7BBcBUl3Q9MRhOQP158oHNOWJnUBHgIjyfro9f8NQsYti6EMkc4pmj6r6pwKf8uLaN9UpQthOvk4iDs0TRt208580Igvh5hpbg8fzlOplOEGDKE5uXxwpiraop/NGXU11dF1MnzwTKVjvc1BETJbrGv5f9Yjf2ls/h0Dp13glni7LnhegZ3WUyKAcx9E/s6vd0HYsesy50God+4+h9fHWQbGgnTZxtd/9DwaCrv/hOB/M2qoElVZpF/x4GQ88d7beqaYMVuC4kQo90aAubXR00KsR1KJiD1kDlNEZJOOs1FpItqbxboMjWUoOCNrL1pydolyUji1jUHREQHnJGU5699i+jL8eOfV26yDtN520mmcs8w9FcUb8h4w1Ev3SuIydthEtHYBDbw5lWDkv+ecXhp0DPSeDx7pKQIStSFaP099gJvD+qnrdgy8u3nfLzJZUnR5VC8IpOJ/h4gh965VOYEl9bDoxWmFk+jP/NQHZTOb1f4OKV03/QZJWdGlKzgDZiGX8tD+3DJgyRvAbnEpXR0HkS0FFyvjv4csQAy9MOeFIDR9/mquESnPYRHuDicEQ/Ijm4KM+4+ynVbbNFl+2oggA+/VI/dCkl0QYwo4WTGkDF+DbJ8EcVq5I9mFU4FNhk34tzY1VJTjyc9xnV2LitfUwdy48rHPGFJp6Pskd/Q/ynFmyZKtX4xKokh4C0GeWimmjjXgatEXex3h19OS7koOaDppVJ0AOwBncIpeZbVH6fO+9z7VHNnYRr0Okdyo6+rwM2Le4Y62VxU/ZR86zgRVApIG/FeIJ1MpC0c62E/NrCZ4Q3VcUfBViH81medCecCItuJemBkB4T0UcU04bCqSa054JpLvSGxwxJPpvgSmYS67lKGaTg4TIFp/3cs4Ysf1YVCm2pxg/M4re0bBMdXz6Y7mHvNmvcZZmjmzu2YC1+hTZGPOxzWd7aKgFa5Lk7S4AUFdmWjeG0HBHhI9r5fbxvMmPWhUnjMW9s6eRNaokmL0U/Ry1I4xr6aGE9MN6B84zeSQLUWTEbEAxCeJonSLBRd9/anFmYRjZ+LOIuoy8nIl2+vtfVA9vyKVdtlZFQqdasIHCubxUW8D2wQyFPlh+qyJ9Mm2BgoLJlSZzUse3cAFj38BfKKRp5wvVy6Pn+4Mv+euuiHfO0ZrZ0zpfaAXto4y1x63F3jcSu2FLZkjicQWnP2ytwHH4uT698mgf8Pt434fF1gdM9+N0WUNhii0HtTtpVa9nlxr6EZDRNs1rIifWPCdLRq4+hvuwKz5J1Rg9ZbG8VJVr8uEiiyOaouqMvp+U6yrawQaw8/Dubm47dsccq8/plVb8MO1nmZcMAUITTUFUqk5qIXplsjlthM8TPm/LAkvrPIu97klQzNKH4afIc4zbCTO+2vv6otnfriAm1l5HsL9irl/r/gJ8+tF1h12qHB6p5LFof4fUQYQtB1nnljsDnENeR1RTnvyIqWsTAdSESesRDWzntCq0HbiR8B3i0y8a0bfgQaZVTCMnlzYOUvQAGh1oIafJs0j96/c2a4brUGL2apE0lvlGP5R/3jQpDBfufCvZB3qbCdVKLV04ltILmqHtASGzP+w/iHxMqWhdoyQaibCKxTzzuwMSPn0yDg33f16mld90VwUdTTBA1KRrasvTY57O34e8pqiYpdF1IpB7p1NZMuhJLUN1lPXfFclpLdV+l06uJ36ZKTLCbZdBvGjI/Akjy18/N/6smFxYtal1oVB7tyhbN+iJbeHHluEm9yGp7PdeR9UdnB+ji6SG455V3cn+OHeGzs+vvIWsTI14XTNnDoG3hnC+0QzsQGDPpOS/Bv9bSK8LJqFtIQPPQpj3g2Sivs2c8fJYSuacPcVoFUwrFndCDOgEP1C22OM0dVcaSnASUiaVC/UJom7HUK3r5KWWntZCOPfTfYrYfRz52E5vZ9useI0RO0a7m25HVpY9WJ7/v72WR6ZbfusNp9GHKx3y12US9BZwbSKLQOVPTe7kMmmZl7agGqCnvScGGB1UPr1Np6YOuUdBqB4QkCG+5usF0PmvfHX05B81yjyXvEDOJdDfeHWz6yduFkwHjMJXtDPn1WFbQQ4/UVZ4xEZ8WZSphz3h2sgcBWuF4WZwsa6GTx6l4XEZfDplm+d6lntepQyG/Uc7BVQOck5DczF1KHZG8ZZ0WajTt9zmopGXBPEEgXD8MMkdKbNos08axfa/PW+8P6ksf82CKDaONhMNmK9PmTJGfo31lqOX0KP6bzu7Tx290c9vqxispZkLORens2CY++7oCyENZM9S0lzeppJuo6I6+nL7DYCrKmwpvQ2hywcmTd1FZgwax0ScT+uTDSvemqraLtWs0hMugQonjICFaHlsNC9cyeXNQacOqwzb9UfNCrYZPdgI8YVl3HJDvMvpy3rd1eT+999nmEvppkplV2UmYTgtyj/YQSLLfflQ8v6BrWByJdaFUeBQMU0LjK26A1oDTtUthEtX0fRlGGwpyA0RQVkSn2bo2KYAha/jobwdLNC1qwRKU7s+oIh5vaH/05XgmrEvnJqfRk00m9MmHDSaRKEHx74tmCbiMpEvoEInTrsmmMfaksoWSC4WDWhKJ588HFZXJrMypeH7GSjx2qf6oYh5IbTt15ij4KE8ZSlvZ4/HaBgBMUdWZtor5x1EOu7CYA6IZkJtOGSECLQhBZLPoHyRF1SkCxagzp13Nj29hjjuqTqHIuyar8RAitryNQvuIbE9fO3o3bN6dW48wKeQ3xrktfPJOFgnMB40u2ZCl0fbj3/B1LGrYulDJPOqZrZm/aewl4G173gQni/i+TmhdMfEqgWF7U96ACSvkjuVUPvL9Lwr+FqVm+Qwcj7BjKmd9oW05kTRnlZ9ZTrcAEAiqnixZm1koH0hSwZK13wxk7Pkf8ZRNQsXyCRgOXcPWTvlaK5g7tcyOY0jMo9LUcR05SxtP4gmUOSmcwh4FUBTx7wvaFD52AIkgofEIgEoI7cL64FAcvLGX3bJg+e3mve70Jv/gRleQ2BZ7JoUtpSsbBKwK2VXRE5Q+wrCjjnvaAg3f4Ndh66AnteX3zVAsVuy6sGgd0q2tGXY1xgBrUy778vJuqowV15EYYYJUk/k/Q017Wtl8IarA53J7R/8sd+x25bOwqAfrjP5n4TuDqPWjiIAK/2bqBTj0oNZfQPhDWkv1IcyvtVePhQ34tXi/do8Uo4DNBcwgzN3PWi6DtjhZnU9lz556hMi0kjONrmJo9Nl64jy/Z/aZTLp1Yd55TD1bMH8T2Mu5lkkAz0Dw9KjE53KztJUu7alw2u155dvt1jwS84+PQm9n8IFmR1FbVkMG/BYle4MA+fF2TAaTNH2WiZj0YaPFdjiYZOW+57NJAT4QfwPuQZEBi6ByR96933GzIUgcvI68OSHuabO8aFgt9EeQt+uzF+jvY34LWl8+FO9C97aI4ia6kDNjdj1XZE/UA1FTfuaIrOkNPeAwbZVIKSgujm2/PKrdX7G7DFbVcjlYNl/LFI66MlOGbghtUbU/dS55wDgkCi6RctvuXmhCC2Ihv0UIvT6l2L+mM1oMwuUTDm16oiMTvsmK52QPAfITJYtt7+skvgk8OORYU+fiSClG5Q4UwRof/4rJasEp64K+eGiNzZ532fZsFsp0qXNFRRXjDgghtUqMUEF+7DhgkGyXMeqbUCRsfxoPwmCK6KUEaJ3BrAQkEEi97aecUS10bfeAyBN5MtJDtIEOWJ3eqvKURz89CP+SL/64gkFfYOh5W3lZJNWxA3En/qlsWeljx/si0reoNOtCvXGoOo5kzpfYyR+h/rdhDND2xr6OHEjwuMECiOBOnXkjju7Jz5ukBjP9mxfA4FMsn3xh8DQc1cxFZCNnYO0b2ElRJbfsmCn7bdVkpqe+GeKwd5LgXFMRWajzyWn8qiOExSNdPu3UIanaejFfXwZKXEVxSM28x05mQZpOgVR9mBiWcCaVDbVQIdDpdvw0W0b/dTIVR8+FfT1lndRDa7mMvpzy+7o4xHiOMrbGwNck0K5kghuVgCTIidb2dciNVSeblnNTe4YBN5SELYQk0fGR431F6rBYFOvCurBJGo5eztfXyYsv78PUokXZcB8v0/JBwqH7LMeaX1612vbBKtf6V1pkE0hdF+DVA2pNkcVNkyGJS+YBiigG/Wb4edcau5588vuHqpgqEuwGSI4nYqED1oPVPWgwATfUXccL4bhN+4NqPdhop0cudoVlQ9sAj6TlhW2cUIqFzcA+gv7mgPuca5+j7Vmaeqgx6JZBOeZgN0oA+LHxf6FiAyeBKZXGGrGo27L8bFCh95GYZfWpXM1Uvfk6M1+Xhhhbvo7OKz9fueG4ToVwOv6nm35VVT/mlQsoUIKVAX3K4w783m/b7My7+DE4u/uEgk+8dvIyqwN+On5L39H3eRs8yhm0SfDwOkYuonzqBrOftuetsh9ljS1AM+3/pt+ERSNdF9qpTVP1hBc3oYYsEbpU4/qN/GH9HBbuedNXZddWwt+EeAzon37P3J5ONF/oGC0uzbpwbzyujq0z9HWJkw2Eg86LL7RzKPRPhnmh6t3hd/6eVwK4erhWaT7LvLLwBmULcMNWSCPncwL6gy/HGhiajoSmOYOsDDDZ8tSqhqkB+XFFF65GAyr3mZLmEF0Xtl6m4z2fTDma3EblD8i0Ga9FpcRk0LH530S+Jqa4Lhikh1nawgNfqKApd1f3ml7QFG5fR87FuJO/lrW1Lr4OdpG591FAiP9KmG0BK+sCxHjAja20VoF37EXfADYl+WOynOsu90ku+uwg81UHCYsguHw+ocM+tMWTvtiyk4JCHCoQrBun3wRXtH4ux0Wpp6+EbGStaxUcO+3TXueLTvZRd+6G7LRhZbWiLcSwc8uvgByrJVS+ojbtc0gFHpX6Rr22oVEDSdVpcXZoc9wqb3f6CGkyOFSBMPggKb2g9nPeaHf05ZRPllttcYszNpHYJx6joifHXdfIJRWN9XEdWTBIiJBlA3eJcxd/QBSBHz1IW7KVPiOar+qXENJHdHCkFAYKmG0v1VHDmywzpqa/xwXWTQ3pRXHaEvyH/4M8PZWtVQdEgzJTwccBPzafsFiyUjnB5SJyZ8qTpzpknycPRxZrICNRNtl5/EQvoy8n31wXzbyjsXckRDfJkWxFIHXg+l2C1ndHRFjfgJkhcbtsGymceZtseTnxc2xFT1E6XAKaypB4oCBem6Be6B3wR1/ON1wXEZWjubJFRL7oCD61CCqUukWmk15GIng602ak0aGq59iETCxpMzN5nSZsnR5rHy0o8QvBm1Dr1CSB6Oke54++zCYX69Jq3ulMbwOrPhDbadYNRDMA+t8xLq4DFjoec2DYGZUgK9N2+T+JHLlZSzb2oVP6ppBtgSXLx1Y8KMbSEVxEBw04j0YyiCWU4TAKTfincuRkh92ECJkUstik+7NM+dE77qs6rsWRWBdOhcfBsCWUN8klmwFrvRZs4u3hokFb0SNB3ps5DvcDlBjd+dG8KH+WcX9dzjFJEutCqvBIGLaQzpPdNfZ0S3rbsSzVu61Rsda6/s6Zg8Jd+DZzcOdg7i+r9LkAClR37GGLIwrPOsPxfC+Ay+jLMY5YlxZHXkskm1F3IeDJQQMAFX/eUovnYxRfgXtFgsHj3YipSRLFWYETxjyenkS/piubzccXEe0IB+lK2rD8lKatb0yk24eWL0i07OC9bPm7ZBKKVLL4memxLVcZTQNrdXeTBKJwVrAfPzxlvzEWtSKtdYnMvEjOItPfqPeT6D7Jt00SD3UolM/x9Ln6C51NdReFebHsD0hlWyWB7ukqK3nNJAsb8Ah5+Smi641y9d3Bl8MlXb7vpWOTaVPpXeI92VfILlkZyGmrMQZMNIBt8eoRBAl9sQbbz+BFBMqbQ/0IeiXjZrEWqOPm5Qxgq3rw+6Mvp7EjmOrYKhu6P0ISI9t92kx1i9nuc8l97nkGi+SUcmUmbb+L6zTZWPn3jRR2hTIytyhY3JE5D5rgc/lLYqWZHZhy2h0UYtij0HVHX86CW5cF6i1ok0x+457baaWVhuq0krbRrL0hWC09PL0VvwFzLKbQujCLPCaSLaG9SW4lwWVrTnCBmtLZ6M4cSkm7YhcUPcesbUTYgnCHzCN/gFm/byRi0eSWT6tzaXi2jvKmu4Rn3dB5ZTtST3pcJrBMR4hTQv8y97Syj6hdAtyZP/34kJhoZzT9gfJf/S3PdQeVrl0SrZbJwpLoVE2FwdPEyk4qvWlllKND/1va8+NKaXzpjef+4yFFyBRLVmVPKygsP/a/ujM6+SVqmQ6XhMPUdwdfu1YTmPck1i3yZnDIGwmRMXYz7M+56Zltyhl/XAGhLzj0LKsdikgCTozexeiy2+sHkB3R342O8TCn5vMd8RTx/UH1JkiosamtOwwltjiTsgaazVQ4hco60G9tVqQ8Mv2NfG/LwLy1BU9glQIE7KXzefB/k/eYfJF14Zd4fBRbPuvLbQu3CsXkgPnX4zSdiechgEJTLu3dVZlhgLCpSFt5qJScztTA4fgCk10ImnVpUwtRFmznw2Q+rIb3FxmL0tMlNtYSFX8DoXjin3K7tJiJHyGRMWNGVBLaR9vnb0TmFultXUhyHqnOFoHfRONTbkfU66PcW87nElDnXc+ucuv6u0dIGIXAGAyDcksfq/iL5NUi/yyXK+Qxi2wt2E07JktRlXzwId6rMjI1HGe1yksRNNzpZB5ql8H5f7jKZ1OAX7eAtLihy29Y4rQ3MVXQF810k80CzUVlB4XHml6kAWAE42nShz/301EFJy+uDcikzs+W7+w7jcSjD2IzwLziG4J0R/XwQgN46MUH6gtyGu2zC3CC3B/5dqD/xMPB+EuT9uMJwS6yMbMWblTOdcqCsk/HM5BE8sNT5pslb4F964INOliiQ4X2qdPYYGCkziU8NisLl5GTCiVqLHmJ/A+HD5B/osQGdRx5Iv+Id2lWCNelougUIG1erM+jBd4EUoSW5SQIjqe5pGRHZOCj0BWBEe1pZUtFtZ6MyNEeXXAcztK6cJwcTpQjZLoJnxoKVnrv5FRU2Aq5lqR7+2CkqiftaSU1qvobECDmfwS3mYyd5TN8PEaQI2TzhW/IU+JZPKXuxtVRsV18PTxFycGLpruZN0+vP2jC8aw6yjkJNjTetpSiakNGejuD+qMvp+fCurTWthtx26CADyKAoJB4LOq2Od/gAkRXKDxwJ2xqqI5Z8Y8hOcVJ0tuHK+xXDAKLtrh8lqNHirSVnL7yE0WOQAYRel5KNKh0WVxH1vfQyEj2jqSRC+atNWveDWv5pzXaVx0t/mbtrgvH1+ME23I2X/6G3oZoJc7rZ9goH1lcQ6GK36bEsu96QFFDvtv8T/tD5U8O7e8JVBZhafkEJ48Q5ci5fPkXJAuJzTDJw+iqRsJ1WufDQHgKQfLxjZcVN7L+eUKK/6/UQgbGvXxE3MbPbVWPqwGK2O8okUeDsVjfJtFN9aYDm32v/Uwp72AY/CZIDZ/UKVm4mQt6AAhkop2QMCt53B182RXhdXFu8ZxeTGr3jQkuh4qEu7xMCVDw8XNaCDRsHpx2qCob08qth0UXO6rNMv+F+7vF6VkXDpDHGbIFTa4AKiFHLplNbxhUp7cei77Fc28dp4dGHCxUb1VC2n1kH25QZMVGOJYQR28TRYu3HZQzqtU2hDYoIGB1yb3Q3geBLXoAwJAECHrLLoj8JS/6cQU9vgDIs51wMgLQubB3KbVRAo1P0vRQ94cKjEpr6TG9O9b7oy+nqyqANtA6OgA/RG2yFW1MxaxtuMUEv/YATQqdRhif51a2Qli2TvlOXRvf4w3XMlellxkpyQCAQ/7oYvRN4G4iu+uCBNu4sa3q8VVAk1SXqrB5DUkDRDYX4G/GPKPGsS/TAO4O/XPZDvunQPb3Ea8J668LDcCjDdhyrpv8S1IkUOyZntXtooPa44APBX9/Bqd67Gkz4sl9X8ACftKsftsGwGZorwuj22OA27ImXwQ1QRpr22a5hN0RHfWeCpsxJTC1Ms+sraHixc/RXOFpjlAgYiCSIq8Gn7TsPf14Al1GX459w/K7U7jdLGwagE8bAOoWeVogLhhgj+7ryFIg0hJZYa5KvVbWYiSLCcuxfshFI2hUbEwZNaKt3OoO1OINvuz2ogBaB4BQOvtCM4M0TQFSi5Xg8wBc2gDMxCOiGGSEsiP03REbGf8AF0IdWOpunAdwqfKgxbQ9adj4ptfidUFZs5bdm7aNd8nGHVRDsIxfprRVNG+pcRuCycsKEFQS7RpPpcUFQU3yqwtM2DiGjXv8qDtZi3RikevII/wwgo3yirIMKUd11l9aJAk7j94ffTklknUpqTglGIf86pNl0feMqgX6pMmJ9L5OLdQa4WQFY7Oc9mmI246vGrk5fyIfuaFMYiVVzEF3d1AQd+TjjyrUhCLy1B66IP/HjTShpIGTXN4JCZXGfqCWwOzHFXTdBGC2zaiH4yH1rnNo05AIc4cPR7jfH/1mXXxd6uhe3d0WNLj6h4YK9mx6miMMKvsqEljPffZXFWborAleRPotI/bNx++X/CQriaxT3c9VX8I+/C6jLycxWRdJqyeBtSnALmUYmR4TQ5XYzrmpx3jDJnQQnFfubn5Lb0OCepufB6hH/1HjOwveWz4Y6GGHtqTTl4BChJZOcRp2O4rrYIObXOjYMICnHAfizg5W+Lij9cDj+YOlw50dsm7ySYIs3MMzuIy+HErz8hnQHmHalLP56jck9HCVwtUhsx/nKhJ542zllyltt4yA2Wyv2o8jTO0h/wBqGNvAspU1TdQj5gOocUZfjlXvoogsyCE2afCQ2tiNbkxt2Y8r5rqJv0bPIDwhf2yAJc91JO4h8TCwM7QyWDBvizQvZv/r/OGK9Q2/yGL0LJf/47GFbDH3TfwtW+MpBkjypJp7XofcAi0SYFOOZ94W6FGAglyIH2dfozITi7sGdf5CWenQSy+jL5v9unyzSs/b0qYA+pRB7A6ZBZ9AxFdfoI7Dh4qLKFGQROGboQvYk1hiYnO9Mp5Pf0iKzrh+QNuNKm5Lp8brjr2cTXlddB+eTsTWPdx0EkN+PMpXcNaVLExDfhTwJSjt2kuSDZLjnhfUxaTfc6AVzz/KeZVD1/tOJksfmvNCTNJI4SMPo8+hkKSpK/d13Dfdd5M45mzkiYnhD/XpSIAZ3qGY/p4VpvpNT4MMfOwfhT0mNrp8KNVDXm3tw00rgWaqU3++LKRej3BDwkQ02sANABlao6qBeLMr6IbcFFW8x96vHR2RFO6KHlLu0/vOHHo5vWnWpaW414LcBqBugJXcHxx6+vddzzwYSlaQuHl57NjaEqeB7ITKInsnQ8ryb5pfWDzG5dMePZakLfe8yUNZs1eUSF6DDZLJ5+gGGLWYkmoNekrETFYpe2qR456fXb++IiZZRKB1IQ55RCNbwX5TvEtcHzYNFTrruT+WGzD77io5Z2971tY7i0m4v7hzHzawX1iAWynmuqSkXgpr8/59nQDj6U6iUaYSN+3LFPlOaVCVK0fIPAny1FoZ/lq+ZH62/fsK3bXg1HWBXz241tR7q8xc3uHjMUcF+b4MrLQVsOuyHj9aeRRZ7WrWLStWm1bV94K+jL6cNpOLn0+gHZPkVCT/26vAUhb4TP4b818OONJXEpyQ5XjSzwO3q53DSyi7KYtAULFgwOllSU5bZr8hS9BrA4OCQExSYqRTwPQH1dRbomMgp8gd5We3vk29AyzAq4KKpR4ir8mIMhW8F70vat5yR+QAQWr45mYBrpRHDIZNPPVM1EBkjchzGJCR5/DRwVHy7aBVKXlK+tIWvPZbIOGOvuxXZ/kvmvde2voFv9TnVAatQqK+9gNKvarYUn/mbl9BNhYvaPk0Io91ZGv3fK0f7LBGZjmH3Q7DBmfgCPoObAK0ZGXPmyLE9hrAJGR1/+Tpm/1VFz8GjI0ITp4Dzk2NVkyMzwfVbiDcQI8sXUY4Pdv5PLSidbQEsnxX0SA8B5EUFq4XXYD/BrWyeFHrwqPyeFemeNXXulbWrnfFuMwyjs25hD2J4JQcDHnkzQJL9EKKColGLJGn1VnLSsAo8JvVJwwtzdEIuKMvvocslNFZH5ljKtsVI0uoC5PLSkpJjseewqqtOyR+n/Pv6U8svYruIhPPRjWWpcb64Wo8QBckLlM63Q/AEjvdWy+jagvSYdpbCaAE+WlNbTFgZil5EvyLsUCPH7HzDR0Fiy948azUvMo4ak+jb6FNQXPYJ0/p96bmBi1qXVhUDuvKli/5aieqDANRS2CwPc5zGdR6+HXkcKxB7ZIwrexO+88jSHL/SBpvguTLx9QdCN5mv9/I8vLXCAC1DDvHOJ8HWOto8oqTeE8KY5m6I+cZtGL0ZmhShY7/EasGdbJ5nxj2MqqoTZHIHlbsCXc+qskTFluWlYt6QYrYNvNZm3+rqX48+ZIrdnLccx0yDIgRbHSEVm/At590hS/s3A0+3LrQ5zy6na1a9FWONMXHa1IiyzyaHuMysthD1zStFnXP47QwI9dsTyKP/4l7vjj2LHbEcskUHvfCES+5WqcEHrq2ucVSPj0yKnX2bB4CkxEcu8fxV9LH1vVz+Ze9Po59uNQrIhFQOEc8j+Bsc5Uuoy/Hs2Rdmk04zSkcNsGNfdDQuAxsiIG3QnmeiSCgbO16fVkus59589ieKxUV7Pk0Bfo1U89ixi2fSecy72zVk6+SysisKK7NNMrN9ai20NOwqK/wyNtwBfNKCE01Pss940MW/0UHJ4tBujzHeced3tT9XFRCoMqMBAVSPjAgPoYDj2z/SHx6DOU433c57gebPcm3bx8UvQEIH2VJSQ7oe1DGwMrc0Y47+nKabCy/obbXgNuuKvpFSFS8sJr497LQd+4vl0kTOj5evgMt0axhwlIDnFeKXlr5Hyeg37etNCvE61JR9irQtvjlJpaRoxP7DctcACm0G0Sl1VIcu4yWytYuoTVghP5S/pwmg/8IsTCpActnEji8A1P75Eul0LQ0JZ4HHTUb9UjBZVDaSjs7zOV4RgYVNgLFwBp6InU4rFmVbshiueLli+zffhl9OVjauth1OO4eJnna51rDZYuVT14GrJvT5DPLORx1Vomqi/J5BwS6BXVAfEt5eVt5Ln55W1QpSFFQYDf6flhK7uDL6SoJhlojNb2qS3NpilJbdDaXP3ajmyG5Bp2FQG5K+3OYAkw2/MbGjvTnzAqtOUASQGW5hvJvlr3Fh1gX+oRHtzDlYjd1mWQL5aTtoe3oCCYzE4YTXPYoofU9K5KuoJ832AY8zvpv7PwtNui6sEdtrqmtlblIa+RBduaEDRryWd6SG+A5hV+mvK/O+mbVr9hGefar+0pGS7QeHk5Tm8weSj7SrjlVETzqrlcYmtsfT+nqVoHtkrFRX9YZUWZiyIFmsB/v+jfI9N9I8Lrgxh7ObKsDXTUh9oE6p5avYJU4z2Vk9bW0MZ5jmo5bHJTr1NhY+9mk8RtGisUBWT5nxOOY2NK4m5JONrJQNbtD0jHfl5FQLGlUXSUNye/2COjpqVnfqGM8s5sIpTO1FrJBzE24Badps3Hd0ZfTTAtVXVTXC9JYMMGwolVtZBWB3aKrX6OdOP1D01I/SkPh1IzRop2XGSjv77pBQdcE+f+NTUArrOIe73xV1R8EQ4nuTgm0uNOe1h18OUzx5fvROe51NmXmwrCZgKB5lY6i52llG0Pgxw2GuvunIwqDmVLiV4ER/8fa/8bm2ULC1wU595B2UyR101TJEQQuF4H2HoK2wcNlZMM8Z8YAH2JP27BT6KEhye58din8Cpg3kPDl4+YOzO4IIy86Svz8pp+j2lOOrFNefXaGUcJ/09uCaSVGCvol60BB5d/s+yaCtC6Ik4dQmTIhX1XUCaY23cvR2lfhQmzsNZDSz61/y7TxHyDfZj2gQBh/3oAvUFwDPF0+1OoAs6Y09CIkBd4tidGgMeJWYISBWAx+hMicJYDWAhD6OMurJzHBYDgSw+PF/6JfhUF5XR5B1uPTeuogX00kx2IF71vtk8tULif0ji3jzCHPTzbAdxML+Q6RbODMjjntyUNDaZBHGpl+PNLeiZ0/+CI4DKPGpsdXqAjAt8WfLD4gMQit5fmP7dnngcy2QMQXlHggmYGp6bSopSDeqaA/ys708dLzHcDZRlw8kCRS3/oTd/TlVBHWpergVSlMfchNTiJBI5WqTWk8+vsHqgOB9xGA+ZBQ+DiSyD7KrSkj51Qdzx/h7eBuhj14EK9rf9QHl1EF8eT1IlchoLwWj7f/xBaF2Be99xKaNh6ns7+Fuj+uNvYipTWteJwkAghsB0QK8K/l8Oxs0Jucg1nfcnnrGND2cKhYl9GXU3hYF1G4JyK3tRE3LUVD87uyNeqxa0ojj1mSWC2Q8BRRlAzzQjiXVQOPvljzmd3jPhXWcPAt+KqX+I53/dGX001o+b2DvVbDdtnRLVM2YuowWcff17q71ctlGlrDFF5eEhUVX2DaCF4vvgsCp/6PahsmaWD5HAOPkmALY29CWvS61TKdRH66+QPPB0aaOvecttXYmLX2EvaXjHDR+1fe/hbre11Y4h6r3JKHXLQk4PYh4MuJUONpBBCQSXVlmiMiPI7/kvdl6lqgbpc184/iPQMzXheE2UOkbWHYTUgmG3/o+jRLb23/fWZQzEdfEBXFPWuRvSTuMi+Tx8fGL9HqmIzjZmyK0A8AfVt36I7qxp9ASy6saZYGq7O98cvSR94XAenCTOI0dflLp/jj6gJ9HaHnH2oj5JhWdkrIJuGGLLHMeJp7D5SImNChAxXzmQj30L34/dGXszcvXxfn6uhsiYQvqcC+2RsXNHpOVAX3J8DxRqZGIoGmqc0JmqV05hDkb4488yPdg9pBifZwAEKUA8lA3IffZfTl+ECtS/MJr1mFDbS6wKyq9sjnDuhvDlXyvo58W/CZyXQYqWjhHK+hnKhgBNC9Y3xU9YFWVrWSIbcIBwt3zjeW6Yy+bBdDYJnAXCo0u7ALkc83nGmq1X4ceZgvJkOVH7bzjKxq1douLiLZGCATBGJyz/PU1AkoocpaodmNtXy62/8e0DMgpOUDTh5A5QhEfEFJoj9qV3wOlriaEeBkL5Q7MeFuXcnP+D4SG0OuxYR7hPbUIcgeVYq698odVIYaJCGHv+mOvpxYe/mxuRfLO0x5l1ifWHBkwRgHtHxwCPfyuhYQ/irrRio1YpcpOXSjds2S1y8+eetfITsWd2RduCYONcVUxro6WkL+6AKHSdHRvZ+r4ObSuwT8gJ7CsRCWiEP5xBWFwh4+OFyhMKGHtTBzO3g6vA2uvcGX3UcQnH3Ia+dAiBdRaJGMVV9Pi+P/43LqXQ5+Zo2rshsAGuTMvf0nUGBaito9oKMrh85LSB08FDDEZD9NH13d5GQvKkfAuvhPYcv5Xv7u6MtZb+uyPp3lbNHL/TqBV1ew6hA6KahhiH/kOigHP0+/35M3TbrkutArPTqmrZLyVVXMjdu2tAFIq9Y1uI6EiEPV2yWxH4XOC4iLRWNkaknZY9+T+Cza3PJZdh4pz5YG+1JiFEQLWl8T95ZNYZMB5TqZbhfEveXV09uLeWXRNS0Co5tS+Tj8vgD5VElW1QWcP4h7H/KdEoNmbG8tta1W9fWhvppUMkx2B0ORqOVdVAJNQN73omei7ANVMz+0ipO10zUh7HiL/gGFzaSMrQvFzKOk2Qo5V1DXQK7A+0EqBPQP41wGQUDVV0WCA32FEsUNcdtdVjlUn209AAdwdcPnQTUa8O8/VC5/VPuayPdGMz46ZsnfTCpXJkoAHaVB0CeTprSXoqTNrPeZ+DYv3ubR67QpU/yPygBAuvaPKKwmi2K5pAuPo+FIa25SHAmOGeJy+TcN5XCcgLSwhYxyM7MeFigSZThfaKjY5TV7LP8vkA64XSZEaajmSmDa87YHz+i70/6j+dDRYTjkA1NT5irQZB1IeiU3HBzB1M8l0KZdXrIhsY9EXPPdBELiFv3bip6Uz3f+C2zfBNPXBXz3wHpbSAn9JnjeNe/+L9sxndeRlGIDiCmyw9Qzgk/8zk0OSSarMLxr7wZF7ujL6cGwLq3QvdbpVnnxVoyUzZQl8BFpy6bsMzKfcqAxDbhe8ujSnhWERPbEQ5Hrg4cvO01hjaLSukDRmXL0Z+7gy26eBqICTnYSjkk9H3M79pvEBp9K4FMP5E2XbG8q0iP/LmtaK9eRpYD1jlBegnpFqDAv1goCalDeE9xlHz+f7Cts1IEJH8kY4c3I9UfVOW2OSFgAwQoKtsc5bRT1jMS6lQRjXLZZTx900xNZzlxOgQzTFjkMYKVPjhf6X/2b/N2gBi2XR+TSjmx5nC+ngx+PRDa6V4OYrHcXNJ86uPjRAxVufVrTRixSkm7hsPPrz950FaAMQnTZMyPWt2y3YRzvGH/0ZZNJlmvu4nnBOIxRn2EKcUImuUP+PqDTzeG7okwL1VfCHjW2N83ghgcDGxZyumzrTx4+ymms0I7ctAEVptpHmDv4cprHrZdaRUXa46FPHeU/Pw6B1SWN3jimE8B851rup7kxlGUVcB4VeRm10LJnhSFjZCV5yjnzlJt/5Y9u8CDXhTbpsCxNadxNSSf3tWBJEOHvLeT9eeDeQKKAHEThTFrRHCTzc7hcP8/xr3gqFjFkXYgkHvHEVsc5WjoYzcruGXcuIueybgio2koMk7UqJidtYPmTUzXtVYC6nZwZTy46gkUtzUsqOtVZAbT4zVHzR1+OQGhd7Ew9+1ObSeYSzxqFt6jbR+z7x0lRLoMsA25dEZZN7fw9hO0Z4QPs1WHB+NHeRsJSaioTbLC5tcPE/pSt/VEVHssrVlESjYO3XLu8yFEj5zK2YHDNZlNmlK1V/HEFgq6e0LHitgkBURsAATtBfQ29ED8g6y+6spqV4nWpLHuVaFMo4utKgAmnlrVdJfoJlLwvg1cwqH0DGv5q+gbfenjNZi0jS+7+hG2RBEwscfkD0jFLaIez4I69HG+jdWne4TX7sEEVH4RB5SaAx42/l7hwa7loM15A/eMTl9sWz7xoUIE652Tdsn2EfV+EPRZKvnxM3YHgHX3kTU8pGf0cOiv46tuKe0oQlGPX1YJaYD8e2hm6Fy1by6nQ/zB0TbB3XaBhD0o21T6+NKhJrIBoGV9I4l+NT5EgyUKo+jZJmK8m25gUofq2mB//Y/n7ReXR4nWuCw/UoY3a+t6bHniABhiVfVthHHWuIwd01GIYzsNwuodgI6d+crD292F/9A3N2OL1rgsP2OEN2wrPmyCU5ey+acO7LyEvEwCO0WNdYrdNYkYZVnmIiBFn+4hbvxCVWFTQ5XcgcfqVmCpPVxNa6I8mtxnwA07usS8CfSY4aEWZCH1PiVYRiVPKDjSfGcsY6MHCR5syfU0D1sbeuC+jL4fbuXwqqMcctdQ+rjQIb3GFBxmuLVtNOYohaE1Rh0eymou2r8eccrKjToXPZRH/j3hSsndsxy1T14giUshvtMkffTktKNalXabXXtMspvi1F6QmCWQjbHQodIZzGXlTUGfkrgsy8eneOSC+GPw6HTqtD7bR748tE99cFzzUgU9NoZuvixsMpprOKlH03CbKqC1HtKFWLyrEwf8pOgu4kR1BJI2PqT1bPEgQN8goGvI7iKez98Ku1lxGX05GvS4aT08TalMhfeokdrUM+To0pyjvjNMPSDIDxDnEZ1NU3HYAzC4gDNMlGKnNk2wimynzEVi50tc2D7QYOxufO6qEK9TEJrcbea9KP0Tb3CUjndycJnoF7LD6f7V3P47kzS1R2/Vso/i9q1cSpck2MEFKavUpKPrK3tri9S2fBmiSBj3++40vL3sN5Gqw0YUZthIVpwYnSiZs7745KNLNEhgFqKneE2aVoHBq4wI5k4f27iGEv4u07uiLaPrQ5h9kruOpk2Yj51ZPqEWwXCq7zLazdYFwmwF/IczbUJYFfem0kFvCnqf+P2tfkya7qmvZ9yj2COoz/zCnZP7d0pIgjv2uFo2MrMarc4Pc4HDYIGn9SBtKGSH3D9wu3fRoHtIpln65DPgTYX5IrKTbbcCPG9puyXkjqzK6Ak6+RchH40QcePr3FQnm3+z7LrY7D1iwjxy7gk+uDq3ZjOYKtLpmEKclO3nSs+35sd/rlqBmJ2FLsz2/1fTqaPaNmNRD9eeBBUBYA0TtydWhAbFGbxYxN+TCH9Vo1P+hMb180fRZV25Mt0aJEeztZ6z/e6dfj9QxDyQQRhrxFX9cIdiUpD9sXTyUZVsDFzgT1hVR3pbbY11QW7qRTALw3T/K1V1kdx6QYIYc+5q3k0ZO/lrVughjeorZSqGKTOX1Ctx4zfe6kO4q0QKHs6rM/qa7hxeWzIMChChGCA2Y04YVvcLBgPlTWnoMtMnJI8GNK8oNluQrrVVRSQKkG1FeyU+zrF973HuXNjkBmvGlfQEAFwwAeIePtE0vP2pf02BPLHYDCyB7u4EwckAxSz9ui3vwF2paj9cyDzwYQpvx9a5cH4t4MnXbQ+TdNOGOTnNnEDmxV8imVXraq8KUZJUF7tVg7xP5NOtamAEw2dHe7/CBp+no5bfdmvqxXLTSojPqV61aSu/B2Rw+PsHN8iXwDALmHjhVN/wth6buLDKPpKMrIgQ5QQkJWBVwe358/S8oJg63YzIeCOGMuHJXKo6VTUT+pez5HbL0aIolTCIvAHzxO+KNlOqnWz0Kp3p56NDxItR/oSaE8r80JauDvFL7PRYyEWLUkuSN8GXkvmWg/6s+/GGCPyoPJI4kXgqlNACJ1Jv1/MTm/XzgoxVwdVsysRyq6h9FDR+9iIXX5G0HWJcCv3J+qrQ3ZJBF/x7M5DUP3gSVOavztDwKxmtAvp+idkpDEgImwN8c9i4FYB4oA4xi4OvdqDxO7lf7AJA4SC1jAk0JINjQjEH+Zau7/bv8l6LVVfkb93+8QgJnTg5/ErDUl20xkRco7t1yGLmiUeyXwizgqC4f8QJr4A3FNlm02Y1Gl9OX+4ls5tkws16S5aPKm12EKjp6kexoHrIpkn0RzcJJ49CjYhAFRfh4W24n2bqcVMHI4sACLbpDOSOAgquzyJ2L+VWl/H03QhcMmQfwxIdafMkKlbh0bKKg163fufW65ykQWVnqXOQMb3tVIFrVHMOTvIIvW9sIlEvPozzsq2b5Gp9mhHTUKFXZVMKglaBHZ42LUpVyRalIaSXyF21TYP9XRPhDVXvcB9e1zWXINS5nyOmr7Bdl2MZnmTqaG6F6rOMMQWoYyqf3Oh+9SMcwyEJAjRuISGHJ2xrOFVy4pyLhqg2u8lCyHTSn+J6yWVqbTpmmFG0TgdB0bQtaDpW0uhpujzZYzzasuTe0csQLlYZGZ0gi4nr9D6MXUezNg/Uqs2r1qQ+cKpHRyQMeI9q3vq+2tYgIg3bAA7OgSshb16oJlbOgVxPz0iF9vDDCsH3tQyIoyodbZhh09CIbzmTbE93MfM3KSePilwK90uHP6hNTVbaIcj2YEW9vVyvJyA7eFIzK8GnZTz8fvXwHVmBz4E8pM85IHaZ6d9WTP1SwSAWOcM7tFT0CEBviIW9rGhTktAdgUSzSqGwBuVRDESdoH2gEw49fPygbGU39QlDrYgSJm1F4GL1Iw4V56JLOuqr7GBLHnLTuX7JBYOjZbokv8hrE5tbkXHafvpeVR2DL8ICw3I8bIOFiVJ2rXAJEc4iB73sHsIfRyyc+Te7P5bt5EcbjiSEpEWuvZhaGft8G9HXAKChtoZqFt2+sRRFiQpwdlPNQ/0gM6/I4Jud9UJ6IL1c8yRtLCMbXlf0hG/yD3FUODeVmKXko1TU99MhyS1bo13N9drP4ilPp0BgnZz0yliQRrJ0Ebuj+suBstFlafx/hBGkIdcYGsfyxw20doJp+jo7XT0OEL2gpHg9kHngjjGfiK9ZOCrfeMrI3pWvAeuGjfAuhhlWX6d3KJLquvPerqpSCei49CMUojeJUb+gQb9F9+BAz+OhFukyBUgw2e9D9GWGNbEnG/HIpyJT1y0nC2BX1UAIkIpGoNa41FoO8Acanb3WVgg0VvDXkTnBqkOTnqYpSqsw/48D3Jfz6MMoPo+aFdedUVLeF6EdhNWvnhPoNwvnckcyF1X+NYWm+buuk83L1Cp68wZaVzVb1uRneI3JiP56AX4sCHRrQPLCGGMvIF+2dRH44ZvW1aErRb9sGHx4UWgxFwV+ShrLW1QDNbHdhLPXWxH2B091ormGCUNmIZbNQgsrqpm6IXEGwfxvC6gpIuWaTazzhkX+PbAeAvGarDwSEqJJ9Z0sKJehM3fBBjTpHXCeAHCD/teEmvI554IEQ3giR3p2kekPeyW53D80c6v78LqOs5lZggRfjq3SlNDYrzsi/Gy928NC6J7DBFIbpnkpPH6tuOmriTnnQgGECHb0laS51iTtDUHghqFsnbB2Or5mv26EyH2abwzLkimfDhBqg7soG8EcWvi7KOQ+oKENRfdmeygU7gj2jI1pKrrPI3rxwh/oOzGRLuxUllf/blRcnQXHe5/Jh1DrtSAwJD3UwA5JsmqvPTuny2Fi5e6S26touuYVIKqkAM6EIIqHYvy7vckObjjWJHMf4hcHslle2bD4Nnh7Z1TvqvPkt8JGbr9+oJe3tg5On1E+LXD56Eeu0eegIwTpIuPVeXh4GGGzdCAegmmTUQEyD0xhJsIKIcql9LdvwMOnVyEIxPr6/RJrJIk55q5QSKh+k7cpJBy/CUJyc0Ejoj74Ih2p2ujZuVN+zjL0gb5f2DOejblQlGCjHteh9q6ckrjHCyPSvSCMeVWNyZodLA/Gld1ypF/AOpJUBBe10uqbRLNmYNxDg2TxKOk5tbeENKcCLNfB7T0637jl5nZTWVX0FBldsQEA0brVsBwkKnu1rnoyHyKritdkRCVvEqG0h9a/lfXgb0H/BmvBYCvPAamAsCF+CxSVb4OVIXGzGR8pQCWseCU+10IFNRpLQsI2O7yG/jj0ZGY/jA0qrQzdxlBRb0LxLHuKx3VkOoxcpFsyD/JLJNX02JyV/Wn2y2fRVzp2y+5CAEJnBOUUFW3WptqyESErNj8ivi3G4Po9A6KpeLn3cakJWEBZs8JyPXsQofh6af7JmoX6x6FBb6vIGLJNDRLGGwgNKl4g4WphYJHRbwvkABm5feAl6Ise/QmI87GsesDIfWfNFLCfRS8fHq3OvJFf2BsD/vilZRn8O2YPGxvNKUegen/cGLsAz7PlC46cm0l07A0qECq5QWmFsrxHsWkMW6jIddzWBP1SGd5Lteb6/DKk3/ql8lazACCpMT/bgF+1V/cY4IJCgjhxuTa8TFO7LNdzjm1CCB+eDIHvR4E8b+kkckPY0GdymqvNIBJkXPwXdMMZQUxcw+e/4bBP/BXfQ4+rNA7ePcQFdHQ9T/UTE3kUhF7V8GqNvDZIcgL2ZG3rMq3U1Vr1Bx7Sr1I5JjwgowyMVX6zLwZPUfjLLC7LOwMPoRXSIk5tHUrNJHyw6gUsDjg5N50Ebgw/UJW87St9YV34CQ7qxblVo/B/SCTgP9McO+IUrvcdUn4zYznnwvqDnJAACt0G71MqdA9nmn7nVIzLMxo+3f2irImOpdpFwQHoSib4iz3l0tUnZbYwMR1R8XPWH2FjFt2r/hpYebc2Dd/Wuu9ptERPWBZo97PWSddObifAFHuGxV+aB7ULIMb4M9SRbhVNvrCsEjNX0RWhq3qtRGjQrTKt3N7Ypa/aFrLnfT2/Kr3pPOTS3STtGkP4SvpTvIPyT8wcAzMCrsljQQLAlCsJPNfDGtVWHDqgXqgpDlmwdHJ//vvlXnvRObDoPOiame3IpvYwAPCDph8ZKZ5dIwqqZmAVeFNka+cHqLm+1lWQoIA7gc9kF67O/6Fee5B5Pd3JaL2MB+4oergBCG8+GoEldn+U/rc8JGlVAbWL8YPlxlhILcdiQBMkc/2GHdT/tLSC90V8YlUA827HUT8HrMHoRksQ8+E8QuwoXKWWwKngpCcat0NC2uN5jTJKjRknWy7UY+RjXMrD7wlJDXibZAJ4UDHkIg+qAYB6sbeODbDh1H3t89PKfz8np7Iz97pK6OQccoFoCIoTZYRtjsePQozTgHkZ9zprRU2VZlCiBcuBziS7bK+/7QiXq4b6Tw8QMVfZlnFz2WY29bKdNgZBxm/UiegDFpRo1wTiUsi5cCNT0GTlwqy+VJPo6o6jTQN7URrpyTPWPrxEdvYjp2qQNI2h/CbcqyYuYZn2JtBrCjKbGAjaNpLRIbtD541byhK0qx4o653Stw91Pa5eAIwW7usQvmtM0Sc03Y94fMjte5Jv45QtAloSRae7SksHDSLiAEKSdmE/sIF/Jd1L++eimh4baugUvRbcEyVT4D/JpCG05DfeFzUiutf3c+OjlltnmoSjHiniukI/r/oDdRXCIgIXhjVj25RLkJ/Aczf5uwIXgn9UI5bgdi/RVRn6Wu7+SBwPODHA7wi8LBkVbzEsI8qo6HTQ0Ut8s9v8RE/8wFS+FRVwQxUNcFpBV0OFOXqhb3ttXg9Xf+zB7NI95oIUwGokvYTtJ3pokFbet24fsuGXPY+xe1RnD06CudcH4V3wBDx4y6b/Z8V2EdB4QVYbA+hK2k+RN3qW4tnx5mJdbFOpYI2keEcGRXduBti2XBypapUse1/hgzbtg9TyA2wwMd6WoJ+VqD7qRafoBQY5h5EU7VZSxji0YLKxlZePdAALu3Qt0/T15yCPrzAO5h5GBfCHqSbgqD33u9rlsVHm0Pc9dUlsCU8kA749dt+lPtEhUc3jaaf+aOuJxNeaB28G4IL4U7SRdA7XYGGjyq3YrYWhEFoPm5Gpr1u+6li0NIaxtESWOp6OPPEvZjKKzYjq3cT53sZ6PXuSsmIezhZ1Fvq6B6yD0j/ptVqwllRK3Jj7KIKBdWLrGvD/HEQOAU+e5c0kv3YAkJXoqSazVrE8Yyt/78OKjF+l1MvVzyfGgM4FpXA2b3OnS7Dm1nRPhwTRDSKNc5JiMgRxh/9tTMvZ9btGqPlhVHpcEMCRo4f5uL7z215Z0vlnu5H19WR9ggqdw/AU1byVY26Zf7ZnGPCnJ5mblGpk8WtUz64ZhFnlKbC3PrBUvn2mD5IavpxxYw6bO09GLPHPz8IySZ5qQ209keD889sJpWxf+T7hjmOcO6S1/+z1i5aKk84CqEhSWqLu4GgwF2bgD4TLqngVdCLU5LcLmHdxpp9qEP8JfJ5iq/Mkr4ENk8wCpMQjOFzedxFCAYKHAkS+qLuF2A3A6pLge9dJbr3mtC65u0T/POFderpy/Jiq5/KDJ2USEe+QJc6mKF01WlNILsyTk0GPNkdUGtqMZnyTTe0F1ds+4PMk7XrJPkEg1qJFkTD284MIUtmSEjF2Li9rQH0m1Hl3rWoZSAqTBCQe7MmwH/36IPPiHanKZgtd1TKIpEQo3Wg4HRQ88ub+Su3q8mHng0TDeja9H5fpVuNmp/NQC97tYZpqRPUjQZVg0cuZFAwJCuWyBrevq89RPkN7gXW5wZNFnGrzEteMdRi+iSJ4Hr1DiLUowNI65Bd0XqjWik+fCOoxjnhIDbP913QzF4lr3lh0S9I1bea3l+ejH0rUYKyFcv42H0dLuoHcYNca4vJWqDIraK7KGuLony39VlT92FJnvBdJ78sofqmfk+kdi9Ms4ABKHSjYIZmDUFl7jmbwru1m/YpWFrSwVQWmwG8BHL9LlCpoBK7nDXTXC6EBeOyPvexoDTuo/iQDkwYT6AmzbIruGkRqBfULfqKxts160VUFkxezIGSQWyM+4F/2b1LsELGItzlVwqP6T/JPRyzecnPrxgCNphCFBQn8kQ5IceR1XtJ0UcAiwlboBGg+8gfTzBsc8dW1XGDekhVTBJk/ukbZg7qh5P5M+dFgwy8rci4HQPWyI+jB6EV7k5DRKn3RJFD1cAaQAdFIsFtgDErk1D2Qd+jkcrMOI5ozZNXlfVymhVXxyFAIaWKgkcMB1QUuzMCvYDBU6ehHTyXloEEIaipBy8qH63Coczf+hCCrbZrOGo6gYQZGGErlyYT6r5gKCLfiTrbz0Qt80YHCQpHmQ8zH5n0+hO1HuetI6ir4fecF98PiWG40fGZyU3JYtiiy7UnYVL8o5/kdAjQuIzwOATgB3Iug7CQBBlgqGyCAWNGEGiIGy3Y/dnS8aFQProqHNbXW7PMr9bKAXwL00QVRcauj2Aer4oPkaJnzNrrwnCevvWJevIY7paOInBMEWhVA4wVczcVkGk3F4so8fE1cDXurKIotbgPIXPs4eJ2pyDhWjXPmKJq6AQqyZkR4a5eo/XVTU2FbPRtRQ81r0xtk39HMFxF/0vFGz/cIw3v1nerhd86KDF+kQgoMf6XXGOYCfB2Rtg91dMh+nz3G6HZoto16qjxfU5H1NgzLTbdPIn6+u0tk6AA9bNsns4akW/YKg5DKC5oFBxBhHvp6T6z/lLmXwvv6ZojL/p0cFdzIaACLf1HiLWFdOrhjsMZIfcjwfgCKnRdTzXS5avetkx5SjbvEU+OhFGHSTmjkw6wefScCZByhhp6KzR/D5ysohQIYM6JaFVVE3rNtyIt1Bm5hBytya9aj7CztvhxM3OYOOEe58DclJc1Lhsmv8ld6H9WuCLmbcBbcX7Ji2Qg4smxHC25/jFH81Dx5qgpDk+IrLC6N8dn82dummqqUulcYF/a1NJ4tkDWFMQrfcvOQJdGv2JXBcMsdMaFhWlUGhBgNKRZnpTq++c1+U+lxaxDzQKBjtwldBctUk3rOsmi0c5h3izzVPRLZl9kwVpEALFqq2+1n0dBRw6h/RE6M2vBy3Xfl9A2bBHTB+phlfJd3+TCzriWt/qJiVi19REbBHwKKfxefHC1i0VIHPZVs2FR4uBy5XqyaCFzD+jVuAB7BNDsgxAM9XTapUs+amWwvKmNF+Z51Goqhuy0q8MV7F225ujPBJrebsFeI2Zz+MXqRYOg/FVVKMJZoorqDCuRKNSyGh1CI3IE8BCm94WpOrbNsPS65FOxWi7NHbE71tsgEou6IrdQ/xC/R+i3FJBy+SasyDGoiIh3xKJKdQ6gkHeQWml328mV6zq9cYOvLhcpSVl9ey8px3NcoPgFPT06P8K4ktAowBUA2kmgB2zzJtRJs8+XP16lYPUkYPITLYg2i2lYSOsmjAB+N0q1zjzO0wupRHQA6eHrebWJYAOOokuK3PEm6HZkQP646gD2d0y9vvhg9ehNo5D1RQnzrKWPCUNI+dOGhHJqWPt21xj5JlMuYjTLbKkmqhaFNBY9bLlFvY4x8dYx7VYx6YIYxJ4ssAT7LBigfIIChJ4dJtgBh8FVMyz0Cknm0vm+QwaobYSCY7XvXrBP0JXnFo1axZVrzz2vUOoxeRQM+DoyZz4HTry6dytAR8NzZVTNOW2x3K5l1bt+qy8v1XyxP0rZKEt5pRKCDAVwyHZ0ZLVDKpHlRynz+n2GH0Io5U89A1hXVZ8UpMrB5VtYg4tAqGDWnZSRVs7g1/o6eRRFdWNJU1JQ0Gr1WhO/n8ryQWLktoHlhFjIXkC6FPwulqufoqyYSybfvlRAtxRXFddr+81pV7Xoq9p3IXntVrCYmyAjMoy6uKvkikG7bCjo9exEN5Hlr8spbAPquAshDQl1gjQ/y5nMhtJfGoHTRV8IH+IkGskbwzdIjyckajrZT8fzrofoFZeyD5pJA6A+B9ESgXjQKWldtiq0Z5iaxtekP+J0mABUlR4v8V9gT1D+72XMCu7Sk1+YJ76XEd54EbybiUvgjwJBpEa7tV2EedvFthH7uL9rnG9QBv62Gti7plsc9rSPER9bYGEoVGdm05G0r6ce+WRHz0IpHZ5GIYpp3x1QBcPYCECdRznV62l1bzmkc2eIRnejm3kiNsWbgo5r4uc7U++dad37u6edBCMO2EL4ThwhlsLlW9RNH4oGAXWfNIqI0YWHldeLniWhcdSPEUQcckecwLvZUvpNrRqH2P8H7LO5Q+Fu101NDbWDJ860A2i5bPGXorpwIa60F6ffeFuXqC7B8qgOaCaWaFzrgRBdWyiDM63EoufEotfs3Z9EiSk3MqCQWT6B9PeknUDBUZxK29R817noIqr14OuodZFTTChECb1uvWEnJ8Cky/iX1dtsQ8sCsYG8MVQHK9JEr/aDa6zwRzzMU0ATxF3eLBzzLXyJxVLLh8t1GGHU+z+t/LDVxK0eRtBPymA74G8qCY7DmCIjiCmgyYD/49NKgs/7TFCXgKa0X0r5YfUPJkyTHDi29fqlIRsuw80cKbNj72YHTQHH5Tv7VCh6il60XMZVgu0WLWflnoOtWONEKiguEwF4PFPBjtxxyHM8Q4Ok8t6j3+F0GfX1yZh2KMX7pxZTBcNZORImuILCGc7AvWUD4oJW4A2tBIU6LLsR13ZOOGaE0bHoIS9FelWw8nnQdcleGwvgLupJgDdFAsi5WUb/89yptFGXTIl9pytMG6Ea/tctwHEfbx5n/D2nB5EvPAq2A8DF8SwyU0gHeD8T9QeBhlOVQoHFL0zMG+oIRu43kMCEPM6gB4+RO5+crn2MOWJlfB+ppZn1rAmQjygyJdBh0nyV3J2xU5yVYI+CcgBasLF0ULgTuDNapiX9TXn8Ya33i8e6S6eTC+YEYZPrB2AuKw68WqRhwlaR3SPpfsOeo89f/BtsRKhLKuRJXZPkax6W1y3ocik00CEX3ZJfCEOHRxtujoRTSg82B8x4zy/LIML+Po0arM46EYdfiUd+Qrggauwr9kJl3RzEOBb5idXx3vVrz91jY8Vd4LM1CTt/Djcs9HL9/7aR5syJltuV+Y4YWcrtROgGBNWc7RXgztaKtZP35yPEh5LYvtGCQquRyIdZ51nyhnieKTN/AMLWh3hUNW6ENHjbR8ozPxQBwin642NUPLQfIzImoBG7FsG97/0WX+EDkkl066hXSn7G4LyksJphBaXsozmv+IsOJyRCZllDD+iS+j4rIr2BaAyWMMFJiUjT2PYl92TKD4/FlXwrRkV5kQU/6RpZiLkk6OqjIUlkghD8pJKNSHlXvwcHyEnEEOBIVQb+1HYQEHgi8Nw1Dsaf1lJ/UNYcUjiMwDoYQRUHwNIdccShyIvRerFnlTzA8aWaQcE3F1Mc+jfmzP5am7l2EnuFCvzkZNu28hkBpGSEIj4B31ssGLxJnzEJeyONZX0HHFnVIWANhaAFjaUvRhwwQZQ1VIBZXHHT+jIRZKiWiALu9+ejG1M0qIKFqWGkw+H8LHV4GPXqTzzFQG9921XTE68gxUHY1J7TG7OZeaM6/Ra6AqYyNAprU/RjECbyKgrmr9XLFmbWrip5vDMjj5yBOXWYycDMFkaBVqk6VOZIMXaTwCcSKIaKgPq9Wd7HvmDOdqGX+oepCrDfFbKlaCAqY8jHZLcDflL1BzDhDqtEUCjlH7/ip5P8CVKL07MH+Bc3jkiHkgUzDyha+ePqmth4ZXlvJITpLS+vyuxbxMZIsDF9Y+xz9eNqYgG+RXpQ8A/QKwJBxb8kOUBRfORUcv8rrNw+vJXmdfPMirBKSq4FYhbLsYSCrTmmeZHH3IugAZEc1m7QyslY22yz2H0Yt0X5j6+UBhpymVq9ViMZ9L7+R8yhP/Ej3hEcTBh1EyDpO5gbpbAxIyZeXCXb2vdeVwAd6AdZHzvuWJX3gKe+DKPIAxDLxx5YMntaGkDvA70oM9r24Y+Py2ErdWYUCdiGvZmhB2WV0l1fZs7vAN1uWh6/MAxjPw3tWPcrnpgF7GwhkYn2n+Y9OATFytfoQkYWzOgLxyQ/sRACUcz03wK7amw4+cBzolo1/6YhIuPsGOYS5sSUk7waJfFFSbbkO4nggUNq51Je9s1T4HK+mPfPRdbs3kTBzC23FFpFxxWgbI+qAEyW3pddvro42IPOIyh7YQ6mtFvIbyeMiFhNzSqydt1PIKvlEtq2thBYVmifToqJFVb/laCOMjOjKpFs2UCrIN6o6gxnlg4f/7IaK+H6qiO6nufKdeBiTheK1aUtUeiCU9tfm/VuhC/5DxI6CVruytIW+ybpVfDHcFPCVJnJZu3lP0/jAZ7UF067oWkVy6IGOH6zQovuGlT5VzQB4GjevRRVR3dVTDd9BPRy/i8TsPPaJZT2mfgHAiLHS0Wa3694g9TdMEUGiA6o6oQpI1U7NmtUVQ93otBhtK/gf5rssnmZx/wvgqREDMBcfof4K4x+I42cMWJoawVj1/9Sy4q1U2sG5Q4rsdTaPHp0ijwtZbQeyqGPiNoL3tUvdh9CK12MlFZExz5jMvT0xNeSPgPhjQyP1O5kmHklBPCIZU8tlHa9ukXgJ/rbDiczT3eCZ9v2/H7RqdQp4KjLNDUQNQH06SZovqiFl/mHyUq01hbiNJctWNBXXIsKeRHEdTWzlz5Mtna4ka4GKLjUJ/ICMV7PMeYaRW8RFEdjvRx+5kexi9CJtyHtiXhKzp6yeo3EJuYcBho6SHCmbLlmGgUQ6sjcCcl9DasA/cIQlblTMM38H2hjmRSw4N6ReUKyE9GBUr4Kejl6YeYA2gsoH+2/JMpr7sBDOS4aJ6Own/etqApg9E+vo5LupgIpD/lYzYqjfyhqJyMXk+86vY+Xtqk0clmgfqEaEqEfncSW7XYOBk2BdwdPtzFOeq2VNHgIjZokBZFr0KVtQ4JJdor5z/C3qDwyeYB/oBoyv46tGT2lS2u7aoagFKLfOy6Ph21kRtsXL3uqVnE8xAZjbsTNxbX8aGhfZIXZ9vScPv7aRJxy5fNz0PJp/MFNRHYChgg02zKD0UjC05bK1ipm1Ds9YYYfAle5ydHsqh7jekjzhI5C2+n9qUXxJ7XCbNPDBvGFPH1w2edIZdXu26DBvlkS9hzyNZQrI3SCLBbYEH9FTeiWIkQ8lzn438WlZ9O3h7KWeLbeGYslh9fPQip/I86C2IPoPQ7jhND1Bug2YI83c0vg1rniI76LDrSXLulm2tLbnSrfPgOsfLO13yEmWxQLhgwf2N/n3r6KODFyHSzQPxjhH1fN0B0ymgM4FsrKikgFCopsw2i9wTiCBxNWjdU7c/t5wB6yLLeKmyv+kb4ZLu58EzhnnMuPAzR6vxJMg51NXCBvSD3WUC0kREjjcYQ7CrW6tKTtrRPRZZWVGS/kOWWbr54Ze82qKAVLt1mWzQTIThH6K+KOBN4sboqR/RNwxdbFH+w+4VDoeyr5vkOkvmdsMS6aS8y2FggbxJfbxOvbvqr4rDKXbL7fJumXcYvYhN3jy0NSJdkHzo+YBUI3uFzqFB9Nab6T8KIOCu9wuSD6TVea2Kna9bT6ZYxsuGUX149d1GXwT7yvcO9/ngRTameeAbM36yz7g9MXRlWZWwozMBYt6xPpf3QKMbgLoF0p21rmxDdzQBHdwv/orU6ZKp5oF8xchavm6W62wbei3EPlaVc9FUTT0xVABRBhqz5RU+odFxQJqnBqASVT1Qzq96B3jkm3lQzTOVvU8/onSljmwDaKjOLyHgKgE27P4xK3cKaHbKiySEGxkA2Cor9G7/R5iMCFS3tlG6VXVC390zDqMXKazPQyGeFe5drelJmirhVVQ+JMhgzQiLENDKJnwrq7JCPWAGoFhWfvWk1rByBUjHn/S+3wuTPVx9UhSeYPa+zljVzTkipDdnEzSsW5/fDd2XdFFJgtpfqcyreiAaqCDpXDOuJtxgZTvP9trCjczE3p4m/YeKwKloHA5k8OS15Cmi78KeJ0uofRuWkSsiwrWuPBIlrV2nvL7+gCLAupzWWzMVCYbaFmgcRi/CjJwHJiVjXroCGq63QX5zp9uIl7Jdj/+mCeilsEokzZrv4HKAuFjlpMiD//LX+gaychgy80CoIfwbXz96kJuCea1+pUBmwKHVz+WO5qbizwKTAzVCsVXxSOEisccXBP7//gKxUcAhy14XAJSUqCYA1hFANhoIMGAiBnXikU3maqeJ0hofQ78v36wjqZLTIK5JAuod6R+2RcQrH+TjVuSjwxjytr/+A7DWRQcnRxMZ+kiUc1xphzK2lun0N4aocU2TE5y5ddPPY+UIWBa1vmjHO6y+0x9R1VyKxDxQKhgFw5WOnpSmbWhwrOWYXtdhCEUsWn7b56AlGZ6DTB+J+0JrO/aux9b3DVfRYwfOA5uQsQ99AREXHEGQ3Xq0+SWuMRhS55Hz2rjxCZHOtqDHdy591/ue7U8jSm0I2kNvaj4g9wrGZasLDhu8fOX0PBj/EZ9Av8B0KkghYgYfSOaRc8GYgFGtaYLZFma5V+225BYVwVupI8B3R79ftbtvhHno8gtb46CWUJJBpgXYph5UZh7w9WuK21ruf3V8P1Q5x5V2xLSYIaIImJPCZXeHV2J8cvW+Kt56QNk8AGsMiPPVY1Rshg7pyTrnKGN8tcvOqH7FVO3kk0ekmqZJLgc2BnY6y6mR6rMH2O87v3vUiMmpFIx6QfQjXG+CGknJWiG9tXtUWNN0WDqZ7lXmWzEyHqmqtS98PgC6PX/+37PVfO+7eWhNy1rZusAyQ6Hb/1N4vyr2jaqAeTBnsP8h8VSsXKLFbAQu1GwrysnAAjIauT2+/Vem0p58YnLXDOayQUpsp5JchbNxVBMPrQNaKhygo8HRh5aCsHXdfV9lLbxacpUdud+zhvF7fWLThqVoc6C/Uw6rjYLyLLoCZR003bS6YBEmIdEPcpiPwYIejGjr3vLrdZtHdpn66oAH9oNF88i89Dvihd2kDTp6kYx58gybZeREQniSHKIhyW3vRdZbrJ/j949g/aCKJPditRnDU6sGmfhzSR7aswHmV8rc/yVTTe71TzoDuOpZJrVF1yEwgfFxuOPqUXJrbRIEZkVI1N/jRy+ko89U/ac+WAoc/EfWkChGW1n30rNGOWhHtqgabOwidaVJRXNMYucTKTjxAgXKip0L88Np2/Y8BFe54eXE1cjJb60ponLeqiIcYC0k9F19PPTyO6jqQrblspzS2392inz0Ij7noOdi973BbkCsLZtYtUaWLp2X82c53xbd4aPGcFl1o7lv/m+CFNTmgR+ElW4BEaLalHRdWTa/9BkSKykJS64hV+Ph3fEjS+ajF/GKmYcON6wjjl9c58X4ghIYKk7gnjY1Gl7zyJFwa9cW+KEoR9TW7TcMW/+ZleMo+a8gew8jnxxTZxg8UQ6flMbgsHUL+4DhGnkdDHQI6ZIlwwGvylo3h7ApyihdPj0VUXnQdgFZdyXN6++d8/HBy+3xBJGGeg7VZB0QarkNhHXlLFRCQgUnAU5++rpAzCIPhZVBkipGB+gQinSk1V4A/3YE7UUJCihosU+6SgKSrmFt140OJqZp01Xo4EX4IZPTSRj7xJfOnaR2LeWqZGPZUuFQavMnUAzuZWF7S7Aa2lo3y+OXt7XtyoT+gq3l8aPmgU9F6Fc+e5qzrbv11DaI++4r6E0qgK7mdaPttdNnWUm54+pCLP+uvZo+yzNo6FxSsa0KkVGKN+CGj14EV54H1TRTWfvAygmIkYcKT6SGAbLl3PtzSUxGWWrwEqwTI9aV0yDDxvqGQ3s3odf3ZF03zpqHsIyFcb6C7qS4K5J8FuMCA9IzqK+jGAI9gLXR7eVO2/hCXr2m+VCCT/GrAexXAk2PKTMPzBrGxHEllCfFJbTRq1lHg3V539OAlGKG1fKIjB73spI/38v2QS7g1UiqwAwKD3fRxsN47qEu3TI9OnqRfic4ApArVfyOcEzCwWA6PU/Wx4V0XHiHBsMhKU9fTvTWl4uN7nag55veTx4zIw2AEwjP5mj6wA4s4pn4VzvZcfkrswe7ZOX9bPAiT9w8PKHsifZFZFx0xlJLLxW1dUPTArOGJqX+H+z293iPC5fPA7zO4HhPQs301tqXsaGYoP/OxJsa8dyI8DWr7KZXMaRf9sjRw0KBxtOTpCGBUF6a7BBF0byKNreLu8FHL5KjTM4lZ9Rzn1R2IqHJcTnCml82USOFdWThDdxHvRyDXm1dEMyjfTz0gv/GlAENwRISBLkkWAuuTlry0sqFd81Nk7y0fStG/sfC4YdZJ1BojABpDuy22EwNrSmRaVeEjU+ZRoOP2z/rY9atwXv6r5MGH72IX8akPqnMVdUtxvPaPQ6bAWAbsyC+ybvlkOTCaNOgBZdhpy0WlS+sXVpg/IrD9q+cxz1sbXIojiF3vm6S6ywLeu0MU/TIjr8IPg2kcISKGlVIqL9ZIqp2a0sBpHjk33A1PXbkJFxKzrz0VQRcdYDjDOQ9TC5vT4tjTdMQkBiPSyKI/llWrg4IpPbnBX3uBfB/gfN6mPo8YPAEsndFoyeNaYWradJnQuJ54+uhjoBwee35AdHyWKvKpWFD0meohjGequwvUn6XUTI5A4UyVnzlPFfaQ75ferd1ZWMuC89F6SAHy/jlOlvZhJgub14yMtSQ/PrZORsQk7YDVr1U1kC/3ZutdRi9yLE0D1xqxr32KYWcgpgVMVNus9w7CTENGgUhNmP3NwWY/GKGsEKngh/HFGCo3z6rnhJVBSWi9Q4gRGtd+dNG6zB6kSucB1IlI2F6fOoT+3pAw9l1dsmkQ9mzQCOgV6MFh9q2OSu6DIZ/1tG7lWcTua/Eufp4KxMS8XkBwrMIy2gKh3cRFyg/hAVxrpj3h4pnudjW93hlSDJSinirxYeWvMKzA8FXFvSOlmQevMKIt5iPRh2wKznYM2qhCHYklbn3LKiqY3I0ro0GpGLRCk8L/Lm8HwO1p8ev/w3DyeEVTcZCopwlVzh+kJl3Q4vh3xdT2d0r5BwAJaGjgChxZlkrQlInD3sDjWr1JvxWkR1RoSjVmh0neTva5uijaS4eYT1xZT/Y1qH/q+D+Iarpg8TaNTcjcTRo/5Lo/VNqfzfM9y8IjR6DcB4Yh4yh6OvmqM4uQhacgxZMAzTbRgHEPGi5ZI0+4GpkbXaw7F2DdvBDtF3vZ8DzlSDXccaFIDeitx6KlUOB+i2ZdeS7P75ilstrCwq1IBngaRujZjvRArAyCSybfi6JcVuWvgkBKoxqsTWUd8O8ryhtHodsHjhnhKNG1OIndXmVT8YqKtwpmvteGkB78m0ZAzCg1XpKs+9e43K27S9O1zeS3K5tYQtKlmjwJCmE9VuBq5BsMuDdqKlOWSVOhr0T0SyX2LrSH08pZIvKCYCyBO5EQUzxtBv/htLnUOgmZ9wxhh4RDnKhoWwoFvorhiLJaNkCRHkVEMrrXjFiStuiXCKM9ee37JDtj14Al0Y1D7QrwtLyJbNcYguMQ1FKfZ7DZsWD8NPGWM082q3BibHAmuxYzS4zhuVZ9bkBMoE+2PLsFOuHXuqnvslHL2KXMWk7ENo9xEdgOWILvlc3Dqzmm2O0NQ/2iOVkFPBsprUubOx7+FQbn1sgNCcJr3iXV1xlGGoZvIK9w+hFQJjJ1TNUbePzEDhvQXsRIsTX7R38q7rmgVpAi38BvKB1wKBp9epKB1PoBOrk4xH4vTrxBj4Jlb0KC0GdXt7r3brZA7UcS4NFNyhfPXhSG/o2PyyTCCCfKiQ8lKg4HqkObFC1ft3DshiW32psgOswehHi2eTSUaY09RE4jtg1LZJjn7ux0+RuFm9NUTN0oUaoLHvgsK4lTelFOEdxmfKhPRT/wRvG2KyoU+L3vft/zDY6ePniyXlwBSYuwqQSSQuXVlXAry/TtF4XxadqFRJpki57G6U12r4EUiJKgV1evfEnnFaXRDo555RRVF2lDRfmFO1St+BwuTtWLtQ9Q/tbKeqdhzVpxKqgT3a7yFRaefUckKNMtza59Lus2Gbb8PDBi5gDTt7LmbV+9imnlKEKtFgbDuPPxz1ijGuaWtqdDL6Su1aNRyrLwtgM8JAcjfJ+vVRM8gu2hVijJIT/iKDYLGCbjl6kpjx5CZpVrH3FIFcYdu1QpNa24D7Jnr+dCuViceoBH09KbLeCeENx2Xp+3VCXveKeL1A9j0c0D7wjxlNyRbMnjS0w0XtFG2houBs3oKGZ3i/UzFpbvXVlE8xKetH73kd4uo9+Bex7SPo8IO8MqXdllirtDGpQrP0ZMuC/PU0uPVryXORmlJefHBjxKEsVVLZweknGsPsnHEYvIiCZBwcUYpji15VoGWqo5CV1s2Mpt1GaMU3BSQ4oa0CJv/rKyKo3MuKhn0erwPxN2T6DYVCWlriDzWu61ALy2Y7ka6nmJ+DKWH+YbvQkM0Vnh/WgV4kzbcOISn6Af4nCGTfkvWvVgPdwvXdj2fj+xRvtgeOTQekMd/d1k1xnmfD6Z528K4Mib/0l2BTR9sUK4N8+hzcQcOT1ntc/gyxdnGgecCWCQxH54EluWICAr28KDNK+KSIKedXsBGgJofJaF4SqxYDP2ACfXvK/Zyt69MB5oBMy+qErnjtI7SQbvoNxD3sulsbDoSIjwDdV0KjmUIVFs6x6W8mvRZSRH5Gc3C2FJWHvFK1DTtnBDB+8CDVwHqiEhHpI5ENcbgT8TsIMw3KLvFDWdgEtuBBQBb0eLR3mtW6Dls0+R+T9dFL+qmiPymFGUtu1/lDH6p4BFyH5kTsUuPJsbsdPl0zhKoepzhglOU3h4FeBhoSbvyGvNyrZam9RwgfakZssd7Pp+dLK00wSGZrZRYahkRocDMcqXxxGL5Jdz4OKgKkOXAoNZ9x0jS81SQf7bXUjjcpwgR+fFQHkeL/3svLKt1UcGADGnwxNVFGQnUjuEPpSH4UtS6ODl2vwD4ECbGTlIUSWLj9wuBdT2hU0cAEBFxwgiIl411GOTPAZ6mse9FkFOQ/FTjncl3G5ufchGUAwdJf4V1i9h43PA5TOoHdfMn2SWKPr4G2xBmRcH8W3/ElZhwTsObd3vxxZyutB1HvLqfVEaiUZVPMYua/VCnXW3Hq99nTUijcNQcBQWqU8y9E0+RKLyYr4edH/ElD2p0He/9Xw/lDR7Elk69sUM1AMzg+lKylUT4b4zGFxalTrB7/6RciTAi8U2/f56EXYMZOTaRj3xqeQc8o5TLd6Q3SPMLLIIZDXPHIFaloHhEcehbaWBT3ltta1EhTe/fn8g8Kk+IQkIUuAgS4GW5hIRy+loXY8FlGz9YDSXFD0ouK5aAg/4S7ZtHHEiT7qKwdPSkMXHXHRlJ/V0yGodkPmGQlxzzORB+qlr7aSZPAd8/2J+/jo5WfO85Bok8ScKAcPQsMBFDCbihcy5rA+lxSk3Vb2aBKErfqBvFYh3zo9AjVJCB/1uyYRkQJTyCQUoYFf23oA+OBFzqfJGaSMcUqoNCfqDbquV/NqLuD1GoUl4HBL2dryySNv9oRYNyMbHnqdIb4Mdb/Z/z28cHJ8keKRrmqei+xRChwttJXdjWRlahTPIjiCloTIwWtl7QxiXARBGp8Dg3/GfQCTTYWDPu5aoZYtuK7H/zB6+WSSedBNM521X1/m9Wh1F1RA7lb5W+nbcbH1iOMJYeNddltC8AQiCqC4TEnM80uXK9eo+YzyKJv9xHlvgIfRi/T5gTwBjXK1Qgv/f2Q6Zpfn6Nm4hIxLzvDMx3Kbok2eQHteME8DvSEpcQp1d5tHVo1o9pmVCIXt/ylRkiikLANBoDp46OVa8m4Xzkcvwg2bBy6Zzz1jdNIT/XTgMTZ/1tKSAZX4XK5OHbvlemDPnjbnTe5GU+acQn/5pdKVk12TuyopbNC3XYL8+pGm09GLaEjnwQCS+EX6IMMBk0DLQEjzMU3Npe9+iujrjqvBqlC471XltqNqjIoBMIXxzPx+z9F3KVWT9/nwm4K48nEqNoegDwAFdOxwdTICG2RAkpHKnUI7atlELYmAWhCdDAOWRE3sVe/4hrfk8IQmpxVRGpKvn+R6SzQWTkUpDTCfby2WNU8CVcxKB3J+Gt07Ko56RwOT0n2/pPnyj6F6xeHeTICJtPJeW/9h9CJn8zzQaBnt1qWRctZpgwagKas36pFge7zKPLQNL7RhS+IOKltspnxBNfU2XGfD9hmQDL4fhBfaEBjeQOvkP4xeBFmdB+0k0VoSWP0Ew6tKa+j8MHgp24RTXs+6rkeeLaP+YV3wFvXDGzHj462XtbSQA3akWmcj19mmuofRi0hI5sEuitlL+fX4U/0er1Qx+yowSoLV+ys0Fbnh72WLkZjdbi9o+pKvVHPH0iZQf6NL8xxz5qHLC+kKQ3glJx6K3IzUjNCT7+2oXbQ8iw6PCyDMa1WZQ72h9GrS+M+XgJB95oEcRMhERPt/8goYEYf6KmXHxT4rYILIVm19NOVX7vcmK6Hj6lhR7agvFPLXnvge1WseqGGMSuZLX7lUFgzdbEpchLoSqNY9j5wh2WrZd8qr6VhSSoqi/jgeUn8hFhn2H3gykVUstLl+IGg+epFccR5yS5KK+trnk1Ya/LTbIHh4zy/lqtwMOezhXgIlai3LrRCMbIl6VOmKlD72pyu6xEdF+7vJ1jG0PANEY//+h9GLNKsB8RZIb4ayTi3fEFwZO9aTIv9Q7e9JK1yD9tdBcUz21GyxcTRhTDCNspxUi5yAQANPUlFNs7yn7cVCyM2aXhS0nbfyRPsIDQ6jF7nn8/Absd/UV/+e1MJ+ecgrJ9m62bA9bAZB/bz+ZBf3gf95IAowYoErAeaKYRiYNC3Iqgy1rDngx7t2a9lj89jG47fkK93OFPTaia/y9e99sV2QcHJQkYKQvhKSKyfBYdfHDt9NDumwnVbhNqY/RgGAu+yy5f3qFcVHraW1aufOX+iLtRyDemxv2ts0tiW6kF8H4SxawqBn8CYH/o8a+YdpgCnIRSCx/8XPFh0ReMlAEgXF0pN1/gXxzON6TU4NY0wyXxFBBRRdO0JoZwGocXswSgr6IMYERrgWxcMwJBzLAmGEn4vWNerLVOMrhanHDpgHNgFjH/ga0JNmdGiT7NIUnzVKRoVBt+yY9pJkeWnG5jzAzOS2v0e+9FeqC5ccMg9kEkI+IRJQqhhFHnO30na8uVtIo/ZdlF2L3RAKv02FkaSvNLtMOWytV+YHtsgmJ5DblZZvRtttz/ngRXzP5qEvMetj7JIDT1zCHqwlKCJsee2spRBqvxKWoviX0VQpr5ooasWyFSnGAQpwaM+2t7A01KQ0wdA9WL7adt/7w+il6An4Y8DbEKMkbBaLcy0/BKrzKEMCzx2bdf2/eswfqoDkiknm1UtgQbhzo0koSqjhNpnXxuyDYvDaPxshLPJVWHkvzJ6PXiS1ngdGPGPQ+6A6B+HhuB/BpsT8cvznzzzyJ7mtEkAuq1aKxLq3XTJIigP/py+t2qzo/n9a6bGDDeZPS1/KRy+fSzcPClAiGPWL6ocaPAgzXSdH95zVbCRBIIKkRA9SuWtmtKM106CNcvVslGPnWbr4nczS87pEwA+YN6Kz+wDRZnnguLq8HyaGO2nnkLC2gU6Z8OCz2yGRv/w2SPDRaiuj0rfWlKMQ16viZa2UP791NSKpPBRRORlFqQX7e7NRQ+q1+0HAevJVlqPGUHUs7sPQM/n+iMn+R436QySgVC9KXFpIFAXDPi33jaTQwV/1S3D4QJOzh1yuEZH8UoFw0JdKfkO1p+1tzyEPC4oMKBHKT2+xwkDBqCO+hhSh1Jdj7Bd0PI8BNzlhzqfX+bK3k0quIea1vqiKyVgNeuBi0IlRBQ35Nl9GrAo2cDVFw73TvY+qMkf9OeWG33kRj9q2yz2MmmMyAn4ksMocQstGTWyR8kswHlQlWW4U1v4deANE+HgSSnqqJUfiZIsCqu5Ge5Lv8yrOoiyKbQwHkuoIkMnv+OYwevmyl3mw92F2QH7tlNdaJZeTZA6VIBSF0Fdh12ADyveoCQOeG2ZQgnXl2Wn4/hC7Iat+BfhfwPIOD2oeaFOMZuWrfk8qYfk2lqiDfy/P6O6gIXtlSJbAAxc3rresm9F+yi5T9uRQnvndr+moLv1zHuiijF7qa3+4VihribT2RVeSw30rl6KZ7yldCW9LWuvi6EGnKaX9Jitmfx6AmMwaWDYcq+Ak7S28HgA6ehHZ5zwY+zIjYB825TCr9tCE1xjmaeFesTwSPnkaQtd1JX687agA1ycryxdJo7ybr65/GSgzfls52a3Fn8RSqe2Wl3z0IsyJeVD+MaWggx9RsKlroI0/UqB3wFR+TZK19oNrgfjXpKkN2V5IqmZEatDf9mlflPVcIsw8EGcY0cbXPXOddNVi+PKjR/cdK4ZnbKXam1JLe/KoL302Yh301VyFtvZmJo1m0vkkyYX1tSwwtNmqWjpqvgIRlv5DubkNVNi2fAXQ6hyKMZzdiHo30847o3zhK9fJMocekkEC25OLHtYlFFLR5w5YUSdT4bQ81wrEyz8om5h2GL1IEjYPzGnCtHaZY5xnFtSerxntW77+ctzTOOLWNrvIE0Y1fRlWlZsSoeoKkCq38mTmfsVMdaig88AcZUxTXzHAFQZAHFHD1/nvurrLYJ6qG7+C/w22R9tUOSBbbMYTkofhfvbJ+y2252Fp84C9MazOV8vh7xscV6MFwCDU5j0PNsYVAKMV43NDk5u3ItUYtShbivKWNsuIjV5+aXzyQjqru/t6Tir/RF+tiiYcwElk9YVeyDQJ05vJrBwd0XotaorfTbuEEpDWoP4GpvGg4XmAkhn07Os5T/pPefrrgl6yBK5W3IfdRDGXXZTsABKvZWWz2Og/WGz9eQM64Fec3MESNn2gNs+aDl6+U/3Uj0FMQraB579YIzdPlMFFECfRRC/ogvrP4mYJHLeIQ6IaVDHhtAI0sK1FJeFCuQZvXOvp6YolvwtMiBCtGggZED3vPJYOXj6raR5IUIw05Qu/uFBM0cesHlMogKDD2pon9RrQAxURcVypEtbFLjzqiqDTywnw9/xKn884D/xHxpf0JQAHxQCsSdf0d4T2aX1+y3OoEb5aCLW8aZpoNqcZRNSgrjwtkGX7t5O6wbJH6/P1w68/jF7kpJ0HBjhjjPtMMEobk3cCOJjMjdZhyyBR7wq6B+FaZF8Ida+ZJR9EmBzUuKq+7IF+bxPg2hjMQ18uv4uXzwIinKFyW3xqexhutzG1Mrw3col2SMBnzaoEGd+4jNt4IeABPb479gHLUST2UcNDick+tmiH0cv7ZeaB/cfYgj7vl/GE4bErCyP/jdpnY6RllT0AjYFBjYuJpdTlvKl3HH+Ez2XnGc8AVn7bock5nggN0TJKkbvlGR+9CANucsU7EciTOjqvu8NqzwwHAcv01S4Y82QI07rK+OX471b2rrotI/zH56C8/5UPsEuHmIw7QYgWRPDNBeJIVEqodrJ3UyXaPAm2Vdk4CPKSGSOimDn+0D9HI4P7hdF+oSf3UOFJMWSGOPtq75M6HLLMbjIkeS2N44WaRUXQbgGibIRLrl+xJykjalUyXq2vfm9/7rHe58G4h/j8+AVGXpBUUBKhteq0UBzYvugFCAeW1XB6/TlQkorek/gYtZMHPlsq4ldN06L2tYugEu62L3TwIsWVeWD+MqawCx+e0EZUtIpNnyDy7etzFJt7tcuRVD9tvzGJv+4w1mXW8WbWflG99fgA88AfIHQDX/VKRbJ6eJVmq8oJE/sWz8rHqtlFLpVTXtMAsIIx30oNyhjPzBWWipqcg7Zj9VkgDCvk5aMXIcTMA4HG59sQ5j8VCgQwjvPSpsq/tJaJOk1Q6QUy/dZ2+ySsiibrSf9erj8+D/5vRMUoxcCS1Fr03uoNs0pX8Avv9vkAQG2gnSdC/qGy35NM2PfaZWiosSqz8UEhWXu8/7IXBm1m0+WitKtxAki0a7d89PIR9HkQvTGRnF9epdXYjtcxq2YvKE3OAj/stFC+xtVjVS5gd5uS3xHMTf38RkeqxwYg262+4hkhhCW0/W4fVTEdtaY3AZFEUOaLbKzY3KZ+PuC9YESc2OoS9zLWqC/6PYmEfXDQAxNtXdSGgtKIoJN+Nb36QlLslVfmoRxDqje+5pdrhAdA1aQGRgCERk57Hgkr87JMg7phF4cgc4ICDe0YJYB/NrsFPKlJnWQbYRGQevs4SfHRi/Rkmqq1vCPuG9zZs7zx9hy6EswfKno8iSSh28F5gRRCbtfYn8N+Fse85ry91L1uvZVVFDRLzC9HbE2E8MvKb9CDNThr9YNe89GLiD/mwbSUmZz66BJHo6DI1CKEhpkSGVhfIeR7AHOymqvKp6sUhNxTY8iqGoD7qSn/ptrn4qXzgK8SPJbInk8yafkj8Hk0UQ6qy/kxNTdwc0sK5My3tgtYV3bHtNz65IzIrw4I34gqHWbJpD71xNTeFT4eZJIVc6gEE71SLcq7Mxpy40xUtltcci6cJxIUSaSstrP3/ez49JUftEcVmZxaQqkormrmJLJpkKguJkozdRa0QJI53/rnNxh70UyqsCoeDvs8h6XO+sQ+1X7alldPL7yE++g7jF6EWzEPujemk/PTcprGN0SOBVmBIodbxYR5GvqRFdXzyT7YtzwvWSaAy2xymjzP/i+YCx5TYB6YBYyJ4HPHOdcce3yEREiPDbAnNwc94izOC86SWKyvdZs2F1YVO96QvzFU8S2PJu/JzHo4E/IwJxvLOZMjqtkaWslZaUcCAiTgwsaJBuJtYIKE4hJaYEeUv5DNIuYnNfsb5N5DyucBWWdIvC8a5CJDHBwpbmMWyf+Myw690QgbSsP0hgxlbbmjLRS08gObt8cd+EKX58Vbk4dnLJwjujmus0MqVEHSVKEnOmnsVvcI7pppr241PrBosaFBfdJpYNjz7HosO/zQ/j69qKsZTE3qzv744EXKE/NAnmZkax9Z50g8iuTQeandOmQNec+D/QUFZySdEuRYbakD38tp6baDHDuvNjDfyBK9ph1T5YqSYTYAe4gD7r4bgngyxh8qGzzJDAcAe0uvmzzhFgIE3VhBGLkHgkVLI7CsBC5IqZD9QiX7wrp/awztPm/z8Hiyx9mXDJ4khm5u6aWitmwtIRfbRxPy4He/198aonvEssn9Pog9iF+aPBQyEZSgwAHvkWq1cFRbOyjycgtV4Bfvj016Kqg26+cJUNBr8/+i5O/A6vOAwjPU3hdMngSW9Y5Rzxy5W6nnsM2loWRd5W1o+EyQqPlWqjGuM2HE8Cp9fiHI9Artk9flSRmfKCYPAku1FirG25CQw+z6QHlMsuM0rSBA6WRnLiCoG/uy/rm8By+0u5RurKQOnRTCu5Z34s8HL8IRmpxTxDhIhFbKaagR1QSoO6LxBEJZ08CMRdsNyi6AdvJ9LRu06QY+zpp5/fsbyMfDmOYBk2IYli8c5ELDDAwkr4dL36Ky5okKkurvLL9Tatu7uXXwzvXvEQQ8ZamQTekD3lAR0cRWUqsP5slHLwJKTq4dIkojvzB5KmQO2d2xLaB/ngRy6++xjSQYeOBqIOS3ghDayt7xXlc57hae2a+8ayObX6weP+qg+jn6DqMXCU7mgVbIaIg+IYETGFDIkcMA6xYUja1rfNS2KnGY8C0g4d3LoskgEAc0Rw8q6fsLso/HrpkHNg5j7/i6Eq5DGcADl+uy+h3GNU1C0dCSyIoa4yYHdRhRVuu4q83o/vv6ErCOodGt7CAFvzCqLW33AuKjl1+Zn5xWTWnYPjTHoTyDuHKz+T9VHpST5L7j8VIAoVhrEVxPx2aT13WG+8la7zFraR9xjLJygTxushMbuwi3aB64SIS65DNKTwzUDtVVNIZIXt2TZeNE2xkzsZIgdWyjVolUtf8OYLSCTPLfXxT9fdXwPHQsIQ1OXDYOJ+/AhbbfzU54tNWwLRT9xGStvGaXeDzttipyXtVhSSh8KvNj6/9KkwzfiKI8FWX7lGaaZORfigasHq4jRYvvPQ0zEw0fFMauTTEBFNWhKqNaqwgEto8nyw2WQFrYkl8rmwJ1lG0ieBi9yMY8ORHNJa35VCROXUJXcP0B1PHmVizb5ulInO3wkEPyXoZsqHQl0BTwORScz9/+K6aXd4WTkrE4ectnIXLWItA1KyorQmS1MEwj9xkpIu46KBFWDUarTDl6wKFEriw/ZH31TvmlJNkxOZyqVIZko6p6VhJ+8wn2BMw/TDV80BgPnCcZPWIzXEXD+lj7oEXomivYdHGtiIhbQlGV+9f4avuGzi5Www4W2ELx+2l8yQbNOTqC8NOUdiyPRTJGt1oJFdVEdvRuKyttZxisq6GkiksifnHFMj/mU4RmN0E50AD7yrvX76/l2Ljuu4GPO1B6hgWNMRxkIwvWvRcJ76f75v+Vbv8QxTSVVxNLG8cAZ90++P/lf8qhgB3zc5evaWgbIAnczRiwRhDd1y5PRy/CvJoH6SiTmvr4wwGukM1QgU1YW8meV9v6XPYh5dF20MJLtbi6wpKyJb2coIHV22/qC26TxyaaB/YRISv5ytGT0lTWsulRKCiWyUGvYo4EmnGWaJEsrkbSxztbxinH1f2mNd63xrDoP3hb8/b40THQwctlHM+DpyHzQPRg5xNILWFx0o5ieAmytYUGmI5dJyznRVRNx1oVl7CcGiX/e7nOfINtumji5OAjwyp9kZGKm9A6bWU3eH37mkd2nnZbVtUk8H4aqQS0WNJNWk6/bLIj1JS2KoWOXsSeGmAVLNxzUNVgQ0Wv2dvsyVh+mHSECk1Qixkof2oTkRvdZdcsaJEKKi72dnkVDNlCr8SWlAQQtdGS7Yh/wNNzmXHzwKQjxDtXO8KlJng35S5a9hlzGOEzjQTx0apespk86H6oERh0mqH3faYs30hMKzIJpT/geQYfJy+ThdTl4bDPtcN8O56yvgiU2w4RmyKWEoDXNYBQ6WOaQSB5UdS/ACs9Ysg8EEkY8cSXAXPZMFr6ha3jkzh2yWwzHIxk10+W5gWTcik9TbabsGSCYbxckL+SJXoV4nmoKJMCtC8c5EJDbI0ISTU7DWalrMCIvC/acyOA8TLWX8vXb2i7o39e8GY+EpcCzNC42LVWQ+VQa1v1Gj56kYLKPHCpGffaBxNP4CO2UZv+Bh3CGN8VbQQg2MDlyFMyrF4HouKtgbt6pxsx5r+CLYx8VYbStFKMIzh+DEQPoxehk8yDioSpTvySKi/BFrUoQPyDrASO22HNk6H4suuRk7ua+Y5cD5INbD1D6w7jBdclaNkRs2BOfdjlIu/PG0BHL8KlmwcnCOIcQUA1DsJpnaPjjIVvFzz8NiAoF9LVpFn9moPJPEGAG2gnqJ9LEDTCXzE2PIbE5IwKxsAg4tmD1hYhbTRwrstebDmefH6r77ZBaMuMChwFtFU1zEL2gPpMY+UZrmomJMdqUmK6kqg3WZuPXgRVmAc6tc++JjVVXoNF5jbA6dDp72ZbJubBwxYN/AgIPsZaVs5/oO16mVVeqkdI3+XBahboRHN9v004bFVbPnoRjtQ8cKoYB8sXFFABQkSSWkdbVgZyWH6ECRHvz4LzQrTnCOu2VNsqGLekZll/A1t7OPE84MoMh3bFZFx7NpAEKvEZh+lmYGiiKEeiUpPga9KtgbiuhWh56Oej3Pf4K9jaQwrnAVlkSKSrJzvJz2R/62kVu3vrFk6gmiC/s/q1JjSjWHbEFX3jguKImkPeRnL8T57flJMtJ3TXbh94q9t/+nw2evnEinkQlDEBml934HUKUNwjvOfBx0LcGHc3BGxaiEubknzX2ZARQ+D3hwtQ6+EZB8nCUY0HetFDTkKLvovXdOwiMcrkhCpGwCKgIsUgEeEnzY6B3wf80zUNNnr9exxY3YTuWFbuwq3Va6DP6dUHRu6bSXFlxmHVmyxn+acFFB29iM075ApISIPmtfhCciVLN+DJG36onoDrD+r/w7OvegVYScv0bc2T5BXCdgFwQP5r2csnGPjYdcLhKef4J7QNlycxOa2CsTBcSi1n4MqUchIYCwPB8Nrksz6s0brJFDQUSWtVCTwAOet9yOVZBJAdtiobQ36kYrlOD9tekg9exDxjHjqUso6mPp+W0W8zqqo3GlMgt2v5XjUtnbOrwS4IwHKf791IFVaceFQSOnrkt0HBN1ItCU9kNpw1GSyyVBSy1iqu+rJZTppLsb6NjE7nSal40Z9gBB6k8GPdDGRbBhESNy6m+63UqnL/9J0GS9pqHBDnrOCfjl4k45w0P2XZrK+kosIrOLFpKgOrBvkrO1NbNTViUQAZvXrtTJVVEbRrio6HOOVX569vdJoNBUfVHtzAkTMyTINs5WfVHpeSnsqbvmzBXV0n1VFy2aVvWeuDJKABm5sfyLEFhexnNff3VBWPGzI5lYQwT4iQhAtPUMooaUmAb6jVtgxGXqZiIbWEvkZ2TerZFsz0pCMUGa++10NtcsFFakFFaIgh99c/jF7+qTwPRCJGPPIxZY5BN/ivI+7E/BkRV1jzqONuU3Z4Qzac17rw+8r2+dglxw+AF6CaBdoPG3PscSgU74efj14+0jS5jobqbvzCBC9kJLt7WeeXP1kuTk2t2IcCZTgx29JvNJTiJUdo+nmQKxjP1se/peo47JhJqTSEeOPzKE+0SwlDEGJjTTQlT/vzu2hfIoD4aFMR9rLAm++wyAMlvLumfCFP9FCzyUE2hsn56sGT2hAN+bLVTiWVtWq4HIESZJsHHLI6i/WxqlyWakILoq/0MteVPbFrJC+B1VAGvjb4WBWvw+hF3s154JP4/BNGp+D0C30wCmAVUHvkP+KmZUjeh3ZK6uiIBLKvdVPRpgz4XA7bl7u0RAfLdeu2Ai+Ayw9dhQ5e5PomZ5Mw8olPJaPMM3jNq+El7qJEGr1tFlwuyEWUIRTWuXKjoN60ZhLgFZLau945cHHQH6Uelv4ofpx1+ehFBGTz0N2CdcPwmWQn5lkDVcFCLXkrs3UhyEXJu3grUOPrwZpNKkJS7eMOhKQ8Ox5/Jc11fNwnNX0nDvGufPYgtpUkH6QfiFTkR81b9gvKs7zhiKqBAve1pLwmyK9RWmioy/z3xQtEEvpkJ40D1d487ELnYfQilch5YI8ytqmPRnD0AuzfgpxJJc0lmNc65pFzrayKqUR+60lBuA8UzD6XR+zF0ZQs69YUVo5C7GHolfHfmX8YvQgaMQ8EckY492uxp9ptR3+NqPPjR4/byENyRjUy0QBrmZth3QK/N/P8kquMz0w/gEig2oPPKVe0dLjUSXT0IknG5DkJyWB87SCTGna41wBm1D47CgDUNQ0kq0i+wYZt93Lmge9JTeb7AanoC+yNVWP60uX8MA4q3pZ97NPRi3BoJzfMI/Z6Pr2E01Fg2p/a6j0F9yOLqGUeeU3gEKqaqKFWcrZqg6TPsN4KxtQz4q3R7GZkH8cRg59Z6V8r3aOjF2lwAl0i2NdFlbA40pHhWbtET8f4Q4WDVGcIeAnO45pljnt1JdN8IQXlKN1KgTIun+YdsNEr2r1R0r3yArt/rUt0n7bJn072MPvCQV4ZIYUUr+5i74ps2bqF4OSVv8mvGv8XMJ/DLZgHKgKjLvi6aa6z1kp1CxbHSi5j7hZ287TyXay4GjYzQmLwYdK0AeHLX3UU8Ohl8+CZwjxWfByW47awe9Qicm1KJR1rFnnL4BqgTegSulesVUEZ0z4GsEYAe+NR7viG7OTRi+aBjsToS754hottwIfJQBuwrmTZFsnqPPB2srqw5NZGA9N15VZB+wJOWn+70v3eitUHleYBhGKglSuePGktO9oLRyOvjLY0qFX96rM6WSuZqo9t1VhQhqz295CK/lHXRAdYnwcYnqD2vnT2JLUFa7kZkUi2gXhvI2/Z53KyWipOheUDCtABTim2L8i59LJlqPE26TV4gMrJRsi5f38+ehEixuTiaSK1diE4CtihIWfWAKoV1G6N/qtd1scNGpI6wMvjfm+jStnC8DLic3kBWn5B3L/XprqY8uQYNMOsiXaUa03lnMPZaT+z/D7G75dpMtAc+/klvrjLhsRlz9fQD6LxnJ4gH5BrPd476hFN45yU9vc/jF4kOZmciUWIWwSFPKGWDcRXdGuRKWEXapmCfM+awX+Cn5NsHHV5gcq5gE0k6OdIx5+ebHJKKXuj4WRWKpe83H2bUvDRiyDQ88Cs94n4pBx5Kl9KZKt8QaST1Q6XqPr2gtIOrgZl5vVeAARHxwb9HIXr5/f/iuTikUomJ6FQ0orPxuXs3aRGDsVIK/KI7uMS5tfoXmJFVdmnrWMFEF8Ehkv9KG/sW7rxhUAPTQCG9hVApC5HYa1LsNNx4UM/H2Dmb/fF/xX0cRHdSXTnun4yNEnWRe/X1WRUntRXR53f65U0/NXAOin8uIFOFOpvbAwoud5xSbI4GOlLijg5mpGpPfK1rQtAOig7PmLVdwPJ32nUHM841Lwaetxht5Wrlz2oWknOU7T9MCEZk50BHUD6nNFrsinZaE2S4KDW/ylPNC4btBtWpw00Teg/c2zxkfT+HuXzYLV5QOEYaucrMCD8qBK5Q9cOlzLUrMaeByGibQZwNOpP6EIDdS1WyTe2LLXe/UPZp6MX8b4EVwUtFORgytq3qcEzQ/dfV+HxQ0UVXIQRtUEh9nf5pwUMhLzmQcd0/RwocDKEX9uPA/ANqiCREy0+vSW1Vdc/VZXemrEkNH7ZDhN08CKw2jzwiRn/2K+w8YocsECwQGx+lBfymkeyR42eFQWXCMfmgcu73C67TpneWrvsGmZV9hGOmI7dEDt2GjuPPYxepMY4D3xSxj/1q6y8KpvV5ygYHRadwcaapkKZELWJ8Fi7G1YNaDZXzNlDwpv6ZKv+nqvk0YMmZxMx8pFPJeXUUxhSrO4UwDTr6rqFUpichcqFiniNliRI1pXvfivYIzdXDolnGeO3TD03yJwHKh1h3vmYOsfgi56Q3XzoEayZYAvtKPpYIfIN75LtOQJdTLKrhEHwqymsGp1rO2vY3CsdB43s197HBs1UWnas+zaVkexvCJKmHpgVgrKqW5mkl9UKWPSA9dVEXH3EDAxYfIRnTu8Rtmh5xtL4I6K+hxRPiiszGJqIiQ7aIzDVgiWOTdL9VdcLcO/AdqeZnZz0ba0akU1beSSj3Pks38vWku1r9WIoRVFkb9Vv6OhFCiaTF1hYQYaoiU7qI7ySWtjUfr1Li46u6imYCzmO0B7uutZFISwZliIPV35G8L9lbLgsiXlgVTAWhsujPNEu5WJKsenlHbw3B/TO6sqm/hVy6llXHllVfjtt7gNM+N0RGWGQNc2oyzhXfru4sZvD6EX2pnngEzH+kc8pYBwEfI7mZGjHBXfKtgkRsrVpt0HcTjgVtbVoC9DB6efyG40nWUleDT3MJRnsRbOToBj4dhQlgxcpLc+DhIhJjvzq0qkaJS+76g2athG1nQyfA2lTW3K0VW7LrqKiVVFWz2IUScE7fRXvf1+69MCCecAWGBbhi4iI5Ai4YAzD3PqBgxl5FTCimvPZvqKy9n8GdMCsYxU0d1un79kq/8sPmQc2CSGf+Fwqzr1Cjt9i3tQeeTf6micDYO9K4ck7Z0/aniPXRR3qAOGfu35QnyOY5Xf7aQGb7SefDl4EVJ0HTwDmIeDDKicYpmqPPfUowJm/PAqwZwylf+Mlk8O/7nUTbEyGfp7G/Sraf0HW8jemeSBTMfKVTyhi9CMcB/CtMLqnPGnr8UqgxgTdPiXDATiZ16oSfzYti1YobN91S97s/t9x9PIL6/MgnGFCG7+wSAuRTUlCqmcFeQPeJnXNk+GAYJfTIHKxrRUevnIOJv28QgfyfAEqWCj6zeSBNE5Gl11qwxZ09PJdFOahuyfrBuorCE6Kg9a0VUlGbxvTeUMWgbcRKE9C8okWzmvVLBErwG+s2pUv9jeglYcTzQOuxHAoXzt30tpVCSeyrStpSM3bahZR/zLrTmP3pS1IubvBFiDrjxdo94UyzwNKJsdVGAzjK+e40k6xoKDaX0j+272sSQH/5aSGtfAu0YaFBvPIvW2K20SVEtQXcPXrpMfnE86D8x1xyiO8Gs7DkX28oSevAWCye4w9TwFdwJIwaAKMtiLr3gof6PVUWEI9tsACjYtWNSQwUzm+bKNjK9QPoxepyMwDr47x8FxsiUNR8oLDxwDT41EK1k8dlWIEv/gYDTtQw1+rdlkT1YYb3m33/fSTlwAeRwicy4M1PcczErc+j49eBFuaByo9o977NTlew6vYiRBjYX5E831N0yQeRizRtcyTwmb8S4hRIH/HZUoK8Cx5DXlF1CofqmClZga5lp35HUYvQpWYB2oFo2L4ahImPkEzOqP1Ytlh2vk1DXIxK5I1edT6x25Vzo3bLjPE1cXnk/6kZMl9BGve6tqor6/8h45evopuHnpesB4ZPqeYUpDhPprHYkQn7Hp1TYMfGoWCjPSzN2N/QsknmSCIJBk+IRBOPd6AqGEGKmKoHusu12Div6A7OnoRx39U/VEQrAgOYX8pp2heSlFP0fpDFaRccYpkC/AGkMEmEaG9SOiuJacMgiNE+yl+Vg2guSbVxaID5BO6AiQXtKp9K8KCQn+L26joMHqRqvzkvFrGwyVV6UMRuyM2CGpbDRDDrFvRykAy3GGXIxvMbUcJepRCT1fMHEXS6xd157ciVe192mDLZ71jJNZrxlwMUJFq7CJviDy2Y+zeBj630NdRcqiTQaMelGrr3llDd9V1xjfo8ZVO06u1zUNtjtXyfC3lSXuJJ/02DiieHPN7gnG5nHiqd22wCdmKT5WFJsBqGb3OkFo8tgAljuJtlz20KD03aCFykXfpqKH3Esu3ZL0w8SyGbbeZYAE6tEmIZHv93tXp/9V2cj0llV+6hpaO+aUVvkdHDKt84fFiLn5D3XCpEvNArWBUDJdZyImIoL1IGFN1ehx4va1pEJzcy8563DHFtSwa2qIUiX0Txn+P4+8r7pIXoU1OLqJkJB+ZOQA5svlnbT/aUfvtxoxDm9WsvSxwObI93HG7ymeIDpJ+nhHTPVHvb1QL3us2D68ne50dYQFXIcCZNqhFaUYmeS9XO+T3spQuKrs/bAD7WhQhaLSoA+Hfu6fcF8R9xwYYvH00uawo/KEgbYLGH0Lz57x6zsOvCCKafg5RTA1jz1MlgVQ+fzXOy15XfkO1v0A5SL7Gs6uC7LdZi5zy/0vgqT8wwJ5lUcAGL3K/5+H3Ib8nYdbz05Kdrt5pbOvKXSwajeINuV/uLF81U/fq8/PALiVkVL9GxWtacoMlDW86O5qS113qasWCKxyzJcaFCuBhGMpcapoAx+fz/5VywYEa5wGZJECmqyygOgQQClprVtGRtymaIkpmkbwGNEZlSMsm27cDpLw+Kds1ygNYn3Jd2AFrkbtBXmcUtR4/FVA+epES5eTUSsbE9NPTUzorCZcCuR31ldxWA0p0cpS9PVglVbKh1csFCYg6QOIqJYp/OhV0tPnR8L6jua0d8GPb8xxGL8KxmAdOBuFwEGYlZ2LC2kHZhwqJ3su8BPPIyRai6YHl5aph25/hAFpIrMQTb38+9Hv7p/+0WZEzavC5qdts9CIgxWTKEqZDIeAcB/MiMuoEoj/eeNjT5zVPhmlHML2MBCl961xGKx0PAPYl+e9nCVS+V1EzafBlrW1QQNS1sj8+evnZ2eSEJMZf8utTvJ7V1DBHeVMohHzKYhV7XtYqkvVuTZs3JV8cYSw+b/iXT8qP5C5W4JFoSdEOuTo8aEb64aOXH57NAy2H0Xh8dJqj2R3MO1AytT0BUOTdXqK0oNVFAAljuT0PVYNUDUaBmKDF3X/fP8E9UJvmwjXZJNmSxa0N8DB6kfrcPHDyCIePpOc8nQ8a9EL/CYaVvNUWYHXlKCoXcmhjH2tGguvpsgO2vCxCcJee6e8X0iWv6j4PVXpW1fe1RVyL1LHXj63/lTCxbWlUwDbZl1z4/rgCAsEKff05+IX//gb/9zD3SSF6guf70qKTFGlgnx8Leikt1/U5wIBs7lAJkfTmC0jsknZoUHt6NhXGE9ws172Npy3Ja17fng9ehGwzOTeHUXl8TuKJw9ihhjDOgIQFKe2Wyjd4XWYHElKzqhDWBZnKGAm51vgMAL6SLjmQ2zwgdAzRc6VFVImExpyytd+GaEH+ZjSPooek1qJheCvBhdHn4Ade4Yaof4/q87P6+1X536u3T16fZ+V8n5SuZPgI72adRk7wYGgBpkm11m3/h24rjx9UskHNWCXQN8iq5L2d07GLwG3zIJNnsnqfcXFiaAz5pZLNI/+z2WGhLuaQJ6jIH8IEA/o16A/Whwu/bLO+7H9BZfPO2+lTzTgvzSdccIJGgmczkAVMLnvtuPc8+mNlpQ7DLaFvPhwoc8Moxb0sR4zv2UwegWhywhEjKPlEQ85L1NbqWZtJo6tyzXmzJHNSpxuUQWS7K9G+/kBDnqZfv2u7ilctYyBhQNwqUec6rEv/tAfmoxcxA536ee8QomhPBLm+YeG5K/j4oQKLkyAD7B9ASBFE52bgnHayiDgvlFWNIzGvZeXp0igfe06VbeSxm39FaPKe0HmgHPkEJZ9wxglq8Ky4i/JBKyKZZIfWXVVlkexq5PfKbdOicMn6fhU0PL9fjaNQR95pyr1bAqadzvNRo7HDJDsoBJfBys+LxX6jx1pXTA2dBazdvavaoyo5Lqpjlo4MJkAoB/osAESJ5VP8m6Zh6Oyr5ulgM8kzHtPqDS77GkqAIDPB6Wxs7wwfaHI1cidJna8Q8BQFP8uyQ5XdEDtB0lZfpoO/7hrmGkRBh4f6WsT3R3YpZ5BVZj3V3g/TylFlXUcxEO598HZE64+yJildS+pQidxtFXFlyQAi8YD0L8k/7M9OG9gf9cVO3XxWELTHte8dRi+SZk/OMiGkFIIxcEwCHYuq7jZ3VhfUtudBezO893oEJov5sW6TpxKKvlvThbfP8O+JXC7JYB5s0ZiNmk8zOtGSqvXVDRpijbBoUtCSNPNARBsLdGxb66Ixo9KYcYLe+dkaHccsOsPFoP+RwSDZ8nMydJEC8+QkS0rKdEuMvCIJLpzqn9WwCob1bU2Dt/tedXD0+flnlE/JvNHGST+WGPIp2pR91CzE0Yo5KksVYMrWLPLRi5RYJycYMT6SX1/g9QiUZ+QFjjq9PCkxby2jbMgo/2JnlNhuPVowtMBNssu88Y0eP72EWEMBevSutuOtfBz3+OBF6ivzQK8gbAy/wHYqyEku04DFw6UWN93mQfVfIoSslxNAudvLwvAj2uf57vlFYZTQyBAamNyrLFeSjI9ol49epMQ6D/oKpsfwEZYTIjMQuBdrVQOsv67P5RnpyHlg89BarNvbpN5BXxh8LsdeeupXfq/cg6xazoJkImT5fUpaHuMIuZHBg7+WlvEgP5d9Zd1Jiec7G7CYClUhbTWKGBw56LNzoCIMGtfLbTGqCjg6H+8ZOnoRWfU89MIjrfN8mjWnZcPOTu5eUULO3RYNKqkq1sTcxhW1kn+Cu29XZWCCzU1o9cnfkfdBv5ccMGEx9PpmcPLBi3DMJ3fBZ6b5Pr+O8/Fg0plAyMDfS9xldCfMI9sunLAVzZPH3yrYOahW/LZl5fwP8UVf+kK66NRL56G8SsqxRFl4UiIOEIqbfn6jAWRan4MirkyFjuYYC/ME4CvPkSLtWqRIz6QHelirUSkREiBdhW+QFTDp4EUYM/PAsGGMHJ9gygmp+NIorOu6kPxuniqoj7cVQiVq/G9ZWBw2+1wOjhd/UTaGW+lZ3eSTtzpjhI3g8NGLRKfzwLAhhBwfYjkgMk2OReWHNxBlFuI3YOye4Wd8azs704hhUUnTUa/C50Mbu/z7m+q9h5nPA8ZOIHlXYMf1eF1Zjd3K9BCD1m1ImICyWuQLp9y6DQ+HXGaxLg6yiY+3huUL60GvJjkPKjOmSvMhVgrJVhSIx11M9SbH8EqKZJ4GUMz68srj19o2JUyrrRXQ37KQ7T9QsbhF88mL7LQo78tMuCxFjoAWcWOwYYL7vk3JYLKxaKM3uhmtVQEjGzlU0hF0AfgbBMNDjOYBYWKIlKsyOmiSZONI2R70ASaUIRhytsuZYfdKAoO4nP0S3CxzWfcQT9Hj+f+GweEyJuaBYcEYGT7DkjMyYdsjQW8wZEviC3P5QIEVpjrZkC0JL6yDUdQm1XUVmxV2eDL4orIq4MZSy2oiVSW83AR+Onr51rhTP8a20Kxa12Tjs2Te5fv/UIb9gZAP0j4SvSARopwQZtYWkT1LcJv1czl/s1m/RKVEK20SsoHcXgyGqvg6fmsJ9hWjHFU22HX+8dHLP6DmgWHgMxIYKMFBDEi4Oup+atYnG2zZoAp4kMOO3YHyQlzryr0A5QXXiUrGs7+evBy3FvR61K5PyPoj6qKWAfPRi+So80AyYaQUvzxFy1lDI+yoJj8AFUdYpJeh7X01l5YnAzH/loiBaYmNcWiUFOOz+lNGV2RDHpGsPeIzTHd25ZOPXqRIMw80M0ZL84sUp6KGPihF55fYqdU9j4QVKEzjesqepaCKFpB5dmTMpb9wn18rOOTq0FalmfpW5W4aAUG7DHsqpZIibN1MVZdhSvQVJz2GX1Z3qvC2bJSr0bZcTcvnT8+uL/gLHmFgHggGjJDgEuxOfDywADT6v027sPmBKINiGijh4RS7PaEKuBKGEaLZ38t5NrVmPTWaPdxFjQZ29scGL5JtzUN2xrI5X1ty0qJ0IIfGg245LpaOdiwCAqZpsewIBhFjXWxiOr82QchPAaucHavC2/H/tNQj286HwEVHL1KgnAeCFSNk+RU6XtGDBQTSwX/oOSbzRWPCdVRj5KBH3RW/NBrQ/TPCFzRDqLsN/GjyEz2L//JIFGsgCrcW3fOBHa5HgI9epEI3OcWaMLJJiZpWtBHcNOgGMD3cgMz6rSmRAlsuJLSw/92rRjhjJLtIOQyesNcXlAf/gJ4HVgJjMfioLEdxZee5EYf/W2KJscHdAFFTMuaknIlpkyfkoisKAyAMSHhZXxSm0K2028ddjNUCE8ydANDRi6Az8yAyZ6J0n5XCWSwZLUzVD6WohmO1HtVYP9/BLMNqycmUQ0hU5O1syw0axMEnhe2GyFq3eYCo+NayRdVdAuKjF2FazAMzgzE5XJYZJ6UhNQj2JMG4/zYMBNPghElRLyeAqWBGf9gcs1ZkcB7IAf00oEZQrtpEGNoq1ikr3TsFPoxe5BmdB2YCYzL41BRKZQloaGc+/mAK9WZwMeYBfwBJFhiDLQy1tcO6qqqxNr6yGVp/xs8xmKuecBX4nIkUGyho6xykoxcpU8wD05wx032YgsMaeAZaUbOgply77XqV5ZTTxg8V4o2yiPJRr00vp6qb0kvH83sZu3/yzsNJzU52X2l2Uqah3oVzEF2+5DHJWw2Lelq1grecW6sS1rR/CfZBLd0VNRH8izqwV3idvE5LyrqEmAg+JEoFVh2IBp7bNA0iNWtqePdUX4j27/unus7H8zI2vmRXqo6FNtdUlp6K74fK5k4yO3lCBop3OA5hXWufgyjZwAGGvK8g4MprWTSi7tbdB9ZI/Q1r/laW5z088/CwsYfTl82dZHZOyuQmWLaqHICI9DKc69MT0CwFPGE8rFnbWasCGs7ORmfhoxdJuOeBb8L4KX7RndboC3q6AKGDuKWC2VHXNBLtgfuj7eMAh21aTAPJf+jnsuOEJ58HLmjZUlXJwPSHBj/o00aQjl5+CXXygiurz/qKASowgOud1sVR9JctpmyzomRZt8qAO/pP/7PqL1zMq8mAk2o//wLP8xHHeXAMIQYjPteGc3NUnmuOrlpoNOAK88iD3oJljJKAr6bkQD0leQrmdxJKfcbzOSmAgritZz2qEHy1ldEeRi+ScM0D5YJRNPxy06k8hfQMdVF5E3oaYzFgoOvusD+SN/H/QeIR17J4LPAUDdWNpr9qpeNiSPOAORGMikhGuMQErbMrvMrV10KuwypA5bbUzd67ZgkdrqbfCfss/lp+nfiUJEroI7cMcaskb8bZCiFsF+7D6EWqbZNTjhhFiWTcPEMHFS6otlXz3OX5hVqdpJTYXuCTIVtv3EotAB12lbXc8VnRkEQhROOsgQ7wz9KJ+OmlQUcvP+GeB8YZY6j55UZWnETYp/dcJpdnv468JkmYvOi1JJic2+cJzYxAHdLujq2/6jnBOqTKNCkuu4WyMzk6dhGrIPDX9eK68tcDTqxqnksu3/2HEswpH115OgpZgiq0RU3asgywplGLZO5qW2tUQlnSZVFMkD96QZlfYHkOejYPYBvB5ny10EldJMkr7Dt1z2jZoBxk9a0rbmLFQjggr2UTnMEMy0T78/LksvzekNUrNMyDvIbJcXyo+QRNj9yVmlURkuXbSly4jyHqvgpau4SdaS1b1wENNZFsJfEJZQWFpkDWQE9XDe/ve+98h9HLD8zmgWtBqBk+0nRCplqypntw+JXHzpzLlB8ZlQ0NZ6N7uZ0i75BdEsAqcgT5lZ5AVoDHoJpNd/CqNb4PdVNZD6MXybHngWrIqIl+rfFQmgTuiV0HRc1+17StK26gTUkvRyKlvLpXob1HUvQIlykH5TPw/0q+gQYLDcUBSdBkA1tt1HBgQcMctSmSvMJtmYs4ag8qr+BqDGby5JlCGSA0lCcF+FhXfcY9DcxJjfGaoTZ4Wz97Px+1HqqyOcBjHTxGdBW5x+qh2uXcAZaRLC9ZllAEafIFFidBhk8U9YilH+sWTTdwnsgDUh8w3ldUBo86MA9UA0ZN8LlmnJvWQCxNyXy95aEOny6a2ITLArlaCNvqCs0QdVm0speT+fkE/LaHrk80ndQtmHgLE6LliZjZYNYX9O+ThEkrf1ISJDyjUTqICIbrWhcCWFhg4E9aCk/l6lf6Hadl++QN3kk7eFdjc1DktIDGaui6ldDN2rrEF339moqAipaH1pJZy4SIj0EcfUY9kniubzRGXxTljwfFYfQissJ56AvF+kj5FGNOSUaJK6CHjdpcyzlhhZAEGCDqwQ+GtPxLK94mVPhAC7MNSrbbZwPNLzgs/tE8DyQTRkrxQSYOSmWFiJqZtsHcvO55StGaKdq1NXlpNxdGvgSAVHxexuru8j2I76Hmk6PsDJUnHKsTJ6sXvMIG7Hy8/DRBNvwGWW4wh1Msi0JNNR2xxEnh+ftnlBGVpRuriZQVPFiv/mH0IjWJySk2lJLjl+R4CQ+9a1Io5lkq8XMxdGToa5WTXQ8gtHuvKxnY+rjhZXhlfb/WcASEBqY3llATdoVlSTdv1AGt8VzHc7j7m/tHs6+x4JoMposlgVVE3Ko9nCQGiCsf2PCdbCrqrgDhRNE9T17E9fbzwYu8nJMDzAyP9rE1jsUNNHgZt+0hw/qg2Tzg1uqeE2B3HnJa61a0Qyn6OSyeXl330MxaSzoooWiGL/87raz3MHqRgsw8UCwYJcMvydEKHkBrZYJi+gxP67GmkZ1One/QohK/eF/LdolAIRGRz9Ee437Vu7+QcHg15slL0qSA7SssuCIDexi6uWuhOd8Sk+x5JOZSk7dczcXV/r5q70OUFRQxHK/eY1/h9x5gPg8AOwPkfZYVZ2Xhpa9lzS+z39u0BvwvNb+C2efY+D2AZS0raX8nySBf21/M6kgBwqu11oSO+sPhZ4MXqUtMTrGnlHwfXOZgdIJ/K7JdzJ/kflpBoEZ1sCl2PZL2/9f6Sf4NWgHq5/I0tWfoi1q2+mzlxdJBIaVtF34+erk1yXmgVxI6pl+RPRVw5QDT3R85Y852ViINlYMG+WBHLjFK2yTQ8vk4GSPnb8gb3gY9ObmCkjF8egmno6A20pD1AQ4G/W+zVORmjWqdHW/JMPJeFvITZIPyudyI8uJuyJ0cuq81aK1tp5Nr/jz+bPQikNTk8nImRycEoxMhqeZq7emzmtxaWVFCR8gZTQfS0Z18rGURKyTDU2RDfwlYRjBEAxwAzXTktNoenHzw8qtS88CvI3Q8vyDPC/hZrfujzo4S5tjTSKqGAFIpoakOOyubJhwoO6tqOKDD8fPH/0K94xWZ56EoTYrYvr7moMaRL19UHToAH3ezJMeWi8i02kksb5wRA1AADqtKoKb/L/beV+oNzyEZRA+0mbuHUjS6ynRMp+2pPX6YvIKrMWDuYXbqsG6DI/oWh6hSsGgJUpENWxXO7mCMWf91ybf6X5EdvNRkHtgIhLzgV6VpEVtudYep+T8ru0jwldY0cvigu6H6fsr9X67ngJEKWmZrA+R4j2fN/yvI53/R1XnAYhl26+urqBwrI7WIw8S+CV2805pGcswR7DGHf0Tb0DAIxNH+Hv296ou29uvmk15kMjmrjpHw/Io8r+DD3NMaess/lZfTOjRjHjR1DaaBlK0vLhtbiTJG1lqjXsJd7qd6TV4HreXK0xrUqENep13x5IOXX2Cdh3osq9/6JDT8/WhRAaKovP9Wt0ZZgoNQjP4qO9F4mmnLAoig5XrQ4FDp9rLkFuIcRi8/05oHagWhYvhlhlNVQo6QqtMUsNmsGobqiZyOmvYP3BejM6MVs8T2wT5N4Pm/GqnEkK1PYO5pWy3sk4wOmpU8bC/BtUugo6FJknLWGnj1bQlrMnasI6uMKGUOwhoXHXHRFFtWdmOFO7T+2ccrifm1EsXNGifPMllWSpQiXFkC3ZKB8WBILT8HTINdIFq5X+5ytD/HPiBfGTQnKMSH+XruIgYsEhGfob89ft4MGfwqYbCxi2QYkzNKGAHFLzDwggQQOtW7Y360GrcQsaMDQcFjg0qWJDD3Ev5B71hV5KN+Ny2lZwT/W9NNL7qeB3kAkxP4sDpF4dGetzabvUkA2TYnAMz2bI3JJYDtVuvHQSibhx6oqKu1+mwc/xVo70QYk6LqDIVntfVDKV6OYyTKAHFSA3/on8lSIRHJxhHNMcS2wX/ghndfVmj5fvIVI7iwKq+MS2KVq1rbrwCWjl4kw5icUeTTj9zkmufiA4xDNW6Vfwlf27ynSVGbnIAq3OFVaElTRR5nSRY6do/yxGy/aB7lw4rz4A/D/GRcOiVnX1bQ1EEZVOcK2ZLGZmWiMlDWLow2N7utnEQ5hloWVLHH03/sK92Bt9FOvi+zbdyXBZxkBHifl70PMqXPPLLlaBduOP00+YHCWrfeUXcjMMFDzM/2Yd8Q9T1rRORvSPsVLELuoBmvJlIOrf+HEuk58R734tY89VZHs162DgB+tbjrskNAx2FHAtBDCZBlz5LtqqN4/vz5f8/T9+72PPw67Nf0mPQn3r0fUXkRmK1a8BNVnadCBfFM3mq8lYFegQRqdQYQ8cd6i45eJMGYnFJEGEikunKqxkB5jael4X7tdhN45yxIszYcigTbspLs3dadQ/6rlkfI9xVu7RxO8wArMxjah5Y4FCWPS+0q1bxRz4+7gzxcrCUu7osol/I6Wwvi6HLb56OkZ76DAqqW5GXCpPaK8rSCKmz5Gx+9CFI8ObDMcGifUXMg4MjcUOmgGiQPkfET8PmtO42p96JEuduSBOdJLqb2q/qE/Alu7WZk84ArMxzaL6/wcoxEeQl1FXNxBMsnrXnqbYgBSJMwqt/ron8DkBSZMsB96YXc3NWiWwk2ox71cuL1D3RDRy8/Op0HSimhoBJo5QTFjBsMFKW+3qgf7UY8d0s52/VkdHvc1NcywJzVz6GCfEI3X2DX3hs6D+AyAaMJuMDBCJT6s7abDqjFy3azrduBjStmrudovve62GG67UgDqqhn0v+NVsmrGM9DhZkUpF05EVcfgYqVrTkh+i2kvqBhedXlv1XViQDYNlIsKml3uw26bQvp/kAXRbsConfhqtNLnvMxnGeDl28NNHlnX9YI2KfTc/o9dv8CY4cI3Gp1p9f+EreGZWpm30cztgB2RXmhdJoAvX96tg79BrX2YOLJUWUCQhNWEWchyXsG13OD/xKcrdY0uaSsUm+l7yVrWBqwE4F+p1cZUCd7mu1/gVu67+bkuCKDIX1UnaPwWidAkVZ5LqhzlDUPxC9QOwYYmPXUdssatEoY1pqqqiH2o+TzDW/Fq8vMA7GE8FD8giQpXw48hB3UOaia+uhL26JXUKoWmwCdDQuisWiDXtpUU2P08HIehJOynmk3zkeL7ssHtuWjF6FVTm4My3xkfUItJeDK57eE+pCBZdSJt6E9JkXQaZreGxZ/26dWDi6tISTUm1p4Rv+yMQcVojSknFrbSCBpr8yPj16kOjEpsYDyEPyy3KmM1+1sBSOtob3n7iguN3UAo+sKtq5pFCVVJ2xcWMr3C7v5Brr10KJ5QJcIGOXLiU7yIxzlkPegJiJnhznYFtU4D30wOl5H61iMZQua2Az9fMgRlF69U+WZMWpyXL2B2/hPsMAGL19NNnkzFNo8xWcVn1jIVV3bUe/HLmq+dlrkl1St2TRymSYPhqGB7DkI0ZPGcCE/3/+hDoFIS0NXgm5Gyr1Za3z0Itnp5NQCxkTwa3O8lgdbO7XxQJlB+wD1NY/k31lVQhEb9lL3NX2n4OeFy5T92kLI71vH+sW5eZBSE+m1Tyw58VAGsl9zcM7wlc3rc9h9tgXSDgg/1rIQSCfjBTaJm9/cjd83D3Wzk3kgljEimo+vcjwWeX4E8UPF/2i8uedpMqniwBFpp50Y+BvkPvYxLEDGq+HMF5IlpD8x6cuIxB377LLeg6ZkGPh24wiwaiYB5YimiBOdGTHaI1IvXwsIR5b2SQ7Ip/3yV/QNL0OfB4KFy8dg8ASHM3De3sH6rWZkpBtckX0aMTv48oCcFkLcVQbVjUdfZcr++P7fIN5OkDYPiDRDsP36xKme0fCkNzOxkxtgBpZKe0b5zEzvau67UQ3sMrH1QiHQw/3ynvs1b1+BnRsUlKCEhFrjVuxFuC8WTcVilu9WT4+nT6z//629T88kP5Mcdu9PMcfdg9fF/+TVgHXwyQL2ZviwWNuygZcQJEj6/M7IJHu6ZjJ4eKpXgDBv9/Orqq5iMSMiMyNpGT5rh3S6Jy1BLphI+/5AR/ton65bP075euBsHnKyLIfrw3MO5zFxKUa1NMWMorFQMRLMAh+x5cr1wPMr7fPK1lH0+LC2siq6t+5RrrqbUBe+yddb+ubfvnylYR6ECSZk+EXlvAgd5XJ1aJ5InrKwn7jdWzJMq5vmj8byuq5oA8s6xhrZJkxNubUqJkBKiNwjr9qkEMNH2ot8+yKhaR5Ki0gpki/NcyUfb9DocPOqTQsl8k4sJIkgaluGsriy3Mww1Uffdnwsd/8z6fsg6e3vy/OQliZZbFeYP+n4TXAeJAT8M0CT/2VtbPC3qTaWu1nmyc6qU/9s/pfsqrff/0j496T2eZDmiZLvV2KhAgz6xbU0oS4kYx+mAEKqhCL7WL+5x2E6lrL1Idh82Itbf0NZ+u2LYM3JS6RZRbVfZcGrMhDf5KW1w+NtCbtaoyF4tWVpIztHWufFrrhmT8sOmz7FDOFAXXMVeGBZ6Qp+7G6+5d++CNuYh0oDUplA2DYl5xGtQWpShMKsqPXhdpiITtmhlyPrYlg+AKPM4GimH8PC7XMINhSVjicrUadpnVpAYNqZPP7ti7xy85BqY6k5X2inwnyApBaDjh3RWZv1nSgoGMFis/hQnmyGe6iRlouudp0SJke51bEMW9tyomR9Nlktc1YdC/32RTzxkMiviOhNC7S1jimY3OIWbv+Dlkrz0uqhK2/YsE0Bh79LrnPR9YCK7iw002R01HHLOl2+/kDct/GZDybBuwLKPAguTKDxi+VPxfUNEvWCDPmyNH9BSkEHnSnCaLieddo0kO/RPxcScKtiE/ibrUgx9bB+anyPUuHfvojiOA8WAcxSwC+2ORXnyMFTs79PTXCX1QpB6GtWLYHNV+5jWeeVQKlEH9eDKWQfqEZAW1TRBg02lru5rrRrWQ7fvgjfmId8K8vP+nyL8zPkKjN8u9SrDdO69nEKJjfZ9cijW4rJgFDUmnaGoukz57uVfk3qLycnlmjxS7PY5Xp7EdBvXwR4zUPJBSvR8FWnk0rVo2pMqIwVNDEWsAOCrZgWpJO7rhjfBlwC/lsyn9oAmforCV13n56HhCtL0PpZF56lwVA6Wcc2rqPCJmJnjQLafbLGH4HZtgvivFAh1KkYikQonwNlhOlle8ay04RVswz34F3Nyr59EawyecEpKU/1E+40QV+tuqybKXcX1G4JffzRZdlLXNi1HExxNcOsMDHPKozPCdqy1sqako42Of3F19uC6/Dti6QRJ886siSlX3LCS1TUw7Nqqq+CVo11lKwG9XoxQjmHDXFAHhdP3KzakXf4WPoNXoS6uptZ7ATLOtna59++yOKch5QjS1H6OVeeox1A2WgSU6v6jhaRdRz4ZAEcYb3LjY67QRncFOKaVleA2H5IGoLLVKtuMLdXsykU7u5psvzbF5EdJs86khylrzdReQrjqSoKitXAUcLoNqGQbQ7IX/0eZbfPOwPaBEmXNdm2j3sv4s8bOArsri81jsL0l57VfkwdsYPZDaSqbTTRZmOwckO/w4J3ZDCx2BOXzXEbikSzjg9M9bnJ2T/v4PhbQpkHwYUJNG6DBe3HwJjmDLqpWCbXtSY0+OaAdQksht4xG68KUQVG14Z9OiaV3Many1apleoFeUSV7WPZksbh25fP0OYh28qys67gdtLnmo4awdGDgCMjunAsKcvqE3UyfZ8zo3cg/VpdQtY68YUpgm5Ymoc6M1aX5qdaDpkZFMDXVSY3UKizPr+S+h5pVB29rc+j+oU2u0xZ99dn3CsV2TnVbqKK1vL3fdN//uWL4NLJ0wwsK+HrTVyfkj9q6ukE+Nx0uq0dRrgkyoBQPdmuYM7FSf8G5bd6lXA+/WT/j1K5Hiqdh1wry8268gRVM7oa3ypVlsPHOkrY4kqFSJP0cuKexYbTym6gMwswrj3BPO/XTc79aReDu91Mvj3R7cxvM+BtCQl8xHZXC0Zr6q787CroPmuxDAaX2YxKcIML/cJWKY859Z/b35M2BschDu5zqkKg53RktaezRJPX9PAP1mbAuxKCRnvcRbxSfVVEBGRagrbzXkEbiPXpo11qhBJ19EFAx8On6+zPexi8Wz0Pj4Y9Sr/LgMMEBis8GGJLBQ3+OnCto7r2PkA6RoWztWBavD5bVG6/K1jZty9/b56HJDtLyru5BpqZgGNtvLRAOqEsaBUryFEqQEYz714hAmOfFbXCxS4yjfpZwi/xDM8PTH5l6FH7uR69/9WLFNjMgy0gsxH0C8x4QZpOmtYykIQO7b4OAhkj2ypBFsxmO2AJwNEu6EkF+OT74OAfV2/5atQ8tJaxVjS/vISXo4BidGB8LceStzutw+Ss/hh6WtlhlghWgZrX1Qi2CJ/GEw9Klz1jjHkYa0qmoLrFxada5IrZ0pYw17dIlxYm0aIvpquRuaC6pfTJH6UMb3stmZZT1PLpOJhHMm+BAOkAPzWVtE1nDt++fCo2D4UFrBDBF+JOwp3cXl10uALBlmlPH0euQL36AyotzO8C50X6VoVBBJFwn7LwoG7fVZcnFaOZdu1X1h/q8CXyaqljhkOXLJhtR4MKeFXSC1pkbPYyRCGwPpvFhLj6OTRa4kvR4uSOkoyiCQ484pXu4d++CCKdhwwry8j66ZhT+gaF72FY/U9GaumXdXTJWsA7qOVCSDfUdd58FR1gBnAdy61vQ35P17Jk2ZeuYBUagrx38Tb/9kUI2TwUWJCCDKJGcPUCc6mvBMEY5mW1W6kXjoNqqNqX2Vns76m8QbYcsHI4b4/Ubpi3YbHo297bWIbK+NWreI1++yL9FfMwDsGfnkAKTE8FqcLndG/EPyWQlP15SNovLocZsmNb2IkoXcvaBAo/E4SmWwlHtVFgguAu85PHdLAN+dmXLx+XzEOBBSvI8HV4rttnhSRrHt2VVgsgjpMkRlZDT/JcUtpjNjG9rhjaUkP2zzEjUER1kIiQQatPl8C9O9cO374IKZuHlDTJYPuaBFMwCkZYFezz6OKVnxy2pSfMsaGuYzhzCtbSi5PKKbU2WPbL1MIn3Xmkc3vS8qRCNJOt3XoM/Dl8SJPpwvIktw8xFkUM3brcYNr9mbR4lL739tvJ0+s0He+nVXgaBg0rSFXg8AFPf1sRCrkGtNaJZPJ6rGwOut/xb3xc8X7eSrFTVn6KJgktOi4AFHsv49++CNich1ppVlvtF5icClIGhCQbwYJkbdzHwUimYu51AqJT2uetlwY37XXIGOj1uZs/KEWuCD5KJ2XLxODfpV4jLFdldwlYOBcTo5m47FcK89JNUurploau3v2OUR0adKr98zu5aw9yTppbZrloprJxVQ7TpWW/tJpeebo5bScWZMYuM72SBWPmVjjvJawHTA9mWHKht0nIApHsNZfIrcErlPouyTx8+yIv6TzkVlku1k8v8XQUuhwrTBG05kc27HX8Bm/2MGxATVx2nDgtompYc2t6MHOIb+TvvAucPL/G8nFufpFnI6P2cuBnwnpRwr7dRniuCWAMViIlW1Jcx7F5dxjng1R6aMZ033vANbROT8hB6qZcpL6jwOHbFwEd81BcwIoRfJ31pMsKZoKZgwqm/VoKSEPDY1EDLLke2WSj+fg1UMWi4zqh96RxHwP8UyMqb4+ehyJDVpTopdZ5Ir4DOq+DC5ZfNkdaIyDxybxrBSJUg0s4Uy55XWSBlesHBHiSunUJx+TZVZKL9Qk3J+jgpZd5MWMiC8anruNAVVV6heL9tDsawDaH7pYofZfX77OA80n67m+8OXl6jWXjfLJ1ImfNCrRQ9zm0UeQfyiEHslrDvK9QNrIbgDFePJknFpSgfMvcPqjGdwSEedAbiDzhl8uz4nrZGrGXZv1UdoRgXqQYoR2X+Y9ObK3r84Tta1s8yXoY6Yb+dMIRhIsYrDgTJtfviZn02xd5NycvqqFFOH56kacjkSmxLBDe97IpLhRqNHrb9cjT6OvvQUZyUONq7C31upUuZhhG4ae9uw4hym4Nn3/7Ilrz5M3StLnaLy08lSIKUro0b4Z9ptR9mCDx8zL/p0vuTt493RXpUjN6AkGLH2LGg/yth80mT7CyfKyvNnF1qun8kGGHv1qzQUQ4jmz0LdnlXHEN3JD4VPA66KeYq/6Je6L8mWo1TV6jZjUq9dpi7uHbF4nLk+dXaT7WZducnMPlR7MjOmcP3X67qF3Qk2WHAzJey78VHCJi9q9+DnusT/PNn89PcF/PeaguIMUIborplJGSvbIjH1exPFuwwApZBx6nUJgFrKzZWbpZprLqBOX1L58ObI/q1j2LuHmY5c5mv/t15ac6dPk5NlQn6iGXZZ2EXDkqggXq3zGUdazzyu9QpRw9QHiNP12onuQyPGwyD8kGPznBmNmJyTUBfNcy7pAv8x6oOfC/9HICxNFtRQ7WY1cpSOaKt7r1XLUiSxaGHBPPGOPL3sGffvsiK3TyHCtJyRKpkUuTMLCqKAjC4eWAbR0eHDNqoz9gSalLEG6ov8u6AFBWJLTyk/o/ymZ4+/M8ZBtIdsKXp05qVkM/e9NyH9lG+rCBG0KC0c4frWzoSm8PqizESHMlKJ+q4Vu5DBeezkOugeUmXHDOsTwcfZLascvhURF97XpOWV3mb6w+lTHt06JUNNrngr/q9Z3CTWV7OCyMsQVtrAIOlKBnpWBJL6+YHwgtsPDrKrlURpQ1T4izupGOopWi+RDBPvfhaT/vW/EB9zwAdB/O+5WVvBIT21nHsD1gOaEk49rHwVWqkxneJ8UldtYLcqWVRsEQ7dN3/VEmw8Mn85Bs8FMTPjnjZE6WBRxYsx5djr1eLszZRSxsejXQ66x8CWN5BbMhjsrnsmBL+Bwf90D2coWmeRCmmJDlpyfwOdq5VFYD0JYjbUEsAfRF0xVTKLdJ0D9Pzvt0Yx46pVhnlVs8wmtNoN9mDYw4zDZikX/Lg1PXBpy112qaCJh2j9rRl/Fyx3ArxEaplWLWVle53aX1BrskjX37IiF3HrKHLNvoC21cmFPH/V7NoEWwfTRsKMfBRJFqhi6wbbR5k1oU2rVWCNpBsaKlL+Sz3JA7eb6Jpad8qZkq01Vx8qpyyGDc6ygSFXLKCiMKppBuZzkJciEZvFBjqc/HX63MVoJutIXefmem6Zcvkjif3PiJ+UT5lWOnSjO5FrTua3lbTMuEJxXdfiBaaDlcsxm0OC9md1w2bVfeufBpq/Ugk+Pj7XnItLDMjE+4GT2HJxsCoLICEMG4Z+TKdqL79tCZy0aWcVbo4hCL5CoB8z9rsx7lcZzVOQ9pFpKWIXkGnpfQmVCW/JaQO+LIe+xthA5kL5085xp2OkghxbDc8ljV8d+oxvYgxDxADgJRSLU0r64OEOXiMhaHZ/86SkbpdNdPMchiWZegHhnB0wp+O6qFPwAN7L2UqCStcAFlQ+pt12LTb1/+/O3Jp3WT2d5uuTQtroZbRUcrOAzo5W1cyZCrq72DQB7kUSHepXVOCYtwgZK1X7Y1z3NTSf9mT/po2IN0a6U58mdMwSEWtkxg2VP0KKiUuf340YyhJ9x8YypZQMiuSaXfvohFwDxMa2PT3fyy0VOZKUZlg8njkO2qbR8HOQNAWVyC3K51HPPuTloLKy9q77cEppZDIkWpjB1jG9M7fUm+exFMMg/JRZKMJCrjSZWUCKOjF6rWmpU1ZfhSC2+IpBXi/pW3A0deIwzkMi+IsJ+7XizJRvw1NQCFVDeu/s5i0G9fBJVOWjDN6qtJiQkvSYH+L7uX1W9jW7IkBuplLnkKVvEq+KKZkpkBsErqZqeJ9XF98FiBE8GYmvDKhrc71QZhyGQM/u2L6AzzkGNkOUlXaKOy3FDTycsKO+XX9LiPEqumWlAI2lIefZcqC2RHZ4s6fAlI7588FnxP+6xQIqMJekidW8nl374I05w0y8iSkkRmOcky+EF40Opcu4Ac1CO5vSFbISCSVXH3/GbokdkscWS7KJ8tCU8qUr2y+ckdv5lBuF8yyipMk1ZZ68aAElehCNa5AvfWqHs+Ppf7Zg09uJqhFdBaH4v29/q5/T1xYfJe0XmoMmNVaX6RwakoQRamTuSKsPnq7wKJC8/DrOoFDw7bYWGoW5e7KTjbZxrrQQ7vb1Q+Dyk2lpLzRVamySLTMaApWRGY9nusw8hWhPQvisY0JVrWaVvVySb4XN7PmwEVhKdoxhIhZMtSd3R7vG0nyLcv8mwmry8h5SgkxcxT0gFda+rXh+KYlKweT2ePD2h1WFjw/diuFgIg1dncFlb79B56ksJ0o/M85BhZTtJX2bgqBy20oSHafFrSruwoWmIU7Hrk9lr0hyUl+qENXGDY+g36PBgk4j6geagxYDUJfqKRpSUltCJFV/ToGemfPfFU1nxfo7RHXmPa5GJQNZPM3y3AH/NmQIcBt/iBOQczC0WF5W8vZfbty728ecixkpwsSTGdUlLyLIdivAtlUrHtwbEgTLrhyvuHluZ9XgzEWdcpiMssHL6Rw3TAyaQpRp6S9EWJk4gBU5fLyr1qUvHTilrlapv2gUFsv+K1W9BRJKlSC1BcuU3TeJLD8zboecixsZycq8mdJLymTT06ZBrsxKQNECItFNa6kQBT/nVWeRWKXqJg4/BJ/B4l8DxoNg8ZNpaR87Epx7L6zsPSEHVw5a3tDTh6YDif1s0JEg1hnRYzuSFBYr9u122Q1JMUtvuCzkOOmeWkXUGa69fIc8OeXPcRJaNb15bNSu8XJjOBe8R12gChyfYXrMV2K+D6seTlq7KTNQuTzmJSXsXLsYKOGh52nIG2t10dBrtl6BByKnmbVucW6FHRsuAEO9s00pcUT1dinAdJkkmYfkYKmTB0fueVH8g9hX0c9JBo3kBeEcHy/UPCj9ksrxvyub90CMS1+8rpdy+CNeYhY0gyjIRocWIW8HrK6tL6LXmaK5qh7FeCLghxgwN/HVYGibHcMDce+jmi2acr/KP0jbfdTp5gIekYX2DmgjSwv2wjQWNCk/0lpnUc7XDKGkPkpU15n1aJQ9Gr1N6Vj5cZ4BwMHX0DWm1cLtiLbxGTfvsi2808pNdYOs7Xmpg01cExiq4XODCgpbmswyBP2WxTvLCz71G8bVxaH4AxDUK2P9N3mNKmGzZeloKIFcGM1/t8+PZF4MY85Fj8jIxPtjg50/TAAPQdKOgvdVdv1suGcarPvpFhnFP2e0ygwMeCznL4LEV/UpHn2Z3Mw9BWNuTVr5g7Vdh1gBKr4JPXMVtZJzzrOvoRrbIvqz2vnVcCrRpaoL+7X+0TzT5S8jy8MQ9amyvNMbTJ0SmUL0HF1osdy1X6LuAThBFBiuVyMJbYYAGyhbXDoR2fpyGR8aZk/UzI9t7OedCZmS7tU80DM5WlUtSuRcenr4ePPobUtAWg6ngds7HR2fSyoKp9jkLR20zAlJqBFTQbWJImlbeKxb99EbQxea04Ky33qytO1RhwUo/rOLJB7MNc1pOuZ4XkUNZpi8TBYVcp+K59pq+fyLhueJ4HnZXpsj7aPoDzhuBnjdhy7DVKAAZNQlwAiRFnWlz5AMxoTVgPepkSlsrn/lcEDmi7bRd8pH0ncoS8ZyMcvn2R/XlysY1pcx7Z4tQMS2qoV4a81vJa9vcE0QgHs2hFA6mHmtZJgVBw1+VzDNy+daP8vHrDEZnnwfWAuST41RWnagw0ranLFIhPCCYFJ/BhY4QpaUK47XFhBZNQup63ArzdavFbUYmiGD7ET7zAqpaSQ799kfdz8uIqVovlp5loWgq5rpqGch+M0AHmXMcREHl1uxy567aL4r9Va06ztUxrHstbyewK6iRSyt6hUmWEDr6ETPbly9+d50FmZLKkD805lB/6MidLhkq8LX0fR/5TncWIqm/52W2Piwn6EZ7ObRiQYK9L2XnHI9I9HpUG+8nTb1/k0cxDhpFlJL38As9GIKkfdK5exmSVUeKeISGXGNuaOCMPyWZNo99fsLE69nQoxNd1S+AKIFaZ4gJW018Yt4LFv3yR65s8ucJyMb7EzgV5gXzAi5oZGhvaFUCAK607i9lqfZ0UfXN4N/XexvRZg/rENdu5vHnILrBshK8vUzk6g3blYckRgYHmnIvD1GpuxUXDwloqctqgA5bwscTR8ekmkoWmKqJFhNDghrbAuKeA8W9fBJDOg7zK5FifkxwoTGu6hynmQH3GL6tkGxmCi+bLW4mrTA5HDGrmCTtnFEbd85YrOTGWNTAEtvfCZ1++/IczD6kFPxHhK+tciUduA4WgWCijLtMlsGehysMuRXjJWI2d8g7GppWABQ5X6tb3W+mQ91NrkTu64bW6Wv46Lqxz+PZFtIXJtQimXRAlCn8vW8mlx9fuxOutgQjRu7pZ0MKY7FOLeyTEewBrcqmcKeuuuHLSYho25apwb3TduK0kVxAOEvia/4WT554XkLGaLS+cEPlv+OVBJspbcZPnimhuydeKT9qy7HZpNSXDbCjsUWDw6iyWAJQ9dmV0G2pbijZ3FkwcD/2TvT8pQ3M7/iafVMMm2/hlYryqTMKjrO5o8+HlINscMaC6E9XLGOCXks3CwtUI/r76HgMoa+NTvcj5Mn2iX5CZ8VNb2jMtD9++fII1D8kSllzx1QWmRugMzNQAi8ED+25KB5vBwI6s5T+yA68UyICafMG3CJ+PNv5wgU8qUGEAm3aOFNn52pu/029fZIHOQ7KEJVd8eZHLkVh2lzpSIKkrTKhvmbKGpWAAebY1TxsGujBnLvq5hPhwA7KoAFJqnoERjKW1N5jh375IneQ82Hcyu0+/UohXFqHWI2GBYTCcbCpjH0bY9KWeTE2b9eN2GY24Y1HromJSAfVx9sKlGPOQXWDZCF9f4HoEHNNbGkaFZPmvKi8UNdek2jC2SLQN7fM2lPTrZV4Cxfq31HtvfU4urzM13hfYuCAHpJpHXRnN1dnT0SpnPblqLp+tKaO/E8n4vKX6WXr/SLl3kObk0jpR4om4wsWYgIY+Nd1BPTn8zfo6DoplspU/YBDvezqcbPookMfninA/fv8D5drfnOdBWmZStA+2KTZHq2JW312h5qVcO9WBMicYv2kBgN7ftE6Lawa4gOIwlqfRU+XaW5rzoC0TKfovceGkQzRYilrjWpK3ZbVoamkvRm1opgz9t3suhiBGRHqdHFvR0/7xuzMgv67xcY2VYi/vt55/+yLC2jy0RbE2Kj9JTnPqA7PlkdhFfl8ATbZdVf6HBFL128PhUf7c1mmxA6IYPKEDMPTbAIAnsrW3L8+DrkxkaBeWnFBMqxh7rLlvuVur6xbbRqoXgntTjSyn7TcFEKbbPoyI481C6Ylq7e5N8yAsMyHaZyacyVQkhaPulToBetR9nHRpqkzr3Ntl5D6AJiQ49eEy5ZGGzxmwqA+9dHNHrS3+EUPdXXf8yxe5vHkgZoTIEWIKQizQYqgXQ1SAOfaMq1y1+EFHBSIN/llO/3Mh1ttxJldKmbLqwwyOSiIOj91bs3klmwyPPi55parNeRbq2Ns+K2bJ6xydgfKe3L4lSTmBZnLJiAhMfpw9xWXZN/VnyuFlrzQgDPiA0uWi13LJY0r7rChT1/I21DNrHuSDw1R0LqvFX1gFUxn3c3EY+u3L323noeCJFUj5SUKeVMwqpeg0cxwyrGyO2jKUrBNEUcUe1iiEgB3fBoViexo3S4iIHhZ1+ZMt89rWb2lDeP7ty+/ym3zgCpvP4hcI8IICWToSkbHmgAwlOtntgmuAQCNtLpQoX2Wf3fNfesDcWC18kFUZ7o5wD+ZZeULgpLIhERmJxMIlGVhnC14Lqyh/xLezDsZlqDyeNUu9zip3FJeMa4yy+D9nGzwSMLxgO5nCwAUJH2RyUKq1+tqRBzKDzqy+jlMFfAE+givJgxtlnVfWA2xTcJkRYyRuj79f6vMMSGRZRqHSbzs8/u2LPKB50NiYJudLDCdJovVyaeONdR4ZF27IPMaCv8f04oS+j3Ve7OKaBGrQFnL/hLMS+XVIM5QQ/YmyzW97c/7liyRA5iFhQvIrvmzOZXY45sueWvXwF8pWyzoOQD72CwyUlwVz7dPK77a/R1au93JPR/3MB9bJfU2eKvMTa36q6JRZgncWjEYLAEPcnnLoQihaqlU0YtvSx0kLBE5LFlbYsdymGlyK0yta2Y2x6Ci5RWPYly+yMOdBWyNanK8vUDVi+UzZ6yPQeXUcdjyfjhiL120A9eyCRPm9mC6uI05qvJHXZzON/o7Lk9cGsVIivzjgUEvQMfy7WqVSKksYRt2C3BTsHnI1DVtvXKcFw1cbgwQl7fpaA6GX856HHDnLqft5YppWhkOW7O02CB5T0KyDEnsdvNeTXo6gwGaiVkGhIvzl7DKvW+bix7qlh8jnQVdkOqTPMDkjRbVJVIEAQ79jW+IvdDLZKrR6O6kL62K8aNosugc3desq7fb0M7YIoEFEdn2+eEH306ffvvzlOXllDK2k8QskeEEFyhRUR1WXJYw8XYepXSuZbXhRWwypaIDtZtWkjmCfOx/ms6kshZEi9np3DBdcui399kVU9cn7e1k7sF8ZxSupEgo2YK6JzzFo8NrHSUXWyPJ7C0Ic7bTo0CxNPSsuNdn7Y5Tdj4Vrb3eeVFhmMrSvsHFFruI/xlxQRBCJwstks2uLkg3MwdzcsZVA9RhUq66KRGC+xfwn0rVLSudBXGZitK+wUEEmw2MAhYqgzh2pyi3USFzXAcmo/ZDXcf09SAJuq43MxiTJD9T7SMFyLnAeBCYmSPmKDJQgeGmUVY6P3zbWcWTzR206zisPYJSPDS1fun/AieeKS27/7el++PZFiMY8qOVEXPdlBqpKdL1fSobQbmx6FxxvRg+XZX8r+Nw+Z4OsalbyQiPrrYukX1XJKVCJbtgZJd07Dc+/fZE3bh40c6KxE43ppEnJ8UuxEVgVBiJ6eNToxxgt/dXk3Cv9pW4bOdtlYttNnxv6GFopjiZeK7VAzcnezuiXL9LlMA++w8yn2K8TYGUFmAnS4D6lVQvItdZdbiDngn06vHYAXqxJC/Ogquw9XYsiOkLeZxIWgr42vQsb1UYRwUMgQgZn+LcvAjjmQTL3JXZGs0+0vKFv2NrO5HWKwVJaiJKCkG26c8G93s0bCDXB3MSREbiNNIIDKn5ZDnFN3q2/3UDYly9SJjIPZkXM3MjPkp+y6j2bO6r8E5Pexh71OdBck/U48tatcoaYNRkO+ANjTXmOnwEt6rhd4b5B/5ElDrxNTclXL/JqTq4uMzHah5ocmurwD81pNTzs0s04BaNAr6jqMEzP5D3Pu3MBwGFYXhCWwp9Q5pF67WzNk+vLTI8msfYUmztchKJmbcHbrz0uTXZ2xYQY8iigsewmAlk3urZ0KOQfDnjVPJ6Czh3QdGPfrz7/8kWg5jwU+bOmAD9ZeEoudrXY2LnOq+/P5ZbqXBAcv6pRq51XzWXs8wv9n59p+J8rmP7eNA8SI5Mk/ejMo3mFyV3RXhx510A42jqO/OpWbfghPKBXYiODkXf9e/W36e1LCrajGc+DwswUaV9g5IIkkNXQ3wPFr7e3Piqw40KJl1yMbE+97dMiaVGtvruidvnGZR8ouN4FzoPCyhRZV2o6KVOt1RSW4t/itTpxkdXPmjgqGAx5pbRPK3utrouiDnzlc5jbIzbjbVHzQDcIO/HBOf58jAvyr1aa9+0lCj/oIJuGnhVTfm/s/MGMHlcDngfNmGnMftaE5FjUTlJLFqHuNjjprIPIQ45XXYZaxXyEcdKQZG+3Zg1AhfL5Ov9YlnWX2zwIp0Rn9bkz59qwD6ko79H0hVzRpuBVuJ4ucrTb9/Ke8IquTHhsIjsiFPBmaFow3hkbdgZkUdTW49vdiX/7IoBjHrQzprW5UJMhU3we4JFYVk4/pXe7sbxnGl1QA4BenrFOiy6kZSlZ68oD/s5HFNuvJXBV6/654tvQnH/7InmAecgbsDyDnzE5ZVg6MvhVjy/Ubn8O3/9SVZxD8jM3M8nEcgM/NOFX6/xuxq4NLeuQn5IAS5WfQn27W/JvX2SNzoN+xPQmn25yejpQjxTXEBShB3F7X2BFdr0a4MW0VS4w6LBmAMm70O77X7EfJsQtmvwq8PId0Oi3L6KFz4N27kvtJHHEE00Bz0W9ReTwste3so+T5BkUE4VHHVvhh5m05n0ySpDHfUKvDsDWxq/VBgT/0v346ZcvgjgnL38j1XKkYILWV0S4JyuNgE9OScO0T/mbitxQtRo9uYK0x5PBk6Xb1cjDrHdv1wetkZ4YPrl2zqR2N3HC8yyoS48YVK/Kf8Tbsg4jYFEptM35G3vIseyTKIe3aYG1fTqbPhLyPLg9qdTm63I+2eLcDCs/QVbD0YMs6rS7zWVfSYj90MDRzLhOKiAI2wqsBZsmgL4j43kb06QyG1XlfK594uZI4OLn16qVimvGDwqWO6gXLkee2bJVgFWucDJsFKgGqH+UIsjtbGvujMX5gvk1b28v+u3LfznnoVaK1Vb5WVOeZZUVLxEUsj9qt1o32QvHwTz4ZCZZqIm0Yh+kbuU2rsvEdMBbXuY9dbHpIF283qP/zsrSb1/kCuchb+ynmf3E2SnP1nN5T/npZT3oopXawIRw3sCCqeuksNAG98fnNcRPL5QHOqaPzuZBZ2S6pM+1T9y8jaoNqHL8C7x5D/KGhIGIqwnhce0qpYxRKVkvE9L0J/h9UIvnWehP7rhPDPpJrRyvrYsIIdjiMR8gliX9IBk2ilpQYcbZgPi2znpBSh3qTYSXq35JynP353nQ2pg251NTEOIkjz/ZcTDlah8mQznTFNGQqHQfzjKCFcDLi5Ms8wBWuYEs/fZFdOPJm7dIrxdJA/O0MR6c7EltTSELZpORIB9pmy0OEwcufZ0WPunYW+CBHeEi+eupKu2FmnmQjZnM7NMsTsvUIiQlO37EMeM6Tg1q7o3rgTeq0WT1i28K4yp6rNvndPFUona+NsDcoLIjIOISJemXL7LPzINmyDRGF2lQXDLggIkCLSR1RjcXqKSbStS6NSSBBPGVfVIJXyGYl6C8dbeiUlkjWLiXTtHS8fElBrimrzBOv30RCWxyyYxJbERlOKkSslqCuoQ0LUJ+D7GVTVDtkVCz2Owp68xbeSOVOWO2bTXC8w7jycaOVfWf0J/Y5ep3GKffvogIOrlmyiRWXzLkEmOHiJGtBhOzPNrurpXfmpXxJ7Qordm+cMOW1Zvt87EVhecSlvd4JteYmCTlE2zKx9Fz3XJY8q3sDSbUyWGEK+Vsiw5PaWwlTHYNc0/pusF+Gno+SEZ7Fe/zYLnHLPr8bPEpu6y1bkWT102HO+nnyNR0pPPQci97fjIiLH+Exd80By5E4XPE7CMBz9uaJ1XYuCLngiwKyZDiGahqVvP3EdobqiHS6VkD7CfCsknBzi17ZLbRLwm61q/vqNeeYDypvkzEaD9bwrMrSW8WOq4h9slO/s66VLkU1OWjhg9utnWdFaCobDGxm2b0Bf7uxaZ5oNiMkruYDEhQSEjTo2smMyyPbwwkTvWyASfCLestufbzygKn8mMe/CeYX4Wf+OeFAkW7YxAQ8Z+OVbci/46Y8VXMVEBeedO6I1aLhOGip23XuHV6PpJinb12cqWUCKtEMOACA+J+zYrK8F7LDrLLkGTBAdyh9WKsohKdeRN0hgsyI6VYWugLgzZc6XsepHImrfu5olNuSehoWdJ6k9c07nnxQ/iuinQwDVJKZOeVtaP1LBAE5N7VP1JxP/Mpc5XfeVCKmbLspwp4aiHjfo1oZcWCCFZOR46TMFrNhrTmYWofTtvRpGGXKTelj1uHxA7SaP6z+on2Nts/fPsiDGseCnlZ4a9f/cCrJWSLLNgW7e+DzjSz40hEU2SFU/U9qQ9TPgFfg543/mFv8kCRdN/QeZAMmcTo8qwTLWs9KE2Uw8vPKW1XHakBmvnEyF5Qdn2+wGGt3YGtTBr5M5o9EqQctDEPehHTl3yqdaJmXfhKtXHUsu9dZZu+SbR8J0EDbN/WeTN8epKNshES9AnkESd0a4NDrDVAyUv326+Nffvy5f95yBaw7IKbKuKZJdwLWV1Fdcomtzqvo0CkRXTNGO6VUtk5jYDWy6Sfd9hUfSD5ByzeezqT8mzCygk0wefXpR6nchS5laPufml02qNgGQUp2mj+WI3xXrN5UEt8dYWBZg6yAyZ0XtkSERjiuUbMgDZfZfvd1DrSNtmGfaBGcpvCnj4j+YN+F0/JngfhmwnlftrrkCWT1zg16yXDsAmbOgi2jYTOWCp/i2Pr89h8V94CBTjt8z1Gwa6lTSWWrBxKfJeI8W9fJNDMQxkfKfsjac9TmhQm5evvL9gJWOBDdbkQYys3DOiW3ufNI2jmRt1UFAN/y2v471zOPOR+WK7IT36wXElRD+ikf45+eRSbr8PIq64DCTOSG9FSlLicjqkW1T4XzPhZWCOBJi8LMlBP/Yc+yrUE6Lcv8ojmIfNNEuV+7ovnygqeqN0Y7UDGNG87jqwddUPCSGQ0523/gwCPbPtcmGa/iXIPVElPBZwH0ZCJjL5udNKZWjMvMPj71j5Wk0SG/h2CXY48AStEtjF2ERMv8XmN8dYj8USU9GTAyVVDIjIS1ZSKrMIVhJCoYYLANIlnYx9mxxjZ9gTrLyvMjngfozVTrznkH0OTtJMN7/dSHeV6P4YmkW9f5OnMg2pIREafaxJmCpuvnNWxHfp1XA6uUUfT5qBPQt53WU3mFKNTf0ZZSwv0+bOk5oEo50foeZDNiMrm4kwOS0Fjgk1eRNXx+p04jMRKLTaHVap83PdZhY3oBEvIYjZ/+ysjE10dbB50M6az+ZI5l9irPoZgqzxgQktbx6kgh9vPvCWrzWpmixLsOlEqcYt/D5QcZ4XOg9LClBmfaVFihtXQC5YRJHzB1m8DR0xzBbzQYY3JLI917kW/IHRrhgCjcz5TkU+InLdE54FpEWZG4Dk4geBoSPFabiq7eNkZPNnwdMamuvNf9bPn61Fy2dMO56EpiTUx+enfU7q4yfJq1iONBpq2RywLAq2qccIZp668REQSq+goowgaDFeZXzd57sdG8p4cNg/yGZHbiBh+Es9Bg6qNU5cNu9kdbuoT1RVKdvzJujNVZ3PlsOSyq+d4KxhTBAEBJi+rAlmo7zXAv335r908yCdMbvF514mntSF3KenuIG9d79uhb1TM5dDdpORoiAluyAVpfP14XGZ6/NC6xdMC50E6ZFKjL51yqRVyR9ESEpUyrt8SrMRfMFAwwyGhfkmf6tnf1E4Do+sWNXyeZfRqeebBV4v5cHlZwFPOcAyBllU/v1CHk9bngmb03ZcTRXjF1XVW+WsFOqgm+nNyzhP7Ek8LmlQ6YkoTkY6p0hwhaGSEf/CdC8tlHQYxX8vzCva4NZatasEj+o7UNWbA8fvXF9JSbg548o5k1sDs5414ninB+SaqqbWgpTLWS4SZmbJRaQiRjfVK3fYV5MDKUMugADuNcN0cSH+iZfl70jxoTUyb8rEmx6ZofdrCtsSgEHc6usoNr8sDA+157/ly8uCiXab88Ft3xCMo713gPIBtBs59ZKL+juj+q3oc9FLlDeZ7Uv8knFfCce1/VMtoPV/BF7pbwfO2/Cam5NsXkcPmQT4japsvA59k4zZGBCWUw2f4lVrlPMwuWo6mwuVLr9hOizoFBFs1eywh3splxmW71KWTtPWFjW9uyr58EaA1eRkfq/pzc0A8ZQQkr8gIfx4wLn171KALVKcIy6sjNzfs6WMSOWCJJheTJJbcaoXQmKSBWhixvrLCf2AEtnUp9u2L6CDzoJswncUnzyey3bqKXTpASDBZ3nO2AIyGFWQUDF7f/T7yGvZmQsa4rj8qRmCZhTYbeXP0AQscrG9uyr58+ULIPOgmRGZxVSMuMgEmZPRDga82YNJ9GPkuGB0WIDfW4EkdSKll5vI5XMHHH8Osf6zLeE9ncumECC0+b+Q8E7S/ZX3GWAYYvbCOU6MltlFwJ79zlaeCIVxhzyfq/T5B5oEu4ekA86AbMJ3Bk82oxobWyK4jpcBr5Mm23bkMJ4zLxqldKCHbFpYB3gMrrS8h+KbKyf6tLFVuaDKjAtnt3qIE//ZFVPDJVXMmsvt5E55nSdiTCkKoaf7DcAzWfG9agK0adglhi/iy4EM2bVsoSb8+VRkhiaq2S5xI+g9ULu1p5odvX2SBzoNwQnQWl2FRPoZyFFP8VcRsb5omQf7SmrOBWPJ2+kBuUiUikBIJCPdG56IZVGQals9aqe9uH/7ti4Smeah+YNUSftKIJ5mGhs1kPv2CcmykGo4D0JvNGyOi+8KqOpROR7PSwAD564/6op8KGK5gMA8CAxMkfNXwpDLKu4ZfreRWEEjYc6WwutYgTaFsPW8T42xjLLSXUGLiPSvXzWqvYFaWjfiVu7WXAP/2RbJA85A1YlkmP23G02xd2YL+IiiGOnnHjiNPal9Pkz8ZuxMsRLMSwOdQ1W5ZqZ+PQHYX6eSZU5pp9fNmpzyboIUALpcAkMMSyTB6We6wHr9h8vi+87DGy0VLm8C7rlE+ZbwnIpazS00qMjFRijGuE0Pr0fgSRBqJ6m1PEh8Cr7r530qwzaWv8yJU4kZCKm85pE9GJ7t8NNIqIFeNJ8EV3kPg6bcvcoWTU07GUH2CplZ3MOsdehzhM5awVGu8WnVElZxWkFS9FcD/VJfzhLB5EM6Y0OaLplRkbbgsK6+Xl1j2wlq3dTpsi/W8uLS2+sAxf6mjvlw/r/BNuO1pP2/fd8WgeRCPiNbkK4dcaSzwuE3FWDHGW5hLJ/I0QS0gQXOFUCVjDFjEQWmcsuta+ud6llhf9Sdm3CVLPYQ3pKdfvoh4NHlNMyuB9tMGPM0gm2TRRj/8fRVi9z6OvBMaG2PV5G3fHm1N3hNNY0Ca6zf/jid81uOP88A3CT/1OceJogCjKgWQ+3htG3IhUqP2YW0HDe/t9sCAQXKzq8Q2mG5qzo/ZrEMg54FvMn7qk21Ozpu570djOv1aM9M7Bg5mAK5NdSyKYkyVHF4d3rUGrNxM1Z/YN3jq0TyoTUSdItLxSWpWu057neW0OWxzEFloeocR2oE0djFlhkqaVu885OHvUHp3hc4D6WYk3ScelKfIksFZTRe6ypX6PoyEtqFLAPUqqFZfp0UuTAcZyMZwgX98LoGfzjh2WfTkrJuQdCK5UIUGEN1Se0Wndq3KRLX3jCp/AwsL8uzb1Uyi+KViJvJe3UanP4dzPn6aB7zF8JkPT4CKEuDz+GWzQuEFso6jAyusXVBWaLtB9Cck3Vlwk9Nol3Qz+MjhZkCY1bAASQssddfgJlja2sXIvnj1vk6LHvloPbQZU7E/l/PPE42eC8DkpgHMY8DPBPLMIQh4VwqMVrALY0PXcZC9wnoO+lr0tOcSCbCByI68Z4cXyCc9kUCnbT4Zlt72ExWKrFQb/fZFcqHz0G9J+jNJMuyUPKsZvuuanAtQDe04YPLy7jTtPUtXe3sXSyjQIoYAi34dK/eF+TCuJjAPGgLTHHwR8SQ6NiyGlciPalj4D1VGBf9niENAyxJcxq7MwnzeaPi/oaH2S7MSXFVwHlREpjr6+SOeb6qGmcz1RvZF8zzSCR2y7vU4QS6tVhtRAmAltww7DMh6DzeC/uP0lAu4J68DYnVDfgLplG9q0SRg/L1ARqtAk/8Bk9Joh8+QCfdpEVGAOiIQtVzztwz5PAY5OeOkDNVX0bjqBoJWdSh4Rk1XWMMoGtZjGGsUTb1GCpsBS4Cp2DLVCyi2e/fEA1ciTxWbBxWNqG5ER+e6O0TOAIhlKmBaLABjSuRlu0wDk8/XfGkVClJTLU1BjY1d/sa0IE8VmwcVjaluvo540h0xURV3DC0ZXbZLu8OIRPBCweXIYmjv4nzBG1q2mcA30v0leKLVe6/pPKSRWdrZ1dK59I4tvgw1/csYVBBXcWLFFq3TpOW0WV7DsU97mSUFLlN2g3jdaO0DVceTUeZBdmEyja87cZ1Ke7T6MH6InlMD8DCCk3csW3+KPOnyPi8M0vS8UGLquNlSYibxdp0qaxTm9YbB/NsXeUbzkE4h6ReiJHPlWVCRbKIQqpIRhOXmBlv3eAFoyfX03wFIXqAscTbq5xIfrvadbJ2PvecBqzNs71MVtTMTIKDUBg8BDVzrOJjigjsD5iybzG2U9QOxylOH5kFMYuKTz6VP3LsjdJqMU4VSLLddWcmC7YeN2LtKNMlbhxmguL2YeQbcJr6jVnny0DzISUx+8tU0Jr4NbdfDDqokPodVRtkRN1GPb9hZUPiyIIcuGDW/XXRCx63B9ZFW4z2geRBTiPbik09OVrVCbwzruUpX2eKmxNAWUbiDdVd0EpedVS4Da0prXorc37tU8/P+Zk8dm1xNo+qbL6afxPfWADQM88uSWm7j2AOrNVCrc12+tmcvKEo3LlDln/e49lOxypWH5kFOIuqTL6dy+RVUqKgTFEif4IS8y5IE/cVhSSIB8Uvy0wEOQMD6uWwRId17CH5Kbj0yOQ/kk5BVoqad1DcJb7CnRTWyoLdgBTiyGiUcIsICG+A13614eKe6pYKu3FL8jOk/T9V40sM81PmyumA3l8JTL1Ub5bulfIbaYazDCJTCf4zP0Ylqix9jfLogYjstOhtvbdFPKk89Kj0P1JtRdV9M5+I7iIrQGKPqstEE8/aCK14ZsMIG4elou47rvE326WzlDVdpt1kDD7ityyXngXsyruqrL1ytqWqE1ywXGmAJuStWIqwVDL0OucFp+1sJwjTHGfkT2EbeOgN/XoLmcsl54J6Mq7rqCxdrwNTkxF0PL/FghC3ilDa0kEUuR/b936VpAMGAjCjvkNB4ewcyZljhITcJpibkjO1xwb98+RF30gDNAjpDqMmmBarhJd4diTx5q+HyToU1LjpebdytF3/sWOSxonlgUYR1ES2Fay9YLc1edDW3Wz4KTZ2l6tL8IkypwzqvAL0Y+tYCc7g1hjyQqz1BfR5ad1irj68nH+RndFFifQaAYaRr1ucS5tVGQQ4jMWXU7UqIXCCoTqhq4nyfHvCA0ngcYh44B+MoPug8YFR5A65VmYtym7Etji5llQqZUOixKE2BhU5YFKPKM715tkVUyyltEXagz1jW+G+lgn77IixictbBSIrPuThHQ/9Y0CeNvVOIvNlFw4FZ/m8V8sieH+OeNdmF0xTDgLAQvCWgC1y1dLPKyA3qIs/vxlj25YugjnkoECEFJURQ5gI0apMVa+vfX0t6wnGCHLJZf6085pUQkf9RYYYa9HokFI57b9wDqxNHHJwHLZFpj76aelJf5RUZiN3QQpMA5T3bHNM6tGEFvUUt5e26D07el1jZMMbiK5zGIxHzQDoYSfFZN2fpXRu1FdMgrMgjiOs4tSQdqokyVVmoY4+tQUtetjxBRLn/l2a7uyxyHlgnY6m+lnjSHjFccMHdLvueAftaYBFXysoHXNcaRllhCJz78t65Yst3v6MHgyQ8bXAetESmPfqCOtXfIT/j7/XwQBM2KBx37xrZFEmIwhZistodw6lFP5ebk79Daz0eOSntpCzVZ90nlt4vlcTWhJq4XbwHBixbX57sHGsUDSaawQrTlHC5s/1u9qJd6AhtOzUlFPg9EZB/+yJb9DzkFFkO0s8mnLIPVRDDOk7BXrDnwcszUDuxpFXrv1v25LXQ+SWYMI8Lva3/B1q9d4XzkE9h+RdfS6fau3CZ1Kw5Dz+6x9J3y0WB30AyY0zhTyvIqsuWxQDZnGQ3uzHbJ3V4HpWeB+pNqDpR3rhSFzFCWyVi3KSq8oodB/dXd3stCI9lSwQSyxV+ZAWy47YD/Ni71mXS88C8GVP3tSeuVQ11FNLNBKmDvibVNJAICVVW/xgEBNh9wZTO1byD2JOAFD7fAQ3MgPq9WnYytPo2b+Xfvgjyngek7gJ7RlVBkVMZdniM5hrXnkAhYAS3V0ADLLzv9l0/JbYukZwH4smIqi+kcOEFU2GTurAj131hMvQ6jkQe5K2w/At6crbhOFrMmxXFdEhF37Jw9JSReVBSmPLiamlcemswucPgCUXBTReUHaY0NCkamm5b8Sog1+Uy0CxYP3/ORpIDAXTqdLKuCBZy7K5AoF++fNo9D0VirKjMl1K59CqvZNc7iqJ9iLbXdoJoARZHOExCiAzrtPIM9elHNXbP96l4Pye1LoucB9bJWKpPuzlNlz2y9xaNNDR4cWzDq1SD+qwA7AsHes9Xh+KiUBrk6Cr9Dup/Smo8EjEPpIOQFMK6OUsPcr9KXsVMshOsNvQBObHpRC51AA7LARvO8BhQt8LIWOUQ3yA1HomYB9LBSIovvZ2kOvmhFriwufX2LszQ1bb8McOGu2hKS6Ul21/kDrdwF3aeDIf7m0hPTrwZUSda8kl7lqjflQRhbI+qx/8w91xZ7OjQk+tJWgy5zitABOXQ+LwIyv5D2/3paA2XSUxOPBhP8Yn3iaijFRMIAJMFAW/0Y/TVrVejqAv+Ojza9mB+r59rg+a3SpG94ud5KJZmxdW++MrFWjTs9QwMHJp2pZlyFOBGIP9/1+MMjDSz8xZ04+JxwHZKeMhtoNqzduG/ePQ80G7C0n3hiQtVQlJyaeaR3CQc2FaKfU9CbzH2jnzx6sQt2J30LZL7MGIcf/jd/RjSexB6HiA3geiEeHOijs5aHTqK89aq4wHsOAlzLazQOaddJQOLe+sMUTsGQVK39//nnM7lUPPAuRhH83UnrlPpzAar2cPWVM0kEscRvJeiYUNMxNgUsElYDba/DuFMtwK0nyvbHkibh3w6y7/7yjNXqmEHH9V0RP++rxRRRDdxgekmPsdw9gUmUe/Y1mkFIud+y9U+AIEe6JoHkMZAncvRdNjghRbdhY1SfmNAwJjVutzBUT/f6Aee3K4sMrmMQmUXX0ikuiMwex61LoONsSrX5TCyc2qHQkLDZlj2IsA3QgH1tCjmbTdf4p92irsUch4oJ6OovoLAFQcUneZeTNHB9eVdqyDYqUWrTu9CsTYzDvDZqYb/GhKBv74jU3rv2zxkkljmyZcRT7KjPHF1iMU8UUGOS6ZMkMaGOsTKFj7wvqzzyoMaiOfa6SF78K2kuGJn1CeLd0qFSGyca/3Tb1/kCudBSGXCqy8jnmRHOMjpnRR2CFHc7hhSPkHL/tCugq1hV60j0ikyCGq6dZsw9KQCyZMR5kF2YDKFJyNS0bHK8pHrsi6EoGNY10EKiiSMSMgjt3m6OOkFpxXrckDxzK1aIcZkFUbo3dRfmq70nkvBv30RGjkPtJPRVJ92c5qOjQLCmdUrwQC+rONYUbMio6pkwE4bhDxoOUhF72q4pyoftBV4LHJy1slYKtHdTjqd3IqWrYwpX7hl+jns5dpY0yASXoawzgvX/7QgUEU79pdInUejJmddjKT5wsNJqIBR2KrwaULX0j6OJn1Xn748m7fzQBFQPwwEY5bX9a0KNI9GzwPtZjTdVR5PQqUEVkX1YEFd8M2ecdOhNJqbltC7uIwEUBR6mcoguKqvTp8v8BqXR8wD72A8xSfenKijw9ysYaEQySO13bGjw1zWqr0ztfXNjmQ9pst0o0tCyc0x48fKrku6J6+oIgVYRHo9KLWo41bOEDVtsmaQBxQDlSUo136VsbuO4VmBq7Szhjun/3kJvkei5oFzMY7my25cpoNdqCEJZP4w4mAdRt6oirubMN1FDajstK3Ifbe/F0DQby0YT6p1PBlhctWBiBS+6MY1OrkXCXbBeniJdEbS1XlR3qHLPPay7Dp5nxY/eXnvAZikb1AAB3LPA0JniN4VHKg+0XWiwpYFhN7WvsvvKx5MtKWCGLd9MQOG3pq8IOdMfySpfw5/HLgxD+iEoRmfoOJzlLytMX0SgnLcxxGSpxVf2ED7n73yD+CshyAnBZwUn/oKChVcwAVy1GllXWOrSfoVIqmOCNZ3Qn79HlMqcFaXFwC/sNl66yd41Cb8N4GeB8JN+LmrIHLBUdaOCjGmFtRk3krQAnu9qhlCI89h3RpZJ5PCUlLZPMz0PgPZz+UpJ9LMQwqRpRxd9YiLTQ2WmmhY1r9vMa2xJlU3x2aHF3K4yz0LtKKEDga5HNkZw72X7OdQ3oXO8wC1GTT3BYeDPiFgYGyrTLhN2K6VVZEP9qpI5Hm7DWRZithz8GpBHv2jQOHHQN5DzpMjbYbMCdk6cDP4CNQ1w3H0pYnJ57KoSrSgUCUyXrv5siTzSUdrX5H/9l55/nM1z1MP5kFtIOoEkdtO8pwsx9BM/ZBHEEwvyjrXdKso8gqsokYAmBEwJFI/F6pwpzIPajQ87jAPXINxE19wOAkUTZ7MKt+UPaalbfHfYY9pICoC8Ox+qgR3raKfy/7Rxs3TOCUzbJXdZWlWVYLm74Za8u2LbFOTa+hMcyeaG9foIvJ7Ubc7vIetGvzVOkcJgV2PH1pYsQT/cVdnGq2Gx8SoW+nhA03Pu8J5UB2ZSulrbieNTmB8RzISPzrkNWRdPr9aV8Ukqan8FbY6WlAhMvRzuSHllqZ6YOvs8Md5YJuMnfqCAxcoMNFJzdO0B7Fgktc6jjwvnfwjG4W892vXkPPKtlyTKUwCa+6mAk8YncehJqdchKERyYlLVLC+xto0iibbYt3SVVSnLts0YFqW1nlbbdcqmwCqrPdipR8Xargkah5IFyNpvuTCJRqJFumq3fBkr7vgAU5V8h9XA4hDfmnf55U/DstoHbD8K6TOo1GT0y5K03zBhckz8NSoNmMcXRwlW7tSx58UiIe2Wur2Wggqy3RbRbWXK9817Z9nqR3WMQ8khXAaX3DgAgUGeYVhEVBuZl82oqhkDZgGoktFuErfqWuU+Pa0ImZoN7+8BzDQxV3zgNMIrPM5KrhxQgljNFFQXqa+MwACJZotFrQr3lvkf6zOeSUu81ASQ0poiH7G9TZ5c9CRMvTve9YZ3XYcXA02OfmnxNY1rRluhBI5rnVe+PHdKP0DWuPwiHmgHYSl+BrKSXORkKddmQgWKFM0ctR0eF+yJrYOBXOXkWMybapLYZD9/ls1Rx6Nnpx1M5LuC2hccNOBovUyElDwSo11HAl+WaE0yhfzGnSAKV8Bi00zoHIXbz//AaT3IPQ8QG4C0YnoctBo5JlcxRq1ijwQQzn1Qqjs0bQR2X9XQ4qcNvUQlpKCwTDfAnMefJoHuEXgGaGdnKYG2f/MgQe1S6OsFLgcR/Y/TQtkq/heFiwIBpclhsO/qHfLjdc/ELU8GjkPtJPRVF934joVyjev2I0eX6Ws6kUUhbSklAYEoNY1gxigojXlkvhXvTdTPag8dgHkPABOBlB96YUqNRk7E8a4KQnurb19IWVZDB30hqRHWtNq1WkxrIiOIVHjO7KeF6HmIYNEEk6+7nbS6eD+Pdbfy2FWZ0PGjGLMQtAOhrycWSL6WTEnSa9G1mvI9w3gxxYpLoCcB8Dpw1OfbXF2Blmi5G2tKSugbbbY5Ak0a9YuGPm2HZggF/Sx42W4TWd8MqDG48/zwLcZP/dVp5NKZXb5SVucfs9uws6hJBIRS/jXng1VYBZu6oJcf73VKD1Jz3vkaR7IFiNnvubENaqGmiYVttGSKVTo2vl8AQzxsm00ZUhG67xyMdeqGZQX4z6e8gmh8TjE5JSDMRSfb3N+PpDRVQce+EfKWluzfDuAKsYnqN+kcMe0mZEsRy13ls9BSO6Feg9EPW+PmofcA8tV+KIbFemS7sg67U3+Hl5zVtSDqkDZWbPlSIS21D0aBQNQ1ckClKn/MaSqtQVuVnsRVvl+BeiXL3J586A5Mo3SV9y4QleAKtSESI4jiKnaStdlP3SSCjRTJCS3ZbSuwmJOHnCn+07vpcc55oGjEE5DJIeTRNFR3rSyprX1Xb5/4XrtPRIQVeMu98+j6YwV4AUJhn/2Ev8UA7uYcx4wKsO0LkfX6Z0Zj0sPAx9Vi3VDA2JoZsEll3PdVPonNRcOiZqcczGORvQzrrehevGCaZ4i4GuYAKquI/CJNaA7JKTlRQHl4dsGKFBKlubdIujnaXqXRc0D6yIkzReRTqKTvEV5pcFl3Y53/h48MRmTHpjxuM4qYWEMu72C72u7SXQPEL0DoecBcROA7msOXKPQAdUtrb6j1NY+15DpEJi85lf2q79P2yW4D7u9Fx7TTdN5oGl4FGoeKBejaK7qQDWKhiG4cOzCWeW1XLOL1ZhoxG6ZHmEuKzOStYMbmyr+/pLT38buPsH0HoqeB9TNULpPujlJh8B7qaqnKZC6ZoZgNpgs72IQCAU/OwUkxKas9VXGda9TeSDqeBhyHjAnw6iu6kJFGvn8SmMpZhgckLYFhtAE48USLjC+diPgikxpt+0SF/OtmkMPQk4OORlEJZybUvSoAoCW6FbYh8a+3QMBmIO5r6SdGcCAiatAWFYpscY7pfu5O5JLoiajXIyg+XrLSZ4ZEk76Gmcv24kJhgj5Epv1tKgSWzmubDJ8sY/VmeQrDpEuepocbDFs5vPtEz/vEiqDFXPDqKfsmuXLNhZE0BGXI1FH14vdK9hRVbPjeWs5YRhNlT3Rkm8FFs1bzKHfvkj+YB7yDSw/4estVJ7Bzxya/IFuJH9s1fnR3HKVsqBqWa5gnxYCORYFfC2w4d6e/oPcrAe2JsdmDMr5bJuz84KpZVezCJrhKJPXcTJMiCwmCuSM1nOotvMhaA0QbtjV7v6YD/Qcjz3NA9ti7MxXXLhC0wUhXkpPMDpIosaWi5AGz0Yu5XovI7MAiFn+o2CfC/nt3wK/DtqcB3DKwKwvN5zkCVR4WesmQkvaedsBH/mllte2FgbmilxWGgsukmBx8yXw44CNybEJwzKEneFzQUQjxIWWw5KFhprzWA1w/xfMM70rdA/QvIef5wFvM3zuE2hKuOH6DkvApOcdkD/yOo4EscUK4SS2TtoxWMeoVcLe/LmlP1GnnC13HgR0Jrj76tFBbJKQD40Qfy777HpvUd02tGAfpxVKkNKux81Xu9R+VXaga9zKzX4qTXkXN7lwRoU2XzniSpNs4T3VVcsXuhWmgNSEol3YKvuVNeIVTbkCvvSWyA6CiSTf6h3xmNM8MC1CzHyhgQoTxRpywoJ4qO3dgoVsX6b8Bkj8Y9FHuAtiFpB+Lr8n3YWMB0TGow6TMg1KTHylgQoT6ihVu92XkcqCvhUzMVq97LYP9LztpHUd8ibYbU94Gnch48dExmMO80A0CC/xhQYuTEAOuLQBD7UMspytZLMBCaW6MFRdmW/MEpBHtEilbIHWx/gcyTvQeR6QNkPmLsk+UPKBqlSrZIa2snqNgAZyVoWkyj59Lf9/OWup+bLZWOjnu6/8R60mf9GmeWBZjJX5GstJk5HQHrUy+5K4I2/K/hwOTM28CQT9tX3aUtaKkPgv199uv/9BWs4DzvMAtBkw90UGLkp0BHf1xYedrNzHdxoP+V19x0ElR9wuhAPd2PbniBTXlwaNu8BxcpxJYKkvMhwkCYnGY6FSwYVhOe2gnkGw0DJmkEDZ3tPrItbFEggRHm7v/s/L0v4CWZMjMorgXJpNSTmqXKxQFSrYBf+VdZSE+uy+brkcvS182GvSmcSINrCTuY1teyDgeKRpco5FKBnRWKgkEyByD0v3CaNaQ7ugiySreIpa5LZsc4CtQRaGXSQ28Hun1U/3fW+rnYet2d/JCR/RWW7wVrbD4J7bzZLDVOgJcb1AsqN8qVzchU2TwywKy3zNgGsMSbtSL/ONqVfc04kg6Eh4t8ePvot3L7GE/nhZTICzUv0SjHOB0zwALYLLfM7MOTakjdDDrmC7tuczao+R2v1lfuCtvIe2CWcoVsGCvf7eOvcAxv0NnOYBZjFY5lNMwkcx6yKUuMpX8aZuclybmnDhnnRMftxzt7XI0XKjskbGfQblA0HKo02TkixGyXy9iOtLoIsBY4DwOXivJe9wp9E03fS8coNq2UUHAerI+jzFVr5SXOHy5Xng1z4dJxzzxEkb5kKt0hVYgO6SE6DnYacVmBTj9oBLPZVh6sDqg/yOfOFJwPMgGROF2dMXuBqBeyF/PvQg8A6su/k4yB1FS2Y02hK2DzJmOg4rdqw5p9tU3Wfl5X8B53nA2QyX+xT7RMlHqNc6reDi8ba6lJ0ljRXjd+9x1moAddhDSY8EmZsa+QTHO7h5HmA2geWEYnNKDo+QYOX4EVMeVjEa5u7Kj7vsPgZZgJsNXJe2ouHuXqnfDRMeoHgPOE8OtBku9zk2Z+T9MrtUvEHh6ntA/ZBYd9k9qXi11ilzkdtvUfLCnJgvYXgXOM8D0Ca43OXYnJJXmE4s04WcVszHdCAJCmswxttaRC4F9zivgeVy78MtEfWorP5v2Dw5yiaY3CfYlI9nlCmFau+xQJ+1e8KgAlAw6sWkiHqwBfmR2iv2ubyP5a5cPcjCOBhrHiAZg3A+weSEdMAqtjfDcBgD0HYT6hp/ErBUonVzwVsc069tYIxAzuveI/sgDelh7HnA5AzD+/oClSMqht2FYacdGFq6D6M9bFaaeWGdpXVaeG4W+zzJ4o1fahJ2ceY84FIPxBKGzRl5AAS1UgZtTRllH0dw/RVW3ZPEgrCRs7wIttsqGk03xP/EK8KDmfMASxmM9Uk2J+WwEpNw2g1Wyy397Ygpi22VMo9e6k7yyqaAWgCFjxI/+5fcUrz9dtLNmW3lPifH3zeBSasJ78J0vz3qbeRqdUwYEJHj3Zv/53Hci52TR1o/LPsU60TJer60nhh8v73rDysmfug0Ytu1wm4zgj1eWlOuuvpufIe+O6BpHjAWw2Q+v6Z0PIOSqO05oC0aKjZNB9NS2oxIOXrdSR5Z4WMVLDQJlHcQ96ic+G/UPDnIJpic6CsnPWZgTVrFhrbWj/U5mNCwPUFe2bVbZqTjswX5gXF+5XYDnowb81jjPLBMxkp9kn0i5XDvb3Z8IX3b9xevSYPRFK4n17GUM9SvCTrU/K9OrL7VlCRkTpSnpx6W9hrfRm782xfhjfPAMxkv9Wk2peUI1rZ+cJxyjStvui5rRaecRa3Abybr6+RTOOvo57J/3UoKn8C5v/HTPKAtgs4I1aDMJOLF7AueNeMGdhjZm8Kw966hB3GPfmnt0pII3aeuke5o5sclKC6AmAfAwQCKTzcoO8m4nLDwSUolrFynmmBbhYucKSD1t06Lo+jfR7VduI8cfVRR/jeBmAfCQfiJrzNwXQJtB1evBotqe6sVKQc0KSjICSjMXuynS9TtVuaB2WC34VxPVAwPP88D3ibw3JUZDqJExUBfOziccsL2CO86Ckxvlrxby1QLg9wz5sBpcuhKpd5W/8+prAceJ8eaDJsSssnJKSZUC903iVjizGWbKxrTr6rGySh2ChgOuM6Lgca6+2tn5v3pPwB/DuCaB3zG8JzPNk7sRLaWtHZFAeep7OMIba7JcARyaavMo8lNteFvurx6L7e3/wEA9CDXPEA0guh8us3IOSzyg4IFZC+70OCxjgKUtpKg8q+SdlZHMISuUt1yar83yD6qKf4bcM0DQGOAzmfbJ3YuoUKiim2uconX2weq6xhrXE/sKo7ZeeXxGRyDOc1qb/lG/PMCzjwEKBLPfH6mE7sw183ilmyjYU0yQpNKTrYy5FbfJi09YecefpwHvMnwqU+fD2wbY5k0+gFQvucTV7ucYehP9hq7i1CAa7VckFxmgKn6d+Cci6DmAXERgOZTTspQYZGXLbF5weY7vq1Mhdq3y96jgVdknxU2Kpe9RwlFrbeI9iCeOyF08ohLAjRhnCeGKsEg1qX9hr2MKiBCeKMcOECPdVp4QCuax4DunO/DVh8Vlv6NoCbFWwyd+YSTEtRyqe5/2dElKq46RJtKjlWKq5G4vWr0MAAit7roIupXbnTu53zWpU+T0y1Kz1y+eaKncowr2uFr2vP0oOxiTKFNbUX8fbO/KmskGetsEmDqtwoSPAgxOeRgEIUQjhNBkW18hfqkLbXr4ws5UNuOBBfltiusZK3VFRiFnvT0rYoUD0TMA+jwIYpPOClBVctLG2SpgKGsCp46NF5EezHgh75wFFhMGtEmRcXea70hugeQxoMQ8wA5GETxSceBo4yKwUd6Wui2688byHMLNrKudCtnx5hu2K6Yqe6AV+Yt/j2gsx6FmAfKwSiKzzg5Q7WSH/BFAANZX30PcpOXaJTlin61Vb0J67GgxtkKSFppdwTwgNN4MXceYjQJ6T7n4Byl64h1RYboZayl7uPIThrzWulXW3OLG8p+mroHI/TAkfBL88bdoDsPQZoFdZ92nGhKi8FcVVADdG2Mgbr2rA6KWDIobd21cJh7sjJG0SwJv0PrPdg5DzDVR7U+7T6x9JaDBfuC7XOtjDQQY4OGRtnxlnkwSjebTvsywbRc17cgkAc6JgcpFNT4pIuTtITJHmqUiC1GyETf5C21iipY3C8tBdigSVZa1BdVbm+XFfWlLnk36k4epFlM90iaDmuStbbaSgUjrwjQdSpCKvZ6CRu87kmKB6TOQ1HzgLoYSvNZ14mlwe327XwnKGV/jhWocleCVWyxMk5kCuVpL/Apr3xrX2J1LoyYHHZQmOLzLs7ToGaVNGzzvorOhrbjVNmCzfseQ1v7RkcofctLB5T36G5m+qjY7E8YMQ+gw8cohHWdWBr6CaOdtEkAibsrTN7+hHQfXlx5G0wGLNglSit745E34Fvtgh6KmAfUwVCKy7s4TcMIBxhfGUgpLWynXIn/9l4U9GvG9zgbnHN9LmfN+VtJeg9EzAPoICCF0A5OUzDmqF12WqhdZbOXHGVt2voXILU6y+ErBgNRi+gdidJv6bQehpgHzMEwis87TjxFdo847Lxj5LIEX7RsqA+g6WPqv2HnRfd1tIWHW3Ento/qrv6OovMQdVmU9qkHIyqoammjWIyWlbA9IdGwEPdKR7PahgAd76BBI3T03HWtn/MaB0RNDrkoRPNZx4mlwB41WyRFS8vb+qX3pRtlzLtdZqkY4NeDerwjIneda/sdXdOJOPMQoFhA81kHZynwlQq5LIzewjIFl+MIHLKq/YYIsxpWYEQmb9uw1SWQqsRbnv7nEdANOvMQpFhQ81kHZynoray2A6AzL6Rl8onq/2pvesWr1t/12Si4txdGsNctT/2kc84DXfMA0hio83kHYynI68qmYOUeFya51nUUNIcEg3pRDcTWWWGir+sIZRph3L0yfh4C3ZgzeYhiEc1H6fj7hmFvaWGja3lFdVhiy2qzAIMt794H+mh85t8oYnLQQTAKYVGcdQUAU2Twor7Dl6V20bJXYHiqD1rWb7MFIKcNuRo1luUiW+w9oD0I6V4InYeQS0I0Ad0HjN6t1Uxvo+CFLWBiiGGz7SVJjHiXY2edUb8CYL3at2btOCF0HiKuH599yM0hOkDPuPSuFOxmYamdsI0pZQXScMHjeMV/lCyv3SJjpN9t+T8QKr0QOg8hl4VoH3SfQDr4/dovZX+pu6wHt+Wy+rIesKGv00p0VSIBj81Uwu3xPwjoXgSdh4jLIrSPuTlGh0VWKsPWkYCHHPfcEiHDMa7tYqyMf8OqQjnXYlj5a9PD3QA6DwGXBWgfcnOILv9DUP8VFkaNa6qlHAcWx+vVkOvdc5tllYymLfjAmJcODPrWtK2/99zJt2i2o/ugm2L0jLgK6q+hvr8HLidUNLVS11IvcY1hxyjPFKJBACyYe+nlo+qrv0HEPIAOF6IQzM0xOnLbpoLD1bm2sWuv5G3UMdzwBZTVkrYrHJ7hMERzQTL+UvG5G3Imj1AknvmI+4TQIfz21YaLzpP9+XWpwRC2y3TVuqNoNuVbA0b8nqLlRZzJIxSLaC7e5ujcfEAtrQ2/2LZBu2zNyRZcyu+69oEdL16r2Bny4u3Vf7D7O7vt5Jsz28wJOlXDdmTy8tr7rvpOO0f8TtsqAnDdLZw9QLNe/Jw83LLo7MPNEzwVGJiKbSHCc6u9FWhgSGYnknR+19hGzkj7dWvBloUdb4VXz9Luf0ePeYg2LDr5eJPiU7jghGg2pyhNizVuQUuuKa06/QLKt88LHxHlObqL1niL5w+imRc/5iHekPDkI06OUBUM79NG9ONv5NrAnoM+asEQ7a1cRdT8WDIFd7R9L/X+dwSZPOCw+OQiTg5Qi0m9Uc+KVM94N8y2HlGSKZ+HFNCBa6etFf6n+nlGGcSN0D3Y05wIMg8BhwUoH3EeAOq4Sgt22pphsbE+vzDMwtZFw+jFfdqS3nwhwJHiS/N2vCAyechhEcqHmxyeIqk3lnuEwOPRt2wFO+Wa1qq7QosrAA5MMrHXQkBZ+WIv2V9b7uQ7NNvRCdw8wdMeMZ/ZQGQTQBmXziEvgw75wTqPdXVqyXnRqaM3AJrPalP/RgjwttzJt2i6pbuQiwK0hDhubAFJ4LJTmlh2V+j2oFvutWzbNNmA8nJXDTnVr9EZb8edhx2a7eg+6mIgDQYaElX7WDFdQuxuSZH/sAR70BiVeu3kqGyOOp8WgP665+gebH/ehjMPG5S/nxGIph6/qdRorBCZy03bhVo1zenjrsjpvlVG4gWQeQg4LED5mItCNJSmxKGuOpg31xZ01QLefukIKjTbtTU+NyOMRLOdUOJkxiLf2M+9LXTyHZdt0D7i4gitw/yxF3uNKhyT6jqOXMPV29q4atiyBRqvquEZTKlM3zOc/3sHnYcdl+3QPuI6IbQOKxT7obLTtfdxML5Zdy44+suTqeu86MJDsjvCa6QalP4GQ/f20HnYc8kW7UMODlEqjF1N0k8Y7pD6hi5JFng26CZ7ZHuHgJ6X8wqyWzFd3yLp3h46+Z7LtmgfdHCQkuD0XdYeAAxkEkhVO62ihVBI7yF7s04bMbnXVkAEf/pW4Ym368zDLuVvagR0cJASVOEuNryioCJvgxfZl9ULNSL1Lcffp5U4mdB/iakTqAP6Vjm5s+vMwyZFNjWCOjhK0YUUu92wLpjxjV4wxcUex3jbg2u7dgOCxp8nGJC9QT15b+bhPWPvpR9r8fetQHqytyGr+Z29xwN3136ErKlQv8W1va1wHrZOttV6WOiEnEa4rMc/4E92Oy+6aNSSG6sS77PtbwWOJ2Oslydd4VvaobsPzMO+wfYZP3YeQm2LF3ptdPWhfnQXSnfozvY7BestkQtNpLAx3ptHDF9rcvD2gXnYN9g+44dOHmrx7jZzYbiEtJVlbYgipC7bntywIOh9pLVgsErM/Ub+XEDTH+5zj7Tzv/aBedg22DbjR04eabNG8mLHlzu9ze3U0c9yEHBBa61uEhYE7SS7j4INbSf5xgrw3rl5eEfJO01C5ynUCsaPCuYuDNuo1hZRsfJyWStDbksxualgOEvXFM8Fy2qbKPqNPcB76ebhJSXvtB85DoEGEKDZbcEjihu0C7If0aZQRQxu2KA9aTGJfl5rCF+qnnBX3DysULai/RilXTG175WLsSttH8fMPbHvDNhbfmk9OzvIPGw4bINyQw6PUA3GBToKG0PF4Mq5PfeTcH27GPm9u8kL4yYGJGB8Lg/z+pYNh/v6zMPrxl5PP+TwEFV0lFqzHRp1wusooQY4ceJ3yo3IbeNveUTqfyGfy0ZbvpY+8d6fyd838nqS/fa0Pwvss3nXWhw/yq4pgicrNPsALxDtA7PTSjRDcRo+l/V6n4X0TDz7a8XNwwJlC9rdbunuXIEjWrGfKQ+jjb1pY2YkYEQQoJ8FOOwaYdk3A9B9gH1f7v1biM5bcZOuT7aa3d2Wb84gcU2zqnjKVw7X3rSjvOsoHZWfKct001iVmgb2yqCNUiV8S2jw1ts8rE+2nr3dWYuBZVEMW7UjLpvZhr4/4fB20qvKc/2ebPD3+pl0udHV6W83fHtKmHOpxwmriHIn/bO8aiiFDQ3G273vfpiBMStF//7KwvnebzNZBfOwasgqI3sG32PQb110Dwval7h+NUa5Dtjk6q9o8ifxd4sCDBfx5xLgPwRt8tPn4VaxW+svff6qoLo+WKRs/6L+3m0dp4SK7S8EVHH034OpRhdK0/XvYx75+tar5d22ebjN7LH4b4uW5UDTTnoc7FBvRzgJwzp/MzQVC+5jYB8h37/v4Tzcc/aM3IXD19nA4NSASgacdsT6hr4Fh8z6+ZVjzO86OyFUGEcin+dczERqL0zvv5r8LOyqyG3W5FrXbn+cXHBT3y+RUN8CySdgOEErv+fT/sdf/+X1X17h1/Xrf7p+yX+IH4D9ofxK2E6D/vPf5+t/+dfX//wfEJB+/ev/87rkz//1/3r9H7/+6X//5185YyaVPA/8369/+rf/9v/+53/85//0//37v/3j17//9//6P/7tv/33//rPvxTH7v/79U//9z//+j9//ev/9vpf//X1H+X//f/0YSNJCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTQ0NjY3CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYyxEcAwCAN7T8EICEOAfXK5FMn+bbBjN+glHQoEMYWNgyRTpxOt/KC3wXXS05BO4EHKWJmxbeq2Wpdc2d6r9sjar89Df+1Oar1IJGYCkamxB+92fQtHHgEKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZpcnN0Q2hhciAwCi9MYXN0Q2hhciAyNTUgL0ZvbnREZXNjcmlwdG9yIDE0IDAgUiAvU3VidHlwZSAvVHlwZTMKL05hbWUgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nIC9EaWZmZXJlbmNlcyBbIDExOSAvdyBdID4+IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNTAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC93IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAxNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHAP+A87TT6YLcf1vLmXSDFGPLL0RXdOyVh8fGlI33aGNPhC1c5XQaTlMZj4u7Zl2gy2Ey02+8mrnAVGGR1eyi+hi8ofOsZoevVTMxhDeZEhpgKndyD/X1pzjt25KQbFdh0J0apLMwzJH8PRBTc9BziJH8I19ya2HQmeYXFy2rGa1lTNHsYapsLQzqjUF3yvXUeq7zMBHv8wPfQT5kCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDIzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9MZW5ndGggMzkKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWQzuNIAFfMKfAplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC6MrjSAJiaEwMKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDc1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxOSAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMjEgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIC9maXZlIC9zaXggL3NldmVuCi9laWdodCA4MCAvUCA5NyAvYSA5OSAvYyAxMDEgL2UgMTAzIC9nIC9oIC9pIDEwOCAvbCAxMTEgL28gMTE0IC9yIC9zIC90IC91Ci92IF0KPj4KL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjE4IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9QIDIyIDAgUiAvYSAyMyAwIFIgL2MgMjQgMCBSIC9lIDI1IDAgUiAvZWlnaHQgMjYgMCBSIC9maXZlIDI3IDAgUgovZm91ciAyOCAwIFIgL2cgMjkgMCBSIC9oIDMwIDAgUiAvaSAzMSAwIFIgL2wgMzIgMCBSIC9vIDM0IDAgUiAvb25lIDM1IDAgUgovcGVyaW9kIDM2IDAgUiAvciAzNyAwIFIgL3MgMzggMCBSIC9zZXZlbiAzOSAwIFIgL3NpeCA0MCAwIFIgL3NwYWNlIDQxIDAgUgovdCA0MiAwIFIgL3R3byA0MyAwIFIgL3UgNDQgMCBSIC92IDQ1IDAgUiAvemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YyIDE1IDAgUiAvRjEgMjAgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjUgL2NhIDAuNSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzMyAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ3IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikgL0NyZWF0aW9uRGF0ZSAoRDoyMDI1MDQwODEwNTAwMlopCj4+CmVuZG9iagp4cmVmCjAgNDgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAxNTU1NDIgMDAwMDAgbiAKMDAwMDE1NTI2NiAwMDAwMCBuIAowMDAwMTU1MzA5IDAwMDAwIG4gCjAwMDAxNTU0NTEgMDAwMDAgbiAKMDAwMDE1NTQ3MiAwMDAwMCBuIAowMDAwMTU1NDkzIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0NCAwMDAwMCBuIAowMDAwMTQ1MTA5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDE0NTA4NiAwMDAwMCBuIAowMDAwMTQ1ODM3IDAwMDAwIG4gCjAwMDAxNDU2MjIgMDAwMDAgbiAKMDAwMDE0NTI5MiAwMDAwMCBuIAowMDAwMTQ2ODkwIDAwMDAwIG4gCjAwMDAxNDUxMjkgMDAwMDAgbiAKMDAwMDE1MzkxOSAwMDAwMCBuIAowMDAwMTUzNzEyIDAwMDAwIG4gCjAwMDAxNTMyNjAgMDAwMDAgbiAKMDAwMDE1NDk3MiAwMDAwMCBuIAowMDAwMTQ2OTIyIDAwMDAwIG4gCjAwMDAxNDcxNjUgMDAwMDAgbiAKMDAwMDE0NzU0NSAwMDAwMCBuIAowMDAwMTQ3ODUwIDAwMDAwIG4gCjAwMDAxNDgxNzIgMDAwMDAgbiAKMDAwMDE0ODY0MCAwMDAwMCBuIAowMDAwMTQ4OTYyIDAwMDAwIG4gCjAwMDAxNDkxMjggMDAwMDAgbiAKMDAwMDE0OTU0MiAwMDAwMCBuIAowMDAwMTQ5Nzc5IDAwMDAwIG4gCjAwMDAxNDk5MjMgMDAwMDAgbiAKMDAwMDE1MDA0MiAwMDAwMCBuIAowMDAwMTUwMjE0IDAwMDAwIG4gCjAwMDAxNTA1MDUgMDAwMDAgbiAKMDAwMDE1MDY2MCAwMDAwMCBuIAowMDAwMTUwNzgzIDAwMDAwIG4gCjAwMDAxNTEwMTYgMDAwMDAgbiAKMDAwMDE1MTQyMyAwMDAwMCBuIAowMDAwMTUxNTY1IDAwMDAwIG4gCjAwMDAxNTE5NTggMDAwMDAgbiAKMDAwMDE1MjA0OCAwMDAwMCBuIAowMDAwMTUyMjU0IDAwMDAwIG4gCjAwMDAxNTI1NzggMDAwMDAgbiAKMDAwMDE1MjgyNSAwMDAwMCBuIAowMDAwMTUyOTcyIDAwMDAwIG4gCjAwMDAxNTU2MDIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OCAvUm9vdCAxIDAgUiAvSW5mbyA0NyAwIFIgPj4Kc3RhcnR4cmVmCjE1NTc1MwolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:50:01.697812\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["def plot_curve(\n", " curve_fn, x_range=(-5, 5), y_range=(-5, 5), plot_3d=False, cmap=cm.viridis, title=\"Pathological curvature\"\n", "):\n", " fig = plt.figure()\n", " ax = fig.gca()\n", " if plot_3d:\n", " ax = fig.add_subplot(projection=\"3d\")\n", "\n", " x = torch.arange(x_range[0], x_range[1], (x_range[1] - x_range[0]) / 100.0)\n", " y = torch.arange(y_range[0], y_range[1], (y_range[1] - y_range[0]) / 100.0)\n", " x, y = torch.meshgrid([x, y])\n", " z = curve_fn(x, y)\n", " x, y, z = x.numpy(), y.numpy(), z.numpy()\n", "\n", " if plot_3d:\n", " ax.plot_surface(x, y, z, cmap=cmap, linewidth=1, color=\"#000\", antialiased=False)\n", " ax.set_zlabel(\"loss\")\n", " else:\n", " ax.imshow(z.T[::-1], cmap=cmap, extent=(x_range[0], x_range[1], y_range[0], y_range[1]))\n", " plt.title(title)\n", " ax.set_xlabel(r\"$w_1$\")\n", " ax.set_ylabel(r\"$w_2$\")\n", " plt.tight_layout()\n", " return ax\n", "\n", "\n", "sns.reset_orig()\n", "_ = plot_curve(pathological_curve_loss, plot_3d=True)\n", "plt.show()"]}, {"cell_type": "markdown", "id": "e61b9319", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.104409, "end_time": "2025-04-08T10:50:02.822887", "exception": false, "start_time": "2025-04-08T10:50:02.718478", "status": "completed"}, "tags": []}, "source": ["In terms of optimization, you can image that $w_1$ and $w_2$ are weight parameters, and the curvature represents the loss surface over the space of $w_1$ and $w_2$.\n", "Note that in typical networks, we have many, many more parameters than two, and such curvatures can occur in multi-dimensional spaces as well.\n", "\n", "Ideally, our optimization algorithm would find the center of the ravine and focuses on optimizing the parameters towards the direction of $w_2$.\n", "However, if we encounter a point along the ridges, the gradient is much greater in $w_1$ than $w_2$, and we might end up jumping from one side to the other.\n", "Due to the large gradients, we would have to reduce our learning rate slowing down learning significantly.\n", "\n", "To test our algorithms, we can implement a simple function to train two parameters on such a surface:"]}, {"cell_type": "code", "execution_count": 31, "id": "523f4d0c", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:03.034786Z", "iopub.status.busy": "2025-04-08T10:50:03.034127Z", "iopub.status.idle": "2025-04-08T10:50:03.041098Z", "shell.execute_reply": "2025-04-08T10:50:03.040364Z"}, "papermill": {"duration": 0.116181, "end_time": "2025-04-08T10:50:03.042249", "exception": false, "start_time": "2025-04-08T10:50:02.926068", "status": "completed"}, "tags": []}, "outputs": [], "source": ["def train_curve(optimizer_func, curve_func=pathological_curve_loss, num_updates=100, init=[5, 5]):\n", " \"\"\"\n", " Args:\n", " optimizer_func: Constructor of the optimizer to use. Should only take a parameter list\n", " curve_func: Loss function (e.g. pathological curvature)\n", " num_updates: Number of updates/steps to take when optimizing\n", " init: Initial values of parameters. Must be a list/tuple with two elements representing w_1 and w_2\n", " Returns:\n", " Numpy array of shape [num_updates, 3] with [t,:2] being the parameter values at step t, and [t,2] the loss at t.\n", " \"\"\"\n", " weights = nn.Parameter(torch.FloatTensor(init), requires_grad=True)\n", " optim = optimizer_func([weights])\n", "\n", " list_points = []\n", " for _ in range(num_updates):\n", " loss = curve_func(weights[0], weights[1])\n", " list_points.append(torch.cat([weights.data.detach(), loss.unsqueeze(dim=0).detach()], dim=0))\n", " optim.zero_grad()\n", " loss.backward()\n", " optim.step()\n", " points = torch.stack(list_points, dim=0).numpy()\n", " return points"]}, {"cell_type": "markdown", "id": "80706c03", "metadata": {"papermill": {"duration": 0.11607, "end_time": "2025-04-08T10:50:03.263302", "exception": false, "start_time": "2025-04-08T10:50:03.147232", "status": "completed"}, "tags": []}, "source": ["Next, let's apply the different optimizers on our curvature.\n", "Note that we set a much higher learning rate for the optimization algorithms as you would in a standard neural network.\n", "This is because we only have 2 parameters instead of tens of thousands or even millions."]}, {"cell_type": "code", "execution_count": 32, "id": "5e349e47", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:03.466983Z", "iopub.status.busy": "2025-04-08T10:50:03.466393Z", "iopub.status.idle": "2025-04-08T10:50:03.556362Z", "shell.execute_reply": "2025-04-08T10:50:03.555367Z"}, "papermill": {"duration": 0.192193, "end_time": "2025-04-08T10:50:03.557748", "exception": false, "start_time": "2025-04-08T10:50:03.365555", "status": "completed"}, "tags": []}, "outputs": [], "source": ["SGD_points = train_curve(lambda params: SGD(params, lr=10))\n", "SGDMom_points = train_curve(lambda params: SGDMomentum(params, lr=10, momentum=0.9))\n", "Adam_points = train_curve(lambda params: Adam(params, lr=1))"]}, {"cell_type": "markdown", "id": "212577a8", "metadata": {"papermill": {"duration": 0.10183, "end_time": "2025-04-08T10:50:03.759678", "exception": false, "start_time": "2025-04-08T10:50:03.657848", "status": "completed"}, "tags": []}, "source": ["To understand best how the different algorithms worked, we visualize the update step as a line plot through the loss surface.\n", "We will stick with a 2D representation for readability."]}, {"cell_type": "code", "execution_count": 33, "id": "f5951a9f", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:03.967300Z", "iopub.status.busy": "2025-04-08T10:50:03.966713Z", "iopub.status.idle": "2025-04-08T10:50:04.303186Z", "shell.execute_reply": "2025-04-08T10:50:04.302263Z"}, "papermill": {"duration": 0.44464, "end_time": "2025-04-08T10:50:04.305444", "exception": false, "start_time": "2025-04-08T10:50:03.860804", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMjg0LjI0MjcwNzg1MTkgMzM2LjM0MDc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSCj4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nL2cS68lxZHH9+dTnCUsujrfjyUMYzSWLI0NmlmMZoHaGIPACDDm68/vH5lVp07frKY9QkZq1Dc6blZkZLwjMl9/8uU/vn7z5Z8+/fj+b5/dXj9+evPTzd+/4c9Xd3f/hj+/3P39U/58dXP89N0ttLSFFKpr/Pjt+ccYyxaTqxmwe/rpr7fbX26vP2KRn/ilT2+33LbsQ77HuuUUwWHdWjc3F9qh3z5BfdqczwY+fv8Es4/8cH+xdPBAoguutuz7PdSypRruP355/+/73+6vPwqiij3z5xej7pkbP9gCTbt145fby2+8+e7++j/8/ZPv73+8/fH+/yUi3H8/CNmy2G4M/9On92d6biHB8Rp6rqftw78UttJqdgVw2HpvpRgHk99c6yEH4H7rPpTqBY8dErJ3Hrjbaqq9V4PXrSXvW79HB0oP1TeDl803lonA2+ZjcCEZPAmpdMHLVthWHvCw1YIUAM5QmVIYn3VbbzEZetxYxHWBQ2fJxo+A/eZL7XXAKzilt3APnWPI0fYUMiiuNBjbIaumVIzGwMZziSUCj5tzKTn7aHBbDjXlcg+ND0FKN3xfRWOP/j7kGHkdcPZU4FO9SwBLiT5Hg7uNb1cWDaWxqcqagjvOwVWX2z1kv7UaexW+72Hzrnc2KxJ6Kr5pfZ/qlvgY6wjFJf7v53ddqUFw6OGIBz484myhNgN3W4ycpHEHDvrAHsFHolpurXv7roOe5nwAriWTNy57zirDhVaA+63yPW90ZrGcI0p3X/pWOdkwZAfimkOOOJDNJMHYkByiU0RNkZKHiHDpaHVAubgIHOq9G0xDoIIP3VXAcSscylg8ZilHiEIPW3IxDwGJW4s9NdHit9DhzS5PrrMYeyocA7ypdQoUh5rZuM9dfx3ooW3Jp1g64LZFpDsOOJqXEEuIz2gnx+mN+JC0E52bz2Wr3sfBYkTKlVARHZ8zR+hzH0fV9cstNINzQqEOESlbbgis1oHb3rWhbqaTtSFSyBIaFiNL6gjRpdZd7gZHkrwzehwiW7oLgoctwz4TWU4AkaqtFoMjQsgscMDdRSmNDjPFZLtqeUs5u6qPOoxYNR40bCoC4Qc05l6CIWOiakB3fOoQ2EsVgYgSUpK1T8AQbUt0pIeD0S4Tp45Vy6IOpYuSu2pgfi02bb6bNESJI5LfS+5RvEJ1c+h8yMD6q7EcPUcK68RGirwZoA5RsQR03ifsDKKQtXEMGJa1uD7gyFmOweBwE35LplPeWu9olsGxRhgMSSnwLOMx8ItOl382OH/8QG8wFjemZdLGgs1JekHEjmWJEeAk+2ea56OZkTDg4oUds/d5w9jWrq9GrK2382FnW0Gk0wAnh9wbHKnznKaEHbhrMsMGRzRr8UEMln2tfjABpelZOmFwzpyzNkMjC15KMzCn3UqY1jbypapNYa8yUhWntcXZInUGZ5XhWmVvI1Ji66CTuGOT3RCl2dGoFztasq/K1jU03qh00qUwZJ3dssMUs8FTbHBwmj20xFiMtPG3YbXlllAB8Qxn1floCtPatlKln4KXPByRR8pcbPIEAkPvZD1qDr/7XAYhwVA9hxZ4Hh1yHMypkgpMazF4yQ06DQ6PGycWDJ7kuga+GI4eDnyPUDSzNBWWYL+1LUxgz3hG4wIWNrYK2wxe+f1haTCxqJEkR2GDw5saF2RiORjZN1lS3EAa6JJGLMrAx8bHbszExsJunZDHZSM51Wx8KGbwc2oGL1GiaXAnmpEeg2MCwzCIWM2SuvdjHc46DBmBnQh/lc8BDhOcKUTACuIZU+LQseyN40i2XaygQxEnvIh8ox/rhQiaHgJHg9wwrJgkzEPqyeB8dBxjkPVpGJFicE4OW2Bw2AYHg9ZBMHJKE7/ISTjJOHB0YMjy7TPiKsVZiq5+/Mqivv2H2w+38Vf8+x5lFWziOfhUqPcHR6h3oL5CU/hsdkQpRT9h/9DYgvdbI4OXI86gGjK87wn+XCxdZH0dnlM/4Fcl+AmBXyPHSIBXkVn9xJFImdnDBXZWjIhgGCHY0NLx5elqbbTVItiun/DPldOWjC6xYR1hCm5j0oWrwDP4C5ZUnBu2jABQP2E7QEZN+xobXmHmMcTsEhcYZbVN2pbYGOYg7Y9ChnfwumIAFriKxAohgMyhfiIIdRG178s9BjnrSFCWxD+8cnWu8F+7WDsRmihGxPqBjSHGfNSKr1piE5ZiCjCtrI1Uy/B0opzl2aDw3WI5FPGVwg+CkdTymmyFufhM+T3Yh/lMOWEssH4rbHTIY3Y5Dp0MoTYEVWIlUoUVszmbXp0sMhHFK4X6bLElsXVJi/QS8cdWEGu8CrLC6DVJzHKjWEKEQmdpAl7lF2FgkWFa7jQ2KCEGycbEgrFRXJGXtBS5O9SsJ0kKvrgmrC5bXx4nbh6XTmRPOBvsvKTDxCt9qcbYRrmdgJn1Qw4VMbB4Xe0TPhfZGlE/RJwIsRGHl5VCdLmZHlyuii5MmTKBOwd6pcjEiaRGOddhuhJq3eDpBXbwcpmBSEdqH/F/BLvlQpGL7QslMwMkF8aH/KW5ArdGdMbUHpI7sTQh/oWRcLCrR4UqMoXwX0p0Za5IaEHBDJuRjRwn59+WR4/UykMRpeB8X8FOFD8Sf6YrbBgc9GVv2AQoZH4cz4X9qR5ue8IaYSOLyFXBs671Htwop9sHNlvoyrSX7MYCQTi4fVBCsEQ0keSFlthyOsTPCuOEjUP32MIrSnpENPgPwQCbjIaotmR/YYEymacOkjxT2Ogwfj6ssbFnZEXIa6kDO3aZury0V6TfCEZA09oghFgXmUprtSR+LQgGRiHa0pCFsPPLy7VJKYjzmhQxG08yyTc+MS1NhAJiHE1zaRxOxhcrrcwrlRcykaOyDiMbT0zCqihkjYwTRv4wIIYMxUlkrDYpZPL8tktrMkeb81IRQK7YA1bC0QiZn1Dg4leHLmOAbyTKMipSQT7IGFeskxUhi4AhsjngEq9hANnvGtkTCePdx7qYb0I4ZXVLXOQM69fGcRPqROW4a7YhcRk5nlKXFPogG/ECuXN2fVeW5FTNInhdWRuZD7w7ZtIb21DJpGgpr7dXyY3Iaes4PXJeTE1pdY2MfFV2NGSI3I8oE5lbonZS8yTjPohQNS1Zieclsgo1CUnGehovIhrCUfqy2h6GA4HAik0zEyXJSNUyGMFuOKkqwZCdCCGmQ958WB1f2JTwSBj8RMalEp4vFQqrgXsOKuoMxgWcUiIPWNGM/4YBJFF1GCTJJnx0yyMhRcF1417JIgwXyXDk5ks2qwylAlkpQ4yw5pCFDVjxuXalyzrs3OxUsEx4aWzuhbPAM3PIIyASdhTr81KeLZiFXwThtsXQsBlow9rW4SvQN7wQQcXAho9kvVexbZTks/jgNeYo4PbrlWepXjUHbWxgBzEwL9Vb8SeYWCxE0LALTgg1vLL+ni0lVS7iwMYnYaXL0mtl/KvKrEp6hZzlhly+cLZ4TEgmd67DLAXFtshgWIYUSmtRMAUVYTCc1FRitYwn8cSIBokvmV5qAz23iuYvDZlCK+Kfqihl0JJ8Z2Xil0vshocuefAQK9L41mXGGb1DHzj9ga1yVZG4X2EH/HPNg5JITkiC0S4CLbAx2KCMXQbi8YpGXFNCbFCHvhMVeSXDV8lYlo43JW8Dm4iP5OwSGX4rWh0yyMkAaesI27Cx8KSnQ1Aw2NidsI5uhI2AEj3Fie1HgHN5Nhktw3EOsh3RHiLvL+nGlBZV9w0599p6X4ugkJUfEbWMgyThDKqFXRGiICwpSBnYjiCjtItgCOyg7KqNtRE/khQrSF5gc24JjRjIUp1A3nmFzCl29GUujWFT5H6FnWWuvSpRhu0Ih/A2VyepwInMesi2b41fTH0Zhwgbn8i/zgjOqwniiOXP5ng05WaXzd2/si4btmI0/ARRQRsDii6fe5InYNrcbEnePubrv8xS0avpE0i+C4asIqrWg+Ljt48/v73+HXbD3T//y00tCDiGteC3Pv/z7X/uH+TNfXj/3/vnv7/9++e3H6DHjV0df9EGfudfffLlN1/818+fffG3n1599/Xffv5pthlvtoEbiq3SeQ/tTPkZ+i7SSUuIV0hgAvFceX/aCQp+C9pLJVtVzPZE+wn6TtozvliepPVL0t1BsTtzeycgOFUw8zPvTsB3fr63zamiSraN3f217z9x7Pj+qZd7IuAEfRcFasnK+EZvNcpfoyA/c+C8FTXaxPEoTvZtJMNzKR2q/EfWMq9/F+a6H/zy4f3zb5AN5ZBETyLSCgAmJ4aKZhimN8zTtvf2uEq0LTjs6He3rCbxE2y5ZadOAcnjXW0OIrHkarTQ61dF1v82MrvT3pIUrKDwD9ofsHfT3iz7xqzhG8p70e5+E1ux0672ksKc0k7En4BL6itxg+H5tlkSPEOZXyW+/qZ8l6yinaR5Z9ofwHfTnvkbjC+qUqZ/nZE+iFfFwTo+Z+IfwHcT37MmNhpxNn75X2eld+LVyM9BTeYT8Sfginh1fIwktfWrBgX4E1/q66/Y6YOEmrdampo6JxIewHeTUK0Y59VqKC/V7ldM9cuRowcF5zGkdxCgOZtAOFP/KSs9whxFO2mrZmY1o0GoUX87Cx0eFvq3Gl9yRvg/Mb5EXujJwzWOFLeOYU/WDkxxa56UPBtcszGz7RcJXAJJp8H5xTnfgV8g+FaBS3B1Nsb4kvrfDfEb41Elq3s1x6NSbKUbGDsyBnGS48yy+u8amiKIrinNoalCJIrh02FyBLnvoy+wmEh0HDIJzjH7orKC8F0XM3vzc5gqZ6chAA1TyeiOljeyoiko1Du6qi53HuNRxAGendg0Vdm6xjv6HIpprRBe25QVJlkkC664ONQkuLrlyt7GrIyGTWqz4Su13HObwzIV4p3Q5VdLmHNTajhX1e3GVBZJUp3zANWSPELMTRXnOEdoiMnIjGxWKyjviHOERil2SzatlVW0D3NMQDNZUcsg28UqmmNMgIRJXZvQ1VkpY6DMa+NRlMHfrcQ8ZiJsesDHKGpa0/RFnENc87MRuHrTqaQ5SyUabRYsKHtwc4aL5UGEtKCAXl3UNGescHQ281U1F8J2bZaKLZJaddkVp4mL2Psc+YLippGyokJ37jYzZXM7Ea2CGpyQFhyTGyCRL2rcTh1uh9C2MbWAbuROaGcmltR3TNho2Cg1zcfdNX6BrDRvgyeFrSvLIg7USJEH0eBVbXzSy2ijZtDqTJI1L8Ye1YAiM9ukSGOKogTrG/tk01qEM9n0xGarEF+N2WQ5Wz9Ge+y7rtY2pi5QgjaWzyrsqLlgqYjLzbjsxSt5gAJcpTZExwZeClYWkVd3n3MjEfeDDcVGGWEZRi1JdsYp+gpt8FPharWGcCwTHEpTe1ATSr25weO4Fe+U4LSiymgeIzysXZBrdL9hBPI+8QOJlRSSE7QJEQ2+GNgYIzvAR3A2bnyx2OwC7vtetE+VSucnVRhEyooCWvRsgDXEBJPivUiseh3zehoVUcYBtj6e4Mtcu6o76mWRISTENMFBtaJ6z5oN4W9trl2rtS+zJpJIg9P+yVAKyFbV6zY9Ykv7pFk9zf7xlQFFKDQDcEcUq2bwwlyhO6cqQmpK/P0EowCjcKFxxlCmYLEyMFlvQnnSYu/8XBpN4Pjumrpy1fWdOiRM3Ro1g1ubc06SKvhUWGRMNoVjbY2MGDjAPj/A1iTS6ImGYFGaIWvaeUtq+tnwUxkDg4ZdrCCL7VfDp4ZJoGM3fEgjTtEmVgYlmptCifEJxF7hOEi1RbHOyVowO6vqprkEf7dBplLmERTMZfHybZCkwch96awumIFLTM73CU4Vg9YFtnpPmYtotAgF1BQT5zzsSrEEPg1s50r3++EQIQhHU5no6lykiiVor8AoShgir856xwglgbP1ciY2JrF4A3PC8SAwN4xnFxgLleq+dvJJA0NR1j+X2iYYJ4vXFNir+r3bDStDGoGcXQ9tgp16WV3BR8fd932X5B3RWXmma8KgTzA+LjgLVTgw9Z0ngdgeZ1k1chyGKQQ7S1kMG3cQD7AMFRZSYMdy7Th4lTPv5sSTDmQSyEllK1kU1fP3gw8ITxxBU1eb7SBQQxyCIpljIk17JwrN50n3OZc0ylpzLmn/4b3nkvxTbQwRtMEk/PeojWkwScMWbY0Ne1XnHEV84imNEqGQa2S15TCSebQ3VTFQa34v0r2NneF2sJmW0ZzKHV0O+5TH29jqD3YMShlfwoV7HNXe6Xkbu2rUCpMTBrZaZimWC0IwQXhtjMXoyhb19TDHcY3dNWTQ1c8wsiQNql9f8A/7luFAGx2W0hTuYSvLChsXqsFMQq1RE2UTKo/2uFxb4w4aJA599GPwazIzxS8ZqEiNeBLFmNila9O9LRmIsVMJHieejW61k/EHYc1BFYpilkNRn4JdOBfVObxaOxIaE87WNuYw2AJhX11LINiaBsma4rRdJInr0dR4Gznp3gnnMeboArEiKrEWQK95dUXrwSZNoubt1Ttbqo21EmJRzdmmWHSihIk5LzVB2QEH3cyHjTYOMYCLbilSallj86p920bw0ARsfblgSE0Wlydn7NMVDeIQWdAlNmEGdgfbYHRrzrrhiNfCrX+HFhIl7KGaiVI3+Lk3hZ6x+XchJrWuRzNRk6TZ++Wx8+8BV0QMV22OrsgTqcGyRoYFji8rNn4VN+vppmOq4m1klkJPisZ8NaUVi8xUWYtfVGdXl1l6saE74kEvjpclR3TnI2n2TMGQ5sU6nqArmVxhK3wOrOxll15lzcoq2ElhSQn+Hf0m8VIIx++SIXQLs9cS2DQkSpZHfIbANqURyGM4xiveQrfrGK0mi/k1hcfSOGh/dG+e8KU5QZMEwYZKo40m27jJanWvqqBmdr1GJV5pjt3JNse0xB6zEsQyXdOZYDeNrxZ5k4vDR6CjJjKlPUkpdcKfa7R6tVMyHpXcezfGqCBQJIREWssjlTSpwSgjBbpGGdQaKnnp1YhnizrHNgguNpLLZ93HWAkAqQGBUlF3r9oRaF6kZ1OnpXBp3B4jhT5KHESzj96vXWDXNZniNBaZdP5BekywsTwh6S5cc/LImpfiF+FR7SuqoTN7zX2YJdQ9F3X2qwKEpUsj3FC1TNPhrxQfE5LbcNwF0ep142o0NJN1zUa9uaPf+MJdVl2g6JqWtxFX8rwqA7Y8GQkRPiqzmBTVK0gkDV6RLWOvcK4GaSbiXeTNMJrLPRJVq1yDXatmfjRPNMY0134ExZGfLoYc1CjXxaXVmUv2i+bAi1qqgR0mfFlOSzOoQfBGhOst6AmqPiXNMoSlfGSMj8RjRCYaJyWjQoXXVDtdHyJG6taklyknTcAMupV1SJrib0q58hjG7ppa6L2vtugkEho7iXmMnuLqOZhYlgKiCl/gGHVdb7a+u66sLX22bBpRiW4TjllSNXtqOUalnpCxA2zQsmyLHEgzi+TJXwSvuEgbkI0jWtIcQstr0eOUo6qVOLA53a/hPBUZ1rYVV46YamBtzIbiB606stJbTb+SrbYxhMDxo8i643ARC3gN7/DtMMY3ixLhsg79g+YkvRKsEV6iO4RhiMBaYTpBM55RJWWTFslsistQIJDnJFn/NAYFCL1tXnbpajSiqruEuho0hhV1DYCwLlxEMDhQTVjWOdAXx4DYmnveqRuiSG6O6GUMn1vGRpxEt6FQ3Ym1BCTo/mVYy6mFToh8rC3OUTNkHJd6kYAQiGoGN9U5h4UGcDputbZGjb1FuHXOM2mqmcBqSYjb7M6TQrMxt4NRixrLvGQeNre7OVflNJQW1+Gzzg3NUr4ysr1m89K5rRQGq+dUWGoSTSETaxTN4l2kb10BreL8Mb+RNR3ij3nBF7kKyQGyHIdYE9pZpN5XSqC6DOK0Z6hqi9XmlqGCkkg4p1Gwsa4Kk3jgtROwjAn9cmVkTKh47eQs6/BMpR3ICCG3eUgagApLP+d1oZfDhoNjZdTQRRtiXztcAg5yA2/S4RTrJ42XXzA6akKsj1k3DKAmC2O5YEdIuiDqRynAySN4mcwlcm263qYyx0AmYSr4mCsyhOxVfjFsKNKdsCvsKL0dI8iGHXVL1y1trxrmBORepsuQEUEMb3IX0YpXbGfXjg1Z16awTBd0KFMiKS5xLk0ohmgtM1OzW1hfZZCGHJqukJcLxyXJa4616kDGLpW3EsKniSQ1zh7TSM/9ssVLCavHD26fLR9Q+O7qAQXw3/sNhjPuuWN3ufJv1EK8aRAeLjsVxF8w5rKRqFtEuFVrE6krZymr2kFxK6qaRLvrj4oVu46p7jtuUYelBrEj4B39Gt3GlNO/6yak5xdHHdt2bU1F1BRfKMu/9wFwKOi13VRXvcCK0Lp8LkcVjAMYxVTThFtpBFY4Zaa97O0Xr55Iu9slfrV99loxURgZhLVr3GhTqt2hvo0up/N9JyGLs/siN6PrwOojFXVrdvyoEqfdTrZ0v++tA7sjY3crvU9tfjXbHSpdVQ3qvtWUdip1V7DYUCxxma97Q4UIRVeS/Ugb42xYJHmQpiv99kREaH4vmhLnGplOhlIBymyHFN2X6Pee1f6pg5oalHOpb9sVD0aNKgpskaQuR7VRfT8q9GxD8WIjhMuyjHsZHYMKIzXKjXBM0slAmldrr6oWruu0O+XkyjAY1lUZi717kvS8AmCvImvvRwUcSQJH5XdyldlwECW6ZK1eUFbNZe+EqZVS72oBlj4K3VV+Tdf97jBTl2jqXnWuLssea9JFo9ZHU0XF1HTPXbVtV/3e3FE6by+VENt2v5+mXhQgacpFj0vsXSYdSfMcfta93ZIejQ8OZ7STatVI99yM7g1lFtFDDX7H1kVzjkxdpl53+WSNpgsMXWDfsIJHB6Y5Lai3CqoYvLdJkFWORo8V6FbE3phJ6hskgdUYjHvPoqkKVdSsUlN+L+ZDFJmOoErJw15xL7rpX9XCIrro84uiz9rwgGFkaPvWkdHMinquoNWwNxtQKRXXkv6me4oTjOtN3dpgkU2Vnbxe5HQFdtUuccx2DTEc7EvKPGHw0VUgfs02/5aJaWfjSI8oNLkwwLGl1PfWRNQ9xiSw73tvVe0aXe3rAmvGPuy9k6SbqVGdN/nPtgurV34ZBNb4kdt7aSiTxhHUp9MrMvsiTbcbk8BIS+uHkNSqlxgA607E0STxTf1ZgUPtO3koh6jDxCAUbZcFPUIjrsryhNT7wSfVJgR2WNZ+tHD0SEVWuxBzWI72UNflwWJgIk63nzqRgx5jSBqCcL3sUgmTchpgr4n/vVcT7eadHnqQZYjHJ1Ehw+bTKR/gLmMzGpd9zC7YJvkg3BFYU+MHgUGPbhhYQd6BXe2aHGB+qcQdrPu8uEeBH/qhPlTXawcCp6ObpB5Ts60jwOk4Rt3pDLaZ7HoMB1TXhPVmhS4WHU0q46qBqx7W2cF2+URQQuHjFKs6qUabnGV9NBaVoBo4qla1g4vTBV17JePBJL7mB82wwsdDwbAhZSztcqv7VgjFQzfexdHU3Dmtu1YG5gAep4iP83WAQ+zHZgiW/VgEh9L2TzaENhl9ymQPqLfHUgwqUg76ULABzq3lB5u0nkGTOzgdbDBHUKxDOsxTUmY2wDk+WE3+NXgdE0cfD3AShwVWS/rUKDwHR7Nd+AR676ZheE6Fsl1pyrqSc/yUdAe8X6ArqOu6SmEFXDbtznfJ3kI3QsiQR9VUT54QomclgEt0u5WgzE1dWxVwVcnDMdSwxrfWWNNTGFZ+Drqs5SyNKhfrq7Hb8NR91JOV9pAlHe8aPONjyUkLETsrJ+sZH3IRTeAseaOcrBSSp2aNpKSLN8iac6u1o4YpdPdjlOS9XVzqabVNbH4mk43F+4HtlJyhlKs9qlRIYEt+rcKiZmucXsKxku5LbF2+SDY7pPRMI27QoWsefc0/rJOCNnueomsuLRPphL5kBwGULqoSSOvKfFcQi72tRzb3jI3Ae7HXW2HA3AxbVuFtha14lBwyRaeHBDSOwn5bUk13eTCBqFEXWIsVwXH2qijHFbIekHDyOFYcU9dHU4S6hrg8RNX1myrVRVVaFZMl7mnFEM4tYOU11WAlXaf+EEZxtUFvTwzpmlUdbxko8CF4XIqSqnJeHRrsbrQXH5TLd788QsXUqkckNx+mUH+Xo3HLM9TkpMYsZFXVfsMuFA5/rS2wLumqD7o4X8hA2fRMxtLwaIhOl4JIwfMsl6O27YofLvPp3uxOsea4dA2gHtfCn5BN5qNunnVDZqvqABe/1oAu8yeZH31PVXD1obpAVl0xWORhvd+u1ivqHVe4e9mxRDeK1Jy13kYoS7W1/rZuAyJoo7jH0qr+lrVd1eX/FKw+aGqpYi/OoF5gaxCkmwezrnvWlfnjwusLK6YZG+zFmB8Gr8iE5BW2SutV7BtvNOhlEXWYVrKkkTsbJbB77HqjQdeXbaxthQyjQiClGpUgZUBKZFfHrSules9otJ81/oANyZKt9faKNbI1W2FlISIoHMjazMw6oXTPqlfqRJttXXojtbiSZp9CG+8cEAaoznRFSLCHTWyW0KrwWKisd+iWe9S1J8K7PurIWcGyarKrpc2KQ4huwo4ifNfDGO4C2crRcuDjtj5Jh/USVpKkK5x6zKKmURjTSy+y0+5ih5oO02DKuIIP79Rc8v1C7qqGBGPw+71zWbxyzNO8MHkE2IqaR406OoVZsa/9vlV4A6qoENrGl0oeurjmNQtrBHBwhENRedsvjZ5OOdhF3zHqFDT7qdbbxcKs2ZPmtK1iT+ydm08X9lGlIw1H5P1eJEloX0dx6p3oOYmShlTrBqV6wumKeTGIvXrgwEr2mlHx7epgVOwNdmPesIlXySPXTkCDZHoc0OpYVrRvulh6dAPeZoi93lHmzU+vixpp6bf0WgBSTdzdBq7TvL5GaZbImsmpLfhZ7O16KAsLebW/rmdr+IVZ3tdsSnNX2FHX8DXnWoaxxIGxP3+hAl50a9Arzgq/Bq9SWZOtqqNuOZS6V/jV0yyrI5d30Wy/ovVZ4dc7lGtVHPdkiyobg2iCPl3Jv/BbThaha7poiKHMh14QuuAejLOQYiydVLFbh0tDMMn4NAc+kDUqktoyQrD6P96EKGLQQb6mSuLSVNs8hvLeedVcIbvuHy2DTYmaztjPETgXsY0kMUvnaVTqKS4/Wmd6xQs7dtxLf7HDLItY4t46wI9C2ZUVcwoRmppAAzs6fcuv/IvJmu7xu50QtXsti1xuEXaoIDZ7OsQ1Gs0JV7bG2eN5cR6i1ytopaYLFfAa6be5nYGNvmvC6cIrOnsFIE3tkuDFcnEuSLEeJIxlEh11fyouWa1D7JrPb6NrqxiWZLAvYwRjF05fBnjS7FX6b1eei9QD39bmJKjz4Otl36uISQ2iFPJoYzsNTOlBtlUYJO1S0DNfZXJ661P3eS9OXHJqN1AMt6IpLZTL7JMvj7dlB7YnuElh7YokxuiKDeEJWdeWku8Xx6KRUr3JkSeyRjyP5vELOohjMbl5cprIXbc71mGvPESSxQuT6Mwp1guRhlmqq+8NP6df1DMna+kIUW8978oiu9RD9BeWRte6lfhOZUg2dnnlPfUQQlQlYFgPRbKk41dhnhOr9dLcZEfUzFQPZ+zlgwX+9FzB+fK2XgpW+9yuwcfgjtrOccUwPF8x/M8P71YQUoVB/90/+OLvf/3+2++/+vrNF9/e3/z84z+++PvPP35oF5bj/t/9gy/P9xJffxTHu+nznfitzVfibyXPu5pFeZfdj/zuplds27iCeIJ/extP7VoT8QS3B3sf2KVYeeYJmnbcN7cTXJfm9kbkE7ipBudavJ8+qBt5A/lE3QP45tjJA/btjQ8TRulZpQdU96QG3vGZB6g+los7Y9KDAQ/gsc/HJ04sWXD1jZ68//i2fjzexO3F7UsrthtZunCkq+v1LYi9Dv0W5J1Pph4rEIrua6rl2VTs3mG12+h3GhcDR9uz6s5L3B92dyo6v7k1xYslWfO268Ur3dlyD4K8HnbzTyCtb784IRqUqnrK6bHWuNSoC8LHR3X/UaPR+t2DOgE10cmvPPYgoO3h4Euc36yanyyKkg+cTP6reu15Jb2drMfOnj6peVDzCCfa0ostPED7Ps+QyYzHWg+eHR89M/eg7nwKxx6Os3rrPKeYOdP0F9an5wd2Cu+62P3Zp5+cDYjJ67gpbIbxUlZD00O+047Ul8CHxD4B33mf5rROPC3+kNsH+CG6wHLR5dWT6DZ10ZvFq2fZbZoe96pZ73IZ7Cl2TR2cQAe5D/kNepxdhZF0P6+nXofyvfOnrQmoB6BOEiyoXJFE4LSbfuzm2Hd/fPskAyfMQ1hOSx5S9fTxh/yd6Ewv9vMAnfb9AB78Oa938PH06RPLT0Q+Due0m/hy3/Hx7feS66Y2vHs8h3Ih2n/4/rsL6X7XEMsh45phID99EvEDdpLwE+y9+0CPFXUvbv/KQzoO6EOK1BfvSSP+D3lTh19X2J4lvVoqkR8mOdj12aDZqAdop/ok5zWoEc4xn+W86pJ0eXIOgIreInuS8qo+U/D5bKcFnPs4uJWO756k4oF3SM9pvUPOzh9+SOSDwvRiIw/QY78P2MGW82o79x6fPbH5Qd/pPB77eJzbi/N9T9lWI3zgX4r2Rx/evQYFiGA++PMXTzL+x9v/ATOn454KZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iago5NDc3CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggOTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYyxEcAwCAN7T8EICEOAfXK5FMn+bbBjN+glHQoEMYWNgyRTpxOt/KC3wXXS05BO4EHKWJmxbeq2Wpdc2d6r9sjar89Df+1Oar1IJGYCkamxB+92fQtHHgEKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZpcnN0Q2hhciAwCi9MYXN0Q2hhciAyNTUgL0ZvbnREZXNjcmlwdG9yIDE4IDAgUiAvU3VidHlwZSAvVHlwZTMKL05hbWUgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDIwIDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nIC9EaWZmZXJlbmNlcyBbIDExOSAvdyBdID4+IC9XaWR0aHMgMTcgMCBSID4+CmVuZG9iagoxOCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNTAgPj4KZW5kb2JqCjE3IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIwIDAgb2JqCjw8IC93IDIxIDAgUiA+PgplbmRvYmoKMjYgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggMjQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSW7EMAy7+xX8wACWrMV5T4pBD+3/ryUdFO3BECNLXOLuxEQWXrZQ10KH48NGXgmbge+D1pz4GrHiP9pGpJU/VFsgEzFRJHRRNxr3SDe8CtF+pIJXqvdY8xF3K81bOnaxv/fBtOaRKqtCPOTYHNlIWtdE0fE9tN5zQ3TKIIE+NyEHRGmOXoWkv/bDdW00u7U2syeqg0emhPJJsxqa0ylmyGyox20qVjIKN6qMivtURloP8jbOMoCT44QyWk92rCai/NQnl5AXE3HCLjs7FmITCxuHtB+VPrH8fOvN+JtpraWQcUEiNMWl32e8x+d4/wCVT1wmCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA5MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jssNwDAIQ+9MwQjhUwL7VFUPyf7Xhnx6wQ9byLgJFgwfo9qFlQNvgrEndWBdXgMVQhYZZOTbOxeLSmYWv5omqRPSJHHeRKE7TUqdD7TT2+CF5wP16R3sCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAxNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHAP+A87TT6YLcf1vLmXSDFGPLL0RXdOyVh8fGlI33aGNPhC1c5XQaTlMZj4u7Zl2gy2Ey02+8mrnAVGGR1eyi+hi8ofOsZoevVTMxhDeZEhpgKndyD/X1pzjt25KQbFdh0J0apLMwzJH8PRBTc9BziJH8I19ya2HQmeYXFy2rGa1lTNHsYapsLQzqjUF3yvXUeq7zMBHv8wPfQT5kCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVI70ptBCOu/U+gCnlney3mcyaT4c/82AjsVLLBCAtICB5l4iSGqUa74JU8wXifwd708jZ/Hu5Ba8FSkH7g2beP9WLMmCpZGLIXZx74fJeR4avwbAj0XacKMTEYOJANxv9bnz3qTKYffgDRtTh8lSQ+iBbtbw44vCzJIelLDkp38sK4FVhehCXNjTSQjp1am5vnYM1zGE2MkqJoFJOkT96mCEWnGY+esJQ8yHE/14sWvt/Fa5jH1sqpAxjbBHGwnM+EURQTiF5QkN3EXTR3F0cxYc7vQUFLkvruHk5Ne95eTqMArIZzFWsIxQ09Z5mSnQQlUrZwAM6zXvjBO00YJd2q6vSv29fPMJIzbHHZWSqbBOQ7uZZM5gmSvOyZswuMQ8949gpGYN7+LLYIrlznXZPqxH0Ub6YPi+pyrKbMVJfxDlTyx4hr/n9/7+fP8/geMKH4jCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDIzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUluxDAMu/sV/MAA1u68J8Wgh/b/11LKFAhAJba4JWJjIwIvMfg5iNz4kjWjJn5nclf8LE+FR8Kt4EkUgZfhXnaCyxvGZT8OMx+8l1bOpMaTDMhFNj08ETLYJRA6MLsGddhm2om+IeGzI1LNRpbT1xL00ioEylO23+mCEm2r+nP7rAtt+9oTTnZ76knlE4jnlqzAZeMVk8VYBj1RuUsxfZDqbKEnobwon4NsPmqIRJcoZ+CJwcEo0A7sue1n4lUhaF3dp21jqEZKx9O/DU1Nkgj5RAlntjTuFv5/z72+1/sPTiFUEQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggMzQxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEVSS25EMQjbv1NwgUjhl5DztKq6mN5/W5tM1c3gCWBseMtTpmTKsLklIyTXlE99IkOspvw0ciQipvhJCQV2lY/Ha0usjeyRqBSf2vHjsfRGptkVWvXu0aXNolHNysg5yBChnhW6snvUDtnwelxIuu+UzSEcy/9QgSxl3XIKJUFb0HfsEd8PHa6CK4JhsGsug+1lMtT/+ocWXO9992LHLoAWrOe+wQ4AqKcTtAXIGdruNiloAFW6i0nCo/J6bnaibKNV6fkcADMOMHLAiCVbHb7R3gCWfV3oRY2K/StAUVlA/MjVdsHeMclIcBbmBo69cDzFmXBLOMYCQIq94hh68CXY5i9Xroia8Al1umQvvMKe2ubnQpMId60ADl5kw62ro6iW7ek8gvZnRXJGjNSLODohklrSOYLi0qAeWuNcN7HibSOxuVff7h/hnC9c9usXS+yExAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAyNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDM5Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFkM7jSABXzCnwKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9MZW5ndGggMTMzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDIzIDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyNSAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTMgL2ZpdmUgNTUgL3NldmVuIDY1IC9BIDY4IC9ECjcxIC9HIDc3IC9NIDgwIC9QIDgzIC9TIDk3IC9hIDk5IC9jIC9kIC9lIDEwMyAvZyAvaCAvaSAxMDggL2wgL20gMTExIC9vIDExNAovciAxMTYgL3QgL3UgL3YgXQo+PgovV2lkdGhzIDIyIDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMjIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjUgMCBvYmoKPDwgL0EgMjYgMCBSIC9EIDI3IDAgUiAvRyAyOCAwIFIgL00gMjkgMCBSIC9QIDMwIDAgUiAvUyAzMSAwIFIgL2EgMzIgMCBSCi9jIDMzIDAgUiAvZCAzNCAwIFIgL2UgMzUgMCBSIC9maXZlIDM2IDAgUiAvZyAzNyAwIFIgL2ggMzggMCBSIC9pIDM5IDAgUgovbCA0MCAwIFIgL20gNDEgMCBSIC9vIDQzIDAgUiAvb25lIDQ0IDAgUiAvcGVyaW9kIDQ1IDAgUiAvciA0NiAwIFIKL3NldmVuIDQ3IDAgUiAvc3BhY2UgNDggMCBSIC90IDQ5IDAgUiAvdHdvIDUwIDAgUiAvdSA1MSAwIFIgL3YgNTIgMCBSCi96ZXJvIDUzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjIgMTkgMCBSIC9GMSAyNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuOCAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgL00wIDE0IDAgUiAvTTEgMTUgMCBSIC9NMiAxNiAwIFIgL0YxLURlamFWdVNhbnMtbWludXMgNDIgMCBSCj4+CmVuZG9iagoxMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDMwNCAvSGVpZ2h0IDM4NAovQ29sb3JTcGFjZSBbIC9JbmRleGVkIC9EZXZpY2VSR0IgMjUwCig7UIpHK3r95yRGCVxcRxVnQkCF8+Ue8eUcRAJV7uUbRTJ/SCFy5OMYH6GH4eMY3+MYMmONK3OORxFj1OEa0uEbz+EcOFeMSCJzxd8hH5KMwt8iIaeEv98kI4eNRTaBt91cKbXdK0gecLLdLD9Fh0YOYarbMqfbMx+Ti5/ZOJ3ZOiClhSp1jkQ3gZXXPzNgjZLXQUUFWIvVRkcldYjVRySEjYPTS4HTTCCkhTFkjXnRUUcUZnLPVUcWaUcPYmvNWUUIW0gZa2TLXWDJYF7JYSp2jiKnhEdcKHhZx2RFNYBTxWdPw2lEA1dHGGpJwW1II3RHJ3dGMX5Fv28kho0flotCPYRBQYZAvXI/R4g+SYk9u3QhpoU7UYo6U4s5uXY4uXY3WYwel4o1t3g0X40zYY0ytXoxZY0wZ40vs3subY4tb44ssX0rsX0qd45cKa9/XCh7jid9jiaBjiWDjSSFjSOpgiKLjSGNjCCRjB+Vix6diFwpeY4iiY1DO4MvaY1IHW9EAVQjiY0fooY+SIgemIpIGmwjiI365iL45iEfo4b25h9DPIQ8TYrs5BpGDF/p5Bnn5Bk2W4wlq4Eua44emYrc4hja4hhEOYLX4hnN4B3K4B7H4B82Wowemom93iZGC15cKHqOut4nQj6Fr9wuJ36Ordwwpdo1J62Aoto3HpuJRQZaLmyOmtg8Ri98l9g+kNZDNV2MjdZESBxuhtRJJ3yOPUyJHpyJftJOMGiNfNJPRyx7d9BSdNBUcM5WOVWLbc5YacxbZ8xcXCZ/jmLKXyCPjFvIYjxOikYtfFfGZVXGZlHEaE3Ca0vCbEggcUfAbkYwfUU0f0S+cEM6g0K+cUFChkBEhz68cz1KiSGOjDu6dTpSizlUizhWizdYjDa4dzVcXIw0Xo0ztnkyYo0xZo0wtHovao0usnwtbo4sco4rdI4qsH5cKXiOXCiufx6fiCasgSWCjiSqgiOogyKKjSGMjSCQjB+Uix6eiEcSZUBDhyxxjiaAjixwjh6ghykKXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAzMDQgL0JpdHNQZXJDb21wb25lbnQgOCA+PgovTGVuZ3RoIDU0IDAgUiA+PgpzdHJlYW0KeJzt3XucjtXawHG91bt7lVDtSsxW5JyklFSUYygdRhShFDkzGIemw0iz33YqosO7a4pyLMdMJCSDSk6hpJIioRyGGeP81/ub5+pZ1rPWPc8zaOqxu64/7s/9Wfda11rX9/PZa681NIr8lxf/9OJ/nfhXZPy3FX8Lx/+E4rnnnnvhhReGDx9+7rnnFi9e/NVXX/078dprr40ZM6ZChQpTp06dPXv2woULly1b1rFjxz179uzfv3/QoEEDBgxITk7myTsttPOVPvSkP6MYSwbyvEY6spKbGZiH2ZhTJjdrsRforN0tzS/e0SmiYAqmYPEMdlJaBsxo2WAvvfSSC1a9enUBW758uQHLzc2FKjs7myfvBow+AsYoF4zcNphj5qzxpMwUTMEULH7BjlvrXwXY8QPALr74Yhusfv36BQSjpw1Gnot9sOPd94/PTMEU7I8Ci0FVwN3LaNmHsHPOOccFK1u2bMWKFU8YjLFkcMGYxzmK5WcWeyfz2RRMwRQsTsH8LS66VDStwEOYATv//PPzBdu0aZMBy8nJAYynAeNrvmBk9cH8fT+mWYCbT6NgCqZg8QUWnSpAKyaVrWXAihcv/vLLL1Pa/xGXXHKJgNWoUWPOnDkwtGjRApL+/fsPHjy4UqVKUKWkpPDknRba+UofetKfUQJGnktIR1ZyM4MBc8yOj80nUDAFU7BTACyGU3QqX8vZ8V2wSy+9dPz48QK2aNGiAoLRU8AYSwYXzN/38zM78f8DUDAFU7D4AvO3uOhM0ah8LfvUSlEXXHDBvwkDNm3atDp16ghYp06d9u7dO2vWLJCSk5MB48k7LbTzVcDoz6hjYKQjK7nts2t+ZjHZAugcHQVTsD8K7KScHCr7BCYbmPww7DewMmXKlCtXbuLEiQLWoEGDlStXGrBSpUpBlZqaypN3A0YfegoYY8lAnjICJj8Sc7Yx+0DmsJ24nIIpmILFF1h0p7/5kZ+TQyVaziFM/prAa2+88YaAzZgxY+7cuTDcfffdW7Zsady48aRJkwYOHJidnZ2WlsaTd1po5yt96El/RgkYed6Qvy3gHMXsrd9hiykXoGcDKZiCKVh8gfl7XXQgF8l2MlSOluz4cpHM+zk8db799tuVK1euWbPmvHnzGjZsCEaXLl1Kly6dnp4OEqdWwHjyTgvtfKUPPenPKMaSIQ+MdHKddPZ9Y2azOXI+XgCgo6NgCqZgcQcWU+i5KEI2knESKqMlO76cWvMuzGPGjBk3blyVKlUEbMmSJatXr966dWvbtm1HjRq1b98+Tq0JCQk8eaeFdr7Sh54CxlgykGeMuX/Lvm/MDJst5+D5fgGAjo6CKZiCxRdYTJ4X/BgeGedYcW44hEq05Notp9a8C3PZsmUrVKgwefLkmTNnzp8//9Zbb23dunX37t2rVq0Kz+LFi9nxExMTefJOC+18pQ896c8oxpKBPGVJJ2dXuYKLmc1myzl4vl+AoaOjYApWyGDRbYZHsXGEBEnCUImW3CLZauQMlneRrFix4tSpU6+99toFCxYsXbp03bp1PXr0qF279tChQwcMGMAGVqtWLZ6800I7X+lDT/ozirFkKCf3SbKSW26UYmazSdjL9Itwy4yiqGAKpmDxBRagEuQSAWPb2EKOk1DJds99j71ZzmBjuAZOnDixRo0a1113Xb169Zo1a9amTZtevXo988wzDz74YE5OTr9+/fr27cuTd1po5yt96El/RjGWDOR5W45i5GYG2fqFzZFz/HzFgkkOH65gCqZg8QWWn4iPEqFiYEy8Go7zw2Go2JJFix36UoIzJ5fBGTNmzJkzZ+HChc2bN2/fvv3OnTuLFSs2aNCg7OxsdvykpCSevNNCO1/pQ0/6M4qxZCBPBdKRVcyYx2aTMOty1utU4xbrcwiTgimYgsUXWAE5IkgcGMMj8fdwGCpOlqLFZTlvox4/fjwnz2uuuWbu3LmLFi1avnz5xo0bd+/evWvXrkqVKqWmpmZlZWVmZvLknRba+UofetKfUYwlA3nGk46sYsY8NpuEWZezXqeagHoDSRVMwRQsvsB8iCgWF/gqxkbi3+F4LRRCVaZMGaOVt1FXrlyZkyd36BtvvLFhw4YrV640f+d84MCB3LnR6tOnD0/eaTF/85ye9GcUY8lAnsqkM2bMY9hETsKszll1QF3RVQkFU7BCBsuPwFZwMWwSExeH45JwiBOXPcrhuCRaXAEnsv3UrFmT4xQXw88++2zt2rVdunRp3Lhxenr6+vXrOX6hNXr0aJ6800I7X+lDT/ozirFkIM9U0okZMzAPsxk5CbMuZ71ONW6xPocwKZiCKVh8gcWs/2JfwnjY8UY4xoRDnMqVK0c548aNq1ixItVNJqZNm8auPW/evPr163/++edt2rTp0aNH1apVhw4dmpyczC0SrR07dvDknRba+UofetKfUYwlA3mmkY6s5GYG5mE2Iydh1uWs16kmoN5AYQVTMAWLL7AolfsExyTsuNSKcuF4OxRUwZYsVJwy2aTziuQmyK69YMECTqFcDzt06CA/DMvNzU1LSxs7dmzPnj2rVavGk3daaJcfidGT/oxiLBnIcw3pyEpuYWM2kRM8CXuBztrd0vziHR0FUzAFiy8wv2a77HIOgB3jrKhgRcVQjA+FOFWpUoW9uXr16oJ1zezZs7lAs3cvXbp09erVnTp12rNnj9y8+/Xrx17/yy+/HDp0iCfvtMj9mz70pD+jGEsG8swWM3IzA/OInEwuC7GXZi/ZL+htv2rHBSkFUzAFiy8wp1q7ZhPj/ZgYGZXDUSUck0PBfkwtNWrUoChuyxw22avncOz8+OOPlyxZsmzZMs6i3bt3L1269KhRo3Jycjipstd369ata9euPHmnhXa+0oee9GcUY8lAnnmkIyu5mYF5mI05ZXKzFrM6Z9UBdTmV+zQKpmCFDFbZiiqRMdmPqZFR3YoaVkwLxYwZM2qGYubMmRTFhlOnTh22nhuplbMUt0I2pI4dO06YMGHIkCEtW7ZMTU3NyMjYvn37yJEjP/jgA56800I7X+lDT/ozirFkIM/HpCMruZmBeWRCZpYl2IuyF+vUEVCpY2GMFEzBFCy+wPw67ZjhRE0vrrFiZjiuDcV1oaAWNua5c+dSGlfAhQS1cpZq0aLFN998s3Xr1r1798ohrFatWjt27GC7/+mnn0qUKMGTd1pol6MYPenPKMaSgTwNSUdWcjMD8zCbTCtLMCuyl+kX4ZbpQxgjBVMwBYsvMKdIO67zY3ZkzLGijhVzQ8GxkkLmz59PRfXq1aO0RYsWceRc0qxZMypet27dpk2bdu7cWbt2bTm1ZmZmlixZku3+4Ycf/vHHH3nyTgvtcnalJ/0ZxVgykKcZ6chKbmZgHmZjTmaWJdiLshfr1BFQqc8hTAqmYAoWX2CmPDvmRcaNfsyPjAXhqBeOj0NBIfXr16eiBg0aUBobNUfOz6m1devWGzdu5DLdv3//Xbt25ebmJiQkjB49etu2bWz3I0aMeOCBB3jyTgvtfKUPPenPKMaSgTwtSEdWcjMD8zAbc8rkZi1mdc6qA+pyKvdpFEzBFCy+wOpZ8XFkLPSjfmQsiowG4WgYCqq4NRRUxPbcvHnz5cuX302wZVNxly5ddu/eLTv++vXrs7KyqlWrxi4/ffr0DRs2tGvXjifvtNDOV/rIvs8oxpKBPOtIR1ZyMwPzyITMLEswK3JW6tQRUKljYYwUTMEKGayhF0u8uNWJzyJjqRXNwvF5KChk2bJlVLRy5UpKY9/hIviNaHGiKl26tPw71SkpKRkZGd26ddu8efP3339fpEiRYcOG8eSdFtr5Sh/5V6wZxVgx20g6spKbGZiH2ZhTJjdrsRforN0tzS/e0VEwBVOw+AJzKjTR3I9lkbE8MlqEY2U4qGL16tVr166lIrZnSuvQoQMXwU1bt26l4r179w4ZMkR+nZP8JOznn39ml//222+//vrre++9lyfvtNAuPxWTX/bEKMaSgTxbSUdWcjMD8zAbc4qfhFmXs16nmoB6HRFhUjAFU7D4Alvpxd1erHZibWS0tmJdONqEgkLat29PRR07dqQ0NuoeBLVyJeQIOmvWLG6I2dnZmZmZ27dvv/766y+88ML333//4MGDrVq14sk7LbTzlT70pD+jGEsG8uwkHVnJzQzMw2zMKZObtdgLdNbuluYX7+gomIIpWHyBrYuMNpHxjR/tI6ODFRvD0TEUm0LRqVOnLVu2sD1TWq9evbg572bLrlq16q5du4YOHco+npiYOHr06K5duz700EPs8uXLl7/nnnvWrFnDk3daaOcrfehJf0Yxlgzk2Us6spKbGZiH2WRaWYJZkb1Mp4KAGh0FG0jBFEzB4gtsY2R0jIxNfnSKjC1WdAnH1lB0DwW1/Prrr2zPlLZnz57GBFv20aNH09PTK1WqxD6elJQkPzp8/fXX2eXPPPPMK6644osvvuDJOy20y48R6Ul/RjGWDOSpTTqykpsZmIfZZFpZglmRvUyngoAaHQUbSMEUrJDB7Dqdgk1096NHZPwajl7h2BmKCRMmUMuLL75IUWw4bdu2rS1akyZNatmyJRtSQkJCRkbGoUOHSpQosWHDhqeeeuqxxx676667pkyZwpN3WmjnK33oSX9GMZYMRwWNrORmBuZhNuaUyc1azOqcVQfU5VTu0yiYgilYfIH9Ghm9vNjpxITI2G3Fi+HYE4r+oaAWNmahGjJkCCeoXdTKWapUqVLs4FlZWY8++ui7777LYev+++//8ssvmzZt+uGHHzZp0oQn77TQzlf60JP+jGIsGcgziXRkFTbmYTaZVpZgVmQv06nALdAnsIEUTMEULL7AdkfGi17s8aN/ZOy1onE4Spcu3TYU3PmEqlixYvv3788rctSoUbm5uevXr2cHHzt2rJxaR4wYwRmV++OqVavuvPPOq6++mifvtNDOVzm70p9RjCUDeUaRjqzkFjZmk2mZ36zFXqCz9oDqfAIbSMEUTMHiCyywbLvyxraBHW0jo2o4aofimVCIE+dL9ubBgwcL1qhBgwbt27dPfkl37969OZF27tz5+++/v++++9asWcNef8cdd6xYsYIn77TQzlf60JP+8ku9yUCeQWJGbmZgHpGTyWUhZl3Oep1qAup1RIRJwRRMweILLHrxVR0GE89ExhArioXiaCiogi2ZcmbNmpWenk51XJtbcuwcMGBAWlpaUlISZ9Ft27Zt3rz5u+++K1++/D/+8Q+OrGi99957PHmnhXa+0oee9GcUY8lAnlKkIyu5mYF5mE3kBE/8TDirdmqq7VftIyuYghUyWH4EjsIxCTuOWrErHPvDIU7sMELF5Y/qKhGLFy9mE+rXrx+HqkaNGo0cOVL+gI1rY9GiRTmBoXX77bfz5J0W2uUP2+hJf0YxlgzkWUw6spJb2JjNyEmYddmL9Utxi/U5hEnBFEzB4gvMhzjqxS4n9kfGYCtmhWNSKISKePDBB0WL49M+9uvU1NS+fftmZGT88ssvjz/++PTp0z/55JO33nprypQpF110EVpnnHEGT95poZ2v9KEn/RnFWDKQZwDpxIwZZCphEzkJe4HO2t3S/OIdHQVTMAWLLzB3RFQOV8W2MUISo8LBfkwt3Ppyc3MHDhy4nkhOTk5ISJBf0s318JFHHpG/VfHss89yeeS8itaBAwd48k4L7fI3LOhJf/ml3mQgTzLpyEpuZmAe2f2NnIS9QGftAdVFJ1UwBVOw+AILJIki4sI4PLaTULEfixY3ZQ6aOURKSgonz8zMTG7SR44c6dy58wMPPPD111+vWbPmtNNOe+KJJ9CqW7cuT95poZ2v9KEn/RnFWDKQJ4V0ZCW3mMnuL5P7i3JWHVBXTE8FUzAFiy+wKCrpMVV8IeNkU3GypCKOmLLhJ6elpXHy7NOnT8+ePeVXoVx44YX33XffK6+80qRJk6effvq88857/vnnefJOC+18pY/8ohRGMZYM5EmTfZ/czMA8NpuRy88vimUApjApmIIVMlgATCwal8cIGSehsrU4K7HVcPfLJjhCZWVlcSVs1KhR165dN2/evGHDhnvvvfeKK6648847b7nllssvv/zNN9/kyTsttPOVPvSkP6MYSwbyJJCOrORmBttM2Iyc7xeTMIgxPV3BFEzB4gusIDxDo/AYIdtJqBwt2fFTicTERC6DvXv3rlat2siRIx9++OGPPvqofPnyTZs2vfrqq2+//XZ2/NNPP50n77TQzlf60JP+jGIsGciTSDrZ9x0zw2bkfD+fMLahgimYgsUXWGweDyhCyEYyTkJltOTIKjt+3mGTa+Dhw4fl3y8C4Morr/zuu++++uqrL7744o477rjpppvY8W+++WaevNNCO1/pQ0/6y793RAby9COd7PtyfDVmhs2Wc/B8Pw/QI1QwBVOweASLIRQdyXayqYyW7Pg5OTm/gdWqVSszM5OiS5Ys+fPPPz/00EPt2rU7ePCggJ1xxhlQvfPOOzx5FzC+0oee9GcUY8lAnloCRm7Z942Zz+bI+XieXtBJV8EUTMHiCywKkpuvIE75abErc75MSUnJuzD37dt37Nixjz766Pbt2x9//PEff/zx22+/haRo0aIXXXTRDTfcwKn1qquu4sk7LbTzlT70pD+jGEsG8vQlHVnJLft+oNlxy0XBUzAFK2SwmE6D/MiNDJ/KaNkbmFwk8+5/BuzQoUMffPABDPLf4t51111nn302SBzCAOPJOy20y3+XS0/6M+oYmLlO2tuYbRaFzZcL0HN0FEzBFCxOwU7KyaGSsHd8OYT9BpaVldWnT58dO3YI2PTp022wAwcOQHXbbbfx5N0Gk3+PgFGMJQN5sgRMjmLOvi8RyHbicgqmYAoWX2AtvYgplS+Vo+WcWuUimfczLBvskUceEbBWrVqtWrVqxYoVIHGRBIwn77TQzlcBk7+1eQzM/EjMObsGmsVkC3BzdBRMwRQsfsGOm6ogWvbN+zewpKQkATty5AgAP/zwQ5EiRQzYeeedB9VZZ53Fk3cDRh960p9RAkaeJAGz79/Ha3Z8bAqmYAoWj2CxqXytUpHha9mnVhcsIyOjZ8+eJwzGWDK4YPbZNbpZ7N0/PzYFU7DCB4up5f+PPoZWfmAJCQn5gp155pkG7KqrrgKMpwHja75g5sf6gWAFNwtw82kUTMEULL7Afk8tB8wcwuSHYQKW98f7Bqxbt24//fQTDJ988gkkU6ZMueyyyxwwWmjnK33oSX9GHQMjnYDZPxKzj2I22O9gpmAKpmBxDfa7aflgqampv4EdPnw4CljdunWhevLJJ3nyHgWMPIcFzPmxfpR9/2TNFEzBFCx+wU5KKxBsQCjkB/oRYL179zZgI0aMKCAYPQ0YGVww+ZFY9LPryZopmIIpWJyC5XoRQ6tU1B3fuXkHgDVq1OiEwRgbDObcvwu47weY+RwKpmAKdiqB+dvgce/4fypYYe37CqZgfwjY77aBnTiY/Nbb/MDkd9+eFFjMbSz2H1UqmIIp2KkBFrADRtE6NcECzPyqFUzBFOwUAPM3tz8b7LbbbgOMZ5yBEQqmYAp26oG5iaOALQ5HIFhiYmIhgJn/AjAQrOD37wAzBVMwBTv1wPytLwaYv+NHAcv71Qn5gX366adPPPGEA0YL7fmCmd/EUBCwfcd7//bNFEzB4hAsvw0sClhKSkohgzl/87wgYAFmCqZgCnaKgeV68ceCde7c+bjA6K9gCqZgChYfYNu2bTsBMEYpmIIpmIIVEMxN+Z8N5pspmIIp2F8VTP4zlgKBDRs2LCYYfQoKlt/fPFcwBVMwBVMwBVMwBVMwBVMwBTtVwC6//HIDxruCKZiCKVjBwSp58VcHc8wUTMEU7C8AZn6g/6eCGTMFUzAFUzAFUzAFUzAFUzAFU7DfG2ygF6cyWICZgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgimYgv3Hgu2LjChgaWlphQZG7gKC+WYKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmAKpmCnCNj/A70KsBsKZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago2MTA3CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC04IC04IDggOCBdIC9MZW5ndGggMTMxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTggLTggOCA4IF0gL0xlbmd0aCAxMzEKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago1NSAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDUwMDRaKQo+PgplbmRvYmoKeHJlZgowIDU2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDI4ODU2IDAwMDAwIG4gCjAwMDAwMjA2MTMgMDAwMDAgbiAKMDAwMDAyMDY1NiAwMDAwMCBuIAowMDAwMDIwNzk4IDAwMDAwIG4gCjAwMDAwMjA4MTkgMDAwMDAgbiAKMDAwMDAyMDg0MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDcgMDAwMDAgbiAKMDAwMDAwOTkyMCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDk4OTkgMDAwMDAgbiAKMDAwMDAyMDkzMyAwMDAwMCBuIAowMDAwMDI4MDk0IDAwMDAwIG4gCjAwMDAwMjgzNDggMDAwMDAgbiAKMDAwMDAyODYwMiAwMDAwMCBuIAowMDAwMDEwNjQ4IDAwMDAwIG4gCjAwMDAwMTA0MzMgMDAwMDAgbiAKMDAwMDAxMDEwMyAwMDAwMCBuIAowMDAwMDExNzAxIDAwMDAwIG4gCjAwMDAwMDk5NDAgMDAwMDAgbiAKMDAwMDAxOTI0NSAwMDAwMCBuIAowMDAwMDE5MDM4IDAwMDAwIG4gCjAwMDAwMTg1NjggMDAwMDAgbiAKMDAwMDAyMDI5OCAwMDAwMCBuIAowMDAwMDExNzMzIDAwMDAwIG4gCjAwMDAwMTE4OTYgMDAwMDAgbiAKMDAwMDAxMjEzMyAwMDAwMCBuIAowMDAwMDEyNDUzIDAwMDAwIG4gCjAwMDAwMTI2MTUgMDAwMDAgbiAKMDAwMDAxMjg1OCAwMDAwMCBuIAowMDAwMDEzMjcyIDAwMDAwIG4gCjAwMDAwMTM2NTIgMDAwMDAgbiAKMDAwMDAxMzk1NyAwMDAwMCBuIAowMDAwMDE0MjYxIDAwMDAwIG4gCjAwMDAwMTQ1ODMgMDAwMDAgbiAKMDAwMDAxNDkwNSAwMDAwMCBuIAowMDAwMDE1MzE5IDAwMDAwIG4gCjAwMDAwMTU1NTYgMDAwMDAgbiAKMDAwMDAxNTcwMCAwMDAwMCBuIAowMDAwMDE1ODE5IDAwMDAwIG4gCjAwMDAwMTYxNTAgMDAwMDAgbiAKMDAwMDAxNjMyMiAwMDAwMCBuIAowMDAwMDE2NjEzIDAwMDAwIG4gCjAwMDAwMTY3NjggMDAwMDAgbiAKMDAwMDAxNjg5MSAwMDAwMCBuIAowMDAwMDE3MTI0IDAwMDAwIG4gCjAwMDAwMTcyNjYgMDAwMDAgbiAKMDAwMDAxNzM1NiAwMDAwMCBuIAowMDAwMDE3NTYyIDAwMDAwIG4gCjAwMDAwMTc4ODYgMDAwMDAgbiAKMDAwMDAxODEzMyAwMDAwMCBuIAowMDAwMDE4MjgwIDAwMDAwIG4gCjAwMDAwMjgwNzMgMDAwMDAgbiAKMDAwMDAyODkxNiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDU2IC9Sb290IDEgMCBSIC9JbmZvIDU1IDAgUiA+PgpzdGFydHhyZWYKMjkwNjcKJSVFT0YK", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:50:04.094114\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["all_points = np.concatenate([SGD_points, SGDMom_points, Adam_points], axis=0)\n", "ax = plot_curve(\n", " pathological_curve_loss,\n", " x_range=(-np.absolute(all_points[:, 0]).max(), np.absolute(all_points[:, 0]).max()),\n", " y_range=(all_points[:, 1].min(), all_points[:, 1].max()),\n", " plot_3d=False,\n", ")\n", "ax.plot(SGD_points[:, 0], SGD_points[:, 1], color=\"red\", marker=\"o\", zorder=1, label=\"SGD\")\n", "ax.plot(SGDMom_points[:, 0], SGDMom_points[:, 1], color=\"blue\", marker=\"o\", zorder=2, label=\"SGDMom\")\n", "ax.plot(Adam_points[:, 0], Adam_points[:, 1], color=\"grey\", marker=\"o\", zorder=3, label=\"Adam\")\n", "plt.legend()\n", "plt.show()"]}, {"cell_type": "markdown", "id": "71f374a8", "metadata": {"papermill": {"duration": 0.131559, "end_time": "2025-04-08T10:50:04.549132", "exception": false, "start_time": "2025-04-08T10:50:04.417573", "status": "completed"}, "tags": []}, "source": ["We can clearly see that SGD is not able to find the center of the optimization curve and has a problem converging due to the steep gradients in $w_1$.\n", "In contrast, Adam and SGD with momentum nicely converge as the changing direction of $w_1$ is canceling itself out.\n", "On such surfaces, it is crucial to use momentum."]}, {"cell_type": "markdown", "id": "d8322de0", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.13988, "end_time": "2025-04-08T10:50:04.829284", "exception": false, "start_time": "2025-04-08T10:50:04.689404", "status": "completed"}, "tags": []}, "source": ["### Steep optima\n", "\n", "A second type of challenging loss surfaces are steep optima.\n", "In those, we have a larger part of the surface having very small gradients while around the optimum, we have very large gradients.\n", "For instance, take the following loss surfaces:"]}, {"cell_type": "code", "execution_count": 34, "id": "f9c62fe4", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:05.072881Z", "iopub.status.busy": "2025-04-08T10:50:05.072314Z", "iopub.status.idle": "2025-04-08T10:50:06.538117Z", "shell.execute_reply": "2025-04-08T10:50:06.537166Z"}, "papermill": {"duration": 1.594812, "end_time": "2025-04-08T10:50:06.550567", "exception": false, "start_time": "2025-04-08T10:50:04.955755", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDUzLjY5OTM3NSAzMzcuMDM2ODc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nMS9y5ItyXIdNq+vqCE5QCHej6EoijDjjCJMGsg0oEEgSFgHaSSMwu9rLfeIXXm63KPPvaeuCBrA7qzdmRkZHu7Ll7/++l///f/7n//u7//3v/lX7//rv3/7689/+7t/eovv/4j//Yf38P6P+N9/fo/vf4P//Ye3gH9bb6XmjzZn7hX/+tvzX3PuHyG3gX/8DT/+4V//09vbf3z76/8Ft/kn/Gd/8/aWw0cMLdX3lD9Gj/wV7p3HRy0/Xv3tcTXH8tHjvvy6ww9X94OSPugf8OJYxMfAMvBYXrGf/HkxfOTz4Ld/he/wz2//Df83vP9VwL1S+og1R/xufqQ++A9/t97+1d++/fW/ie8xvP/tf5Sv9Lf/z9v/9f4vwkf4l+//9/vf/tu3/+1v3/7dm7zFW4zxo8/yu8c/rl6fHwP+oxJ/+gWS8QIzf5SRfv8Cn1fvLzDqR03zp1+gfH2B1OtH7OF3L/C4et+B1j9S7D/9Au3rC+TaPkYdv5eAz6vXF8hlfMxQf/oFxtcXsMT8B+G/vkCBrNb5s0IYLSE0j0BqHy38/ux9fTw+P18w9D9Z9F9PHQmKYf7uqZ8Xvaf28ZFK/lPl/fXUWPD30H/32MdV77kxtw+cuT9Vzj8fPAf2s/7+wZ9X3QfP8lH7/JPl+7W7EOkKsfrd9n5edfe3po9e+p8q15ZGfjz4Bz1tPzjH8DHjnyDP6f3fqp0SFf+jHbsr+h/f5t//4aH8/e//BAP2/PUPn8a/+8tU/tt3NcVqv2iG3wYV0Jd19Ykt+/2TP6/+8IDXHSzTmeXBH7OK9fxn/ce/2VfeYKrwrVtrvb1P2IKR2xzc5dCwc7EWiG1vH2GGEnHPFPCb3kpq72nCeM5aBi7HUD5mhiUd7ymOj17xf7NKBZ7DBeP/yjP5SPPeWHKDMOCuo+CIxo80S2mdi26NNiqFDEGOH1AqrWT/XfSZqepT015rui62l4+UZwjzvaSPlFqa8rWdF3K+DR68gcoDpABMhTgbNFLBi/wOmEHv9gZ1lN7x/rmmMAvfJrYPPLNCRcWeP7D8ULmwFOtHLrVNHOgBOYhYVFPxihC8UGae/X20j47fp8Q75fTRysCHeY9t4NhO+Q94uYQRSsGNcE+sq/R9o4rPkvHA+T7w1SYWLB+ozA9ABX6IBnHERym8D642KLQGMz74qbCA80J48ZQKlB1wAOx7zXKbVj/G7BMLqxDZUksQoQIGCHPUig3u1C6xxLLvM+NHxP+J6b1N6Nec8CPcCNYFOn62jDsVwtIoEjEg/jnNOXEjSESO9bwQXg0vlFrO71hBgQYrcqM5iRJG7bAcE1aw7K0P6aO2UqsAlIYjFfcXSqnjC2HL32v/KH3UwD3LseM9M2AE7oMXqvgB9ywnGvdWEw4GngtBSfncqEB0euLSINXAii3wjXKGkahlcvexqxO7h73EnfAvI6ecqc4HDNiYM+07tfIBoNNjey/YzhAo30RA+ASjAWPiTtg1SAI/UsZ7A50VvAc+JtRJ4cnSrw3YOmbB16PSydjNIWAWCx0F+wbtHflVARjla8PU4r/G0QKGygMo8twH/zmeECFtImsDmoFriwm6oQf4EO88iRWLlK+dJixux/rnO5Y28AojHcHGgjq2OcGuT5zcJOg2Y9dKkAMY8Y89QLxl13DTANXTKC0RZy5u/RvxsXsbEKB3Si1eXXVOrDiC/GDjnS83Oz7/5J3wejn1jt9D5UIhpHLuhM8H9wgCmigAGcdOPhJ0BSAnRS/CUQKibENvNKFoZ8fBxBuVHsr5Rk1Wyt3hscBnhOzxRh17EGvEffDODae8RhGkiTObqRQmBQG7eY4IXrBlIFi8EU8djkKmSEYisAEJw6HFqcbJ6qluQWr4r3l2AvYN+rPOc9pg1loHlnjn5s4aWlNvgn7SGBArnn/csmQRpdKJK8aArEJIeNdxjht3olZo1ATrVCBUVcADzhX2DYcUug3/CD8lNxFKrBVPgKhHAIwRZpr7VqKF8Qd+WMgSvgy+sRqoQVOAnev0IWIXLSwqHpIboOJlz/uRJd6Irx7lyxZ87nosHf65UCixfminIXvNG/Hc8/vhXERA89bPnZLoIjy6QcMXqIO07wQdCZMERI1THOTL0Dpi73BvaGeAe/6+xdedMk1MCACQMEJQaKm1fSu8HzSkGFT8B3wEb4UThFcKUZAuDC6U+uet2owNJwq6AZKJr3xuBQ1RsWM8jFlMQAyQ0a2J4ajVWl5fu/BplA6uIcBylfO5cfonRICKq8yUY9w3ojaBQYC7hzvBPMVzqwrNPAr+nWsY0DhTP1PlCeKd8PVwxIIo78ivVyqWSacUir6N9nmjDt1NsYQiwz6UMPeNOqARlDfdTcgcToncCWYmNOi/d8ohxLLOlwwQ+/NNsAy8EzXQ2LdqAVKwbWtvUFn7VlDmmaYJZhnmvh6VolD1b/5ETCHaMYrD12H2sfu11zpFzcL+zCKXcfbyiMdSBHnSRm+AMT8QCJH/UcDZwbmh1gs1weAkKO8vqJsOylCgeOB3esLv/wa4Enjr8PkPf7fecYO/+td//4//4f/4H//+P/yXf/qr9Z//y//4p/d//V/f/93B6wZWp+kaPeOkv49O4c8i1nS9AFJgGt4HVVJttfzxGnkA5ggDWwXhhZinCZ0dBoDwz6wRX/svs0boLMgYNvId6AfWt2yTAts5+T80HThYIf3xEmHmgBNhEGEeoyILqE+oX+iYn1riX2gbO8EVzP0gjptQbS1vGwWMCBv63tXSHwRxWyOZRRikVgNUEzFPBeSDd1igL39ijeEvtY2AmFgglTsVGKRtqPnE5kG9Q3MAAY6J89z+eI34Sj1gWTAtOMdAYy0RYBXA7Z+nV7w3TZFrBRzCKxWyHDOrPoXpzW2Mdxg4HH3oqD9+0UmABwwyoLrzO/BUnXAfSgWgvb5o/akXBZTKCYCqEs+lDLgtjg2M3+yRVBOMDt50lj/WcLgNMMmAWYFCnO/Q/5A7fAlI4o3CsXgF601hy2Du8QnfiZYhcU0sCzA8YHcBqgRaxOaHGv/4TTOsGQwU1N7EdsNPAEJosNVA09c3/blv2mhcJrGZOA7EK/SoqA1hfSFsxPIDavKPXxRrKhNYAweYqID4KuO9OwTi8qLpx0/6394EIeIQwxHpuDPQSChAn5Cr99/9y+N3kc4esMCAfY7jjfacTnzFqTlqgGdaWXk8+K//Tdpv8i/++V++/+0/QjUA2EOKJEbxV1BERdSE/DS+d/lllF9ev6ft3N/sNgAgbBqgVKe/gy8GW7990QlwB/MLOIzvGn7Cpgm8HnDF4KMAhFFWOg4uPO+vQv3/o9km9okAlgDAFe52Im4XLxlSRuej8DwHWIX8xzYNVgMbPQGBYR7qOxkKmAB4QvXn1viXMtt0+eHrwzEjXIIZi+IsBywxQiAAMKi8gFv/2KTR34RQA/PDyaFQwC9qOJLwLf5nWu0cyBsAHQkCaQOQsAtHkXXvMql3GKX2EyuMZLA6/yc02X3oXRxdnoP/mUYbjg9MK/Rhol9dayeNgiWmRF94wFAM7iI8yj822hBz4ksAaLg0kdvf4G7Cw6/jK778k402bMAH4xFw/iB4sAY9T6F56AjDrZv05wNc9p+w2pnaEvIVIHSwrdjFGoDJoFbrPZzxUxaGAd6sFkTczEwoijct1I6DFAadPWCbOX/iVaE84QBA3KDbI3cDwCUUYvhbHOInzXamC1oA1Yp4BzjDWV61wu4AhtPMwFsb1D5/bA6h14ABgFEgCNikTh++4itAGfy62c5AOtDqkxQJtDzA5YhDXhXCAMNHxz81IW9/4qMK2wDQLJ7BOz3mUSEP8Blvr2oYbpzpwaMKdRfougDgDCLIv/rh3374XQbAgMmCaYyQgLdaAMtaTPi3kr7NcKc/33B7YQJ6/fjYWAfMunBIA5a2CWtLyqSTKJFbtQkh/2PbnRmyDqlBQ/Bh3FYgHcCXYgVRDaVY/lJ6H+JRAEA3wwULkJVSJqcDy0aRKaRSoDB+4lg0Ep2DpHlqvGP8wLGAlwCM8lPLzH8p3U8BaDXiLci6QgDTWSURJoMd2G+8S/4J3S/aPpZB7rYLGdYCRIv8+1c9ZS7yL7WXpBQg00OcSuGiRW/ADSArwICFINXM8NEfL5OEIPUNoBikoNGpqUCcsRrZBibg/EvtZYJ6nJE2h7zbJE2pZzmXAJ8Al4XxbD9zMOm/T6iv0hqDFaPITcKgBP/PhNXC8uZYixLDJXaiTy4TvlCCQgdaBv6EVev5Jw5mp0M1egXQhIgz8YBsIUxCzD+1mX8pZM1lAjMA9MOnBMgmDRn3MmFVclciGE5hKD+zTJwA6DJ4Ypk3JLudyDszDPk/E11Tm+IwVrxUhhEku6Enk1G5yogJWWp8Bbg7P7FKHK3YO45AJdmfGKatML4Q2p9SQH8xhE32Hvi0a8AM0KroycTGplQZGYXDQztYfwK4dHrGzFyIDI4AScArSUDC7co4hN8Dl88bThyjAtgPg1RJZwH3j1p5yMJX6fi842//9Z/+6YdbvhvZFwxHQsb2//ff//79/3z/L/hG2BAynngpiG/nP8CoMsL43//h7f7XN0pvhNsE2SAzHsnXSzgM10nEMBZHxjzy/0movzB0FRrD0ox4hCjhPolBMIio9ljCOnKZnzeRjwAmIbOGj7t/3iOU6tCg5Gwlxp1JMHGsolxO5CHSfirltzQhpCtcFYlh/ifNqUiMCJPNiZTVjH8omZEjrPD9+tc3YS5ziA0flyaWaaRKXzGwFkdg0AfXIRCwc/ImDET3QivXmGoDNS6ZC/hepCEYDATWT+L7XL+X932t/dDnkoySIP6A7un5c/2APhB5slk4F3gzvFfJgEO6/stfmfGCYw1nhOHnwRhc1fAzsxKwHPjicn3WmZu+B0SvN7IKvE6r3fW9E8kp8ue8DlxW9nXJIACOkUyMVluQnRPGGD+KSX4feJvx3FH5E8N2kB3KbMEHhd7YO+r+9c354ktEqwZoaWZmJALy0usWxcRIH3e0MBVDvy1FF3YrEXwBC4SeyDPw+hCumOFdJmzAZL6uw4kWyF4JkbpmGt2OgHFizgeA4i0UWqhcbB8P7WC6yf4A/l/f9JOXwBQcyRwJ8ACEjccWEYLjg/GBwKkt1avI2YfOPaNUy2QnJAA88OFG27eBe8WfQy3jm+Q+tsDA3WFQUdIJMn2gb5FoU+LWRUIZ/YEjVuX3E45jO+892wzMRsH1CshQX+shP9J2KkKdmuKD+/cZQi/y+8xXK2dFEgoJ9Cuz/BXv20rbIRJY1DD0Kb3METSFzDqX/rm5nTM4+YDTmgklyTK/yfHuM5NO5SJwzvcxDuTfOvOyeJ1xnPaUyl9RtIbUrIsh8E4NlWXqoYs4tdKbML44tXhsZxyfeTANl7dUTgg95LpKmA/nHPh036fixPC51AZY8dyPhdMWUxTlgYemVL9JLC2xWRcxg6OBf9T9hHDlfF6wk/DWjRv4LvFoMUaDsibIMEEjnMNaccs45ToQnGqrI5WWGCxXalwhs0XfPyp0KfBfJbmeC+OS+z41wetl3IH5pOQy9nPhOTOthb+HkNWn+YOIMvqLf2BCFgWwRtqoLZX+X98cc67KArIVmX1FHyH1Ml5mHtYF4JC5PcBkdX8BWOXYxVZMSF/i/t9si2eLfLRgoYtvsJaBicFSZiFviF0p2/wDxYY2JSESMOiInwWXPHjiWxbPElmW67cTXh5jPxVwfXwT/DGPzbocM6ZipqqXaxTFotqH5O7QUwZRKqXtnzNxaog8VwpePlChxc4sxE5CiCT741Ay6a5ARepf06jtJDqlUmD59eH4rJJbaJsWX5ffdP/sQljzuRCVoioX1/HZJ/0PphwmPFl/D9XNJNC9ut5j+lyEeZTX5eh7qsLWX76+YwhaVQVDTHSBj2MBhzDvjwrB7WlsEWUa8tTfQ8aaBNTPKoz9W/52J2ZIlpR0X5krKFflFIyun6JIUFmuM1dvQITeJYBbmPq570JXLezvHcgzPKTD2o112T1ntx2detPBQL1JUtomc21DfTkEMzFVhqtgqrgCEjoQiemBujpmPz8Mj7kd67J93nbbJ+ly8Aa2nMl0nXnesAkHDQRgsKYvC8Awt1QSmdIQyPVG+vUBB37J8Fj4Zl28CMfrYAlXIPctifShjSZ5FhSilkcamvpTBvdx/34MUS6x1Y/MM5ev+MnGW9/jp33xC9bFjXC8DhuwXfBdY/K0Murwnup8qZMgxozMPaS/z/PUCiNMFhjwsfD4lPfvcbxh36GcYxbR6kBbU3RLKCT6yX6LQoJGVG1hWgVXC/tKuxNW8qyLRGNVr8oRvMvcxxX6p7xKWeCfxf2a/Or9cYxNFbYuKo8uZYBUqxKB96LSzfwr5pzot+C7xn05prFPK84JoNpWqB06StbGFO7KYOWnarEU0rooME/h2ZbBtyQFCw1iwSSLoZVy3OvGHCZc7kygT/k8NgH2RP05Dm/KT8NjKaR1UWC2vnNMyc30AFTEvRG4eckH30DHMlbMReC1Zz6PZSBOXhPeW5+PJZgStS4S6EmsbUhcw0Ow2LMwV3wn1u+c+ySWe+h16hXV8eqBz/17bHIOD3NrieDyBRZrizjaWwZCjCobJM8hTEG/N3Yk6/dLfHauNM4kogHpVE2lxiIFSQbHdZzv0cdDOAyJWhcB9ATWNm6+MewfUcsl5KWgGubLU+2TZQC8HgNpgP1ceFMp69qwgemxBlOi1kUCPYm1dYGrOgpVKjwUeaykBJzb1BiYWMFCL0hSU4+Xdfg56TakvjOTjoDjb4mFObpASGY4lSSTibb6XWGct+9ganxfxd5UMgOTUfchE0WoJShM99eig8ZHaYI3nwsHfp/RmHN/HlLrUCz/ELmHztZmF+U3mMK8P2zIWy9BR89JPkiWUGc4bhegP8ORRbeHWctPWbJO0fJPXSaHNuLcsjepXuQ63c/BW8uHLXFI3Rh/34r6IPywiRFqEQ4pwJpJnxugRML8fCvzWKzLMfKOnaVjbxoZn4ekrbxTZHhsX4diY/yHayiB/vQ+1L2WPnRpLNd+oDv8VxAtIExIYRMECymvB9/6f1W+E9qGflEUqgjvUbebElkSBnhHXrPEFl7OZ2C6lBTZAKDFeVz/EgMfxLKsBJne7KwXh/HiNg5xgeeOkJnqSqIHsvBt1IKpUtZFBTkayzYFvunArgOki0cEUJsgO8ekQE3OrAKA7xE3RIDWwI26/p6lpePhxps6ZV10kKezbCPrG+Uh5DFJeRbejjKPrYZ/M0KUywCSQcOMpEbgsCT9OUB6HQ9FbWqVddFCjtIy7dnN/FXmTeuHLdRDhyrsLPPl7yu+CisK91Mh9YHMPjcIO5ge2sTUQeuisxhemXFu6dN6P6YF4GvUrN+v5bJjWjmz7prRSPmu8NFi33cBYs56Gba4/eDDWypl+SrIU1mmjb1Z5MakT73O8lKFj+ReIKozy2dtE8Ix91Px5eOW7wAjMh7OQmB9b5lRV5gat0/kmzR2mrvwG2tsG4xaNt+zsb5FLiy4lkJnXI+NVfj7LhCPzgQOrAEwvmwuRfJAky5tkux7sL+wE4PJkhnOSibfUAE++lZR/h/fHHZaSZhZohROQuPgU25HiQdX4lDMamBt8otrwWcteGuWqWLpOZ0vj7tIBfOMuH0IOR9fZWLxRZoU4GOqMfcDq3Yg9jtUtKUT10WHejrXBgI34ACN27e6woGMr+tQQlo0yiK2eJ7aIGkCY6AwgILqE4VaKnH5GtRRuA7C8hEZ7KyUBIpI9hbCuQ18uzr0XbNm9W3zPlhGKNclk/fp0FgqcV1UqKdyLTDjQ5/xIR9ITxs+xFAYKNTc7OJHSa+ous1CY4JR1pdkMWt8LMHUoOuicStJqdBVBQAq9a1xeSImazzkwybY/nM9duh5fXqmZuxbo/cJvaXXW6vpaTVMpbguStRTujZI8EFFZUpuEq9MFlpf94HDmcUEFEgEZPw8N7W2F0124JkMAEBYK5VYkYpq6jDguLwVnPvHNwdUanSr9RjxWaiZGFI4zk1hZREvs63IqBpb5hlgBU6SnE8YRC0P9IOBXvDQw6w2xv0ekvGrQVkXA+QZLBtf3fBYHzCsqgZKZebrdl1x3op48UU6ZeynwkqVLaUwGTE+wmGGUly+CvVUro1kbsCHXT+66iu8Jw7adhHxUXLRBQCN73SFzC3MM+rvY8HJfgbDLK24fCXq6VwbId4QJdyftJsQNOHg9XIMXaNUPI+zz1eEBx966lvi3Dw8AYhVL0myBxkXLkVOmsQL9Bj6f31zDooyVmG2yWDHYMXbUSsaTWcvCkIftiKpB2rDRg32spmVlWQjvlh9E5k4QMaLyptB/O+IMlsWZV0skGOxHCzrY99IFic2VcMBejGfYA9DT1MEoFDAXtExHFtmmPJ0RiEpjhAzmxsWXEJwvBlL0qQcfTJOV9ntQx5eXmFpC1q7YNbHvukjDzKCajIgCS9MXFmmpIuAR01Yq4+lJRDPFNKNNf+QVwcpYY7yB5vakLzAJ2GPAGU03D8qUyYvRSWNR7NrzSbKamAtktR2ZGxdP2fYTmUw097cJDnaxcDqZ6ZhYO93thMTKACSmT/SWdvNzIptSSb2LzUV4VjK/CaobOKPdcEr7A0DGdsIoLMrhlyfpMslHC0NuApw3P79rKlNVUp1YstlpbkTbvSu2wwvpsYHfWniiXXBHx5esSG2B8gHlcbLitHQ7ZsUOIfC4ECttBEPRqInWfUdYQnTY0sAUcgosDqwkzuj3hQ2WwXS/6vmiVRtr0RYApsZ42kbVPBfUiQHy8jY92Eb66+UnE+B+ZSZkxtkpRLpY4kvWZDWpZcNu2N9D7r5iibWBXt4WMV2TXxXBooA3mjYEAACWc/y8aUVMhRSeTmdz46DWufWtqN8WhUHT6wL/vDwiu0G+G4Du5dRcalQzrI7+bHHG1YhsSIY596jQt3MgG6hnZBFZCnweQakviKK5QMQD6+YDtbNH2OcYegacGbLic8OZi/wcmY/p/RKZ8bHh5nU4wkpmk9PyTCJ62JBPYtrOjI3vwcqMhV9J2zrTsJJbL4V9V3ZPaPFeh7bMuMCImIsVHlyWZZFXBcL6llcG4574L2SvRtN7S3efGhCCe4C5SR9ljszrNsucGB0DCo16u6wkuAhSKYVWL7VKMx347/pK2k3LWge0uqMMchdAl9v/7pnfEN9pXFSZdiuDEvfe4//+uF92lp9+TbANBiOd3DzJuaMRV8osrPHiUMRGghAz9KLcQsjNM/staq04DFtPE3ML0RxrCwaZXjNpGoviQhiiw/MnATCEqiXc1oSsEullqNF6kxijPv3k7n6xFqMiJYczn2ohcWUsKvfARVRku0Kk51geUqTngDfVR7zVakv3wh4RsPxrXxfLH0kirOKMCX4RbsV4L6myg2i/1lNQyJEJQNau7fnqbKU+roYAc9o2FjMx27M6JAe8iKX46T5ajuHvK9D67WUtlGaVbqHyiqgWsozJcbS68s3A57VsJ0c1yci2ElZHzqkQHbfpWmEn+1kc42n1IcqQawkDujANj+J+l/xoC1ufPlcuse94wT1kfjl2PObVaH95D/gPE9pNTlZ9rNziJl2MZjfghOKxWGv4sl09dILrXTE7wgoN3Z4gU0UVEsl3V89xlhs2aQnMZB27yf72UKjTir5LfXc9O8sd1CfCghDG8z9SHiv8T1UHp6LwxRC35AAW927uN+dzS/iVPtLYyhW3HbXff/45k+zHF9FusNhkvwDSsmYVYOkWdp0iajzscCe9EREQRG5PiCKiWvWBQd5uMn0qS4eWGMPaH3XxvavKqyVZStpaxQoWe2By6eyh2/WvrU4FtrO+jMk/hXYrAsQsmGT6RXcnIghfKdqlshWtS/nquegfaUHEHM63dDZXqltDYWDUB+YxgJC64KbCOPZZktfqvRtJ9jTGUegbtngsAp5Wfaoi9AgU64DvyQFlrhP5GfR710BwcPTSlnoZvlgyMNOtqdy82x6e202G7KqBs1JexkU/bIFurfu5+I+pelOxLmb736mGnyxz+tizj3zb/sqvm+DE170mGQ5u/EUa0trcZWODq02T7HugFGb+vtQ+9MjtYzzuhhzx/g7qPoCwqH+pIhFekX3qYYW1yPEZFRZQitj+5CZfaDGGCotIbD512Mbvprn5dpyx/LbvpbvmiU2vkxFHxpT7+NwsPjQKhGJFN4u9eJoE2jztOWr4T6fEQNbvS5PG/vK23S2fN8ss73rFOWN/3Lgjmnfht2dJK2VbVHG9l8C65ZJw6t8sbfoj6mzX9XruqhjR3vb3o3vDbEdfwlNhR5HZ38L3IeNSaZKEnBMaycHN3IftoQRy/+ubveLgl0XhewocAehXwA9ha/skztbiId7A2QtW5oYI5mHxCpZMjtEyphX9zjTpkJeFwXOUQ2daTvyUng9tU7kpkMK59D13bg/lc6iT80GYyf0HlQscf8J/bavs5vRs0TM1LDropE9DW67Db6bwXbeJQm/wfEze3ZGlnTBoFcj1nSINdwkdd0I/tNn+tCvhKZNV3ld6nM8wM3iIfHJ2FUI2jSrfkw0G4SCjJTBBPRxtFdls8sseL6O8lmL5nniluf+PfXQX23T8k2ZZ/lsl8t30Njnue+zjge9updM5jrw+EQGFlM61Yf4UQxb8cF4PP1q0zatiy1zTJ8Ni24wisHhbTnY9lB9ONaRMXyZdRFZe6nxqTVltRnMLgizPaN6FKagMWXebA6ZPQDfUYRvlP3wqcWMthvi437fT5gs88qyQ4kqcIqW5n2gqUPRnRgsZtX7sKMgAYWugtLyjANZRnZdjLJnxG3kf/MU4G+GoFsB67XzIhJ7EO50A+JUCNiL8OpU96pkKvtOvn8PU2dFBNclgugEHO16t1t9HCSDZBYf2yLHruzbC2hPok9CYn7LBrzszcjnEvDiRk9+4JeYOgujrAum8TCQ7Tn5nhbcfLiifQtmx9Jf9Xpsz6EiwOkML14cglSKvmcIcz5wnw1Slg9qPBDkeCm+VyPSOPbXk4yIuO8jWKLqKkII6fDcs0oPLqqaOjTF97Oo5CtIWT6o8TCQ5aX4Pg0jYwQn+l1HSK/KlMrhGEVeVdDEK4Fx4gDpEpj38VDsFp5ZF/zDtuV9bjUgvb/kK9UgU4vq3DLJAWj7euRMEH0n2deDrziZUh/LwqFnoqeBT5YPZjzsY7tNvptFzmuEbTBDGhtHcJ4cDE5WuSgAY3qf3KWycn9tdjPNz0YVvxDtNjWQltPYFb1OAbAdKnBDC0kaqDGTQMYZjVNfRl8yTOafEXfFLP3k9bGACyz7Yy4fKdX2TQrOxCjrgmlMBOS4nTc3tXaeQj0m7FV01s80rqrXU2uzn+LBDN8h6lviBXp9ZMlaEGVdEI2HgGy/wvdDWEMzetLHQst1FQb2nOWBVh0AY1bqIbCYIi1OXJT190/YZ0OUdYE0NgTyvOebt80CSAnLUGv0He5kr3fIdNW3janFep4Ly69nPXLWmWL6z9SZrxBlXSCNB4Fs9/nmbvcam75Umy3ufgWNvUJb1Ouhl51Li8fi5M66F4Fv90NqMCf18MRUCGCRlC2lE9QB8//65mT7nqRMNgR7p80H5Cr9VZsIFSMDl1jCV0+riawjEtgqlTXWOd1zGL2cRy+Z2E4+/p70ma8IZV0QjYeAbO7hxlWwHimq6sAX3cwtYyf4HkKJ04PKrZ3kY/i3M6ncs0f0EzGZCGVdEI2HgGxH36cFpox8lCUEqM5zmT8ZugQc1S3deCg8PxEGLqHE9IyKmBBlXSCNB4Fsb9X3bpn6LQqa1xnby4dlzrAiVVfR2c7pZCOyEeQWGCKYZ9siE9SsCwiiMyryqUA478oImfPOrtK6oRAgfdtKmePWqYYA9FVPhjMqIegbimQYqPTAoiZQWT6w8YCQ40W7TndiQl6fKrMZ//yiADLOoOjwINXJecMsFltMVeEQSZ3qeQwOJ5uWEfcK46gyP48RXOCrUOt+9myiqWyf3vehfZ9bKjvLlo9EEHHuU0lldl0EnhTbfq608tsHuBJeP6TcQgzLRxguIrF9aN/nlv7VI+gqoNr7bsskjddG1q2AL11OC4woB0TWAMlvT8fAAgzrAjA8QGICfd8vgLCGcvBI5Hzdum/DtpzsCIaXLbONHZiToigtIMDpqztq/1nz+BUvrAu+8PCI7cnePF98gDS3iU9Q6Xo90yfhGHBZBRakR4t5a3WqYHAecZvpWRZiAYbl4wsPjpiOrOv3Zp0j0fWLw63WJve8TWdbcV2DtDep+7FQM1UasHCCRVV08Ojl9cXirYuFdCyq6cvePF98IWmUTemAPu8n5gDBUp8xMMmufKY64ERMXRvP6lO/WhZv+QbStqa213jzMjv76etHZdnEIfYnS+h1c6AMdgIpa+3i0MYogTRle4apTGu3LtbRs6a253PzlMjjcAgptWiR8azbg1Q54XXY/JqPte4wU32L2IilPzCEaR3XxZpW6J2sXExkcHrooatSZ1mbPh0nrmvwhc0UAvtQ6NND2bXylTSalHbIKkjRPwTcMnfrYh0dY2q7Yzf3bUY1Z5zlTFdlX450/TnedbLp6pzHVvcYc9QlcEr3Q8BtY7cuxtEzprY35nlvkqfDsQt7FSH3fX82BZPRNlzFGCEL3yF5QEQ0ugr2kEtPb88wdutiGz1bantjvvfGjO6S90txnKF+8sRp4IMzJWQRaexoUxYY1HTNHH35bPNiWrvlW0fPmjqA0QeYSVqWbGtapI3+vg+cITlCTSbzzg0hp+CGor/ndKnx2AnT2q2LdfSsqe0V+V4UE46ipgjIEMSZX12G2Ga2yCrYs20eKx5pVFQLFcZIHuJkmbvlm0fXnNp+ke9HMSRYVV6ZtTFzOU5d1ZxaWUSum+TPlAccSZUzbu6zB5Vp8NbFQHoG1faLfD+KtNYcU++/29XofRonaGV524ITteslkghaV0EbjE89NL9p9ZZvJD2barsgnsdS2M4y9KwSEFrb3dSZqc+RmnsNRcfTSzlYkG7mXIEMMnqoWIECZR973JRnXIe7w8tKQ78TsJw2k7H9Id//uPkrXdJuVTpwgKPGOMsH7Ozc35vURmn7uTUEOUI88DGnZ/mFabfXxc47uMB2QC7uSudyZAVQeS/WdkBp7zfN+tL6zMo2N3qdkbhPD/7X2LTAub9hknsAXoRfUNXCBKkck+5VrLoHtBinmGTIVBSZo8s83HoSGjMAoIxOEUu3e3Z5/aHcflJesVvlQeT7yPbXHr+LnzcR0rogKg5vpmrTDW3sVSXXuWH5pZVCb6o1GL6NuK3qOBznoSio0tnrohObdN6JT+1ggp7lYyQPUtke5c0Dha8rA5d44GEeVMXBUWa8uOqRY3RVbWlh3JljEVUww+yP0JeNeZaLkXxMZXuUNw8UrrmUMPPAD9ldvQ6gL6WEnDpUWeS2n9smXXzZoaRq/TMb7gvkWReE5CEq26G8OaCQVo5hlCVw+PWh5wO7du0l6NhmfS5H2Be9Dmz4RJEm4lkXhOQhKttpuDkZnMTW2sYoYWcZcNQjPPktZQQA6kdUInoIl/4eOqE+DzkAAdNpma4wVI9lTsbdWs79o9bxf+0zsOv44WKRU6Zeay3UV9O9qBEDnpNWX+X3OMmpaCQB+LC1o/knWaEp16HjdgNPWoQqIx1FnbLY7CSueg2WrIZM3xEysMDiuoBLD4yalILLQDB5EmAy6dmpU0Yj620SuzpQmwxihRJOyfHgkEk9twCYPxQhmGBxXcClB0ZtWsGnIZqEmFVY4TiFcqqeEqANnWEugjUlaWPdyYNYVVX2XVl/hLjyrEMAxmxpVwu9NtH/ozogkNtO6WNgil1o4mk8zQypoqVBkMN8HJCvZea/uXXdlzJwu07HquvZ/ocMwJCzhq+R8jcZahNmrwss92C8Tcj4BA77bWWmbolUzh5fdcyFAcEiAtCh01/uA03u0MPGQ/xD9qwBtJePyz0Yb3MfPlfCcs+eDjQux6tg6Qg0t5y4wfSzHs5jgTIE/Er+KAvXvkMTm/BRY5eNJV1UrVUyYw8aLKyAwmuzojvmqg1ViCrTFGvHcDC+Tz7dQs1OUE7jKBec2mD2rJ64nMLJdphDjilkAbpFl+//9c2JLu+OaYUJpzKXcvR6QoNSjDbo0iZWy2AJr/avBI9RP0zt8+UoWJbLNXR+Ax6rYc93lMNZPtq6+HSeD2jTZj7NNtjVRmg/amWmA528WE7zE6ZhcNT7KcNr/NGxUFMc8mfTga9u2nKdOscDtEkzl2ODbudr7AVA/deTGc4hrwL8sOWwtqc5ZxqwUVUXwMGYj5ie6ZMs34dpQdyCrjZt0BWWNTQhhKUbHpXZ6NoQokXOF0776zE7TIkYTlFme2TVfWwZ8QNPaPkY6+KTeD6MzeO5vF+l6k1tHq8gKSFXiMxlFKt8WNxrnuAdi+1oVri4MfLTXTBdjHVxSTwXxqTxbqxfo7LfiLqx9aVcL+TByMfzZUlqh+M5FUCZpOCF/eLmszG35WSsi1PiODEOjXej/drURAiugq6D/p7wLYoRxNvmUXdskCLHVvi6iNJKeeyE6WSsi1PiOTG2n37z67s44Hry6txtOGrj9I+R9FBk/M88ER1m4G8TjPX3Zws6EyovH1q7UNzmIm/cJT7+lK/EIzxUv4rVLlGvAiWU8ip7qrDZqoSALTWO/pkB+xUpLx9Yezjc5CIvzCVQa8/6UBjd0s51TnBreiKYaRrOUxtWH/RYw4SGH5r1/gLFZpYArUuNvlfTX2ROAjU91AA2M8RjMIacOMlFy0Tc+zKb4VJnM+LPTMZT42BWGNkFSd9h8jlQckw9pSMVGVQrni8N1Nm2qSPZbFLZJ3F90pf1uj3lsZFtVyqV94nMHNB9ZvB6KjnNAHwrVV8TTmhMzyQYC+uvi2/g+RI2kesSv0z7xVrrhiedBef7PjBQuej7cO7Ua24zrOA+aUx0fs5EMcH+ujgHnjNhk34+SchzPgTcchEpa/6SlDEGDSc3zhDtO7eDdeuhtI3JMh36Z+WThdjWBeHZiNAm/XyKMPKElqBftrLq4YSBM5t+Tl1DaNqWRJKKoXN0f6jBf2haZWC2dYF4DiI0KT+fISSz3uNGAlCIO9+Xkh0Uk1F4Si1nrAH5raYLTkypeCBgE+EtHxCyPq7kba0AtpoWrDZmm3xKpDxOLwN5sUhDzmiee9RGY9ixCQHH7wZfoDzxowXYlovvXDhok5A+aZnZXkSiXQKxwgljE/aXJvLIVP/cNw6QWHfYhga3r8/aRBOwrQvA8wChTaX51BsfNsO24Jn6+njg2E5pE8CeyBCnfgZGpF2JRwXUS3jmlFqAbV3wnYcHbSrNp97YfkHGJ4nMAprvHhI8b4zAyyIgfGX3eWeadG9bngL++yeUNwHbugA8DxDaXo/rJTVSJj2lrTvgEIRznw63o6u6hNpt7QSYqI72deiiNp89jL8CtnWBdx4ctDmtGwfW2A9J74+nHj6D/MfUfagACa+5wiVtrMYc+pGfXU9MxLYuCM8GhA6ldaPAcOBUaPgG0CxKsdFUZymoaJwn0utu2cjvBQNcdBEQ0P5DjDaxHz62Fi/WtQq00VRuAOn+VX3K0uDtTCHNGgfPzF0imQuUorJgWPJuSmvGdH9zY6h+zNVrSOoxy5lGXHQI+13gHH7G2X8RQlqgbV1AngcKTVbnRgLhJmFrAGiirHkJbFyA/0BtfoZ27Ady1p3DSl2ZHxUfDmJbPsJzEaFN7Fx4INr0oPqbkxhecD+wIFnNfmZsJO3HwsOg7yNKBj7Wc4KdidjWBeF5iNDmUG6cC05iIsUvKAtn9FzHbXrR66mfMbJshEEp0dXRoPwQSPwFAteM3a1LrM+LDWZsY0vcXvoE+Pd5Jm022ioy3kmaCdXTWZRzH5jDFCW1uL3G7djOot0w7jtiiRbiXReE7CFqm4LyKavCYhPpDS14am5+BvdhTupGKHzQHsPHLyBeohibUn4Yx2zC3uWjZA9U2xSUx1jJBLvOVmKiIeo4bf/osLxsR+QAo1OkN3B6kn5rmpeHXTRR8vJBdYO1KNIvWXxDIFXlcPkijAhsxZR2VLuxL2E4RhkSVDXpolUJS/at5fA/6fFdTdS7LijZQ9U2K+azaNBAuYyhX7DjK4fD6uU8dUM5HWgqTuX7TOnSoqsrsT65QxP1rgtKdlC1w4t5LBozd4Ab9F3ZbuEVXsd2StqFbMqc/RUFw4dpKk1QfemHunML9K4LSPZAtU2M+USajHmW0d5NGo/WV5Y/WwIKa8AkmbaPUCZPlWUoEHX4ZHrTQ54s0Lt8kOyCatt19F3NzImeMx2omrb5xX0451RAfhMXS/Vzo/5vJenepdKfBSOESdAY0kGGd+sM9BO/DFK3MlNBPuFQstZizHyGyme0mDUFF01VHDMHXkwXGxnLp8MSIDaz7qfijvFsRJjxWW3xFbivC8z33AKTnvLZLBmHq2wCVVBPuwkKJQHfsMoKYOcUakvYEjeN+pqRQyx+bPvzFbivC9D3HAObnvLpLOnJWPeByD2Uetoz4rlBz0OHZ9JOWQNbZO7XjKE+mi3a0HP5SNUDtiY7dSOzoCl7mRtm4bCqJPGzACroEtgGMe+nQjUO3QV2bc3P2JIFPNcFqDq41qanbnQWTudW9xxS/TkgCxqx6Fmou6F9oj86Qt2qCgY4/NDuJ0TJzoGaqYFsf2mNvSB3ux/3r29OMbr645CWwCPPzMIcdxa3esakxmUiGU3Sq0pdAyPSYgb6bx5/3M4X8PILvGp3szj+G9CjidjXBeE7HoHDot1Yt562ZWXfA9XmldGy3vcZhKXu+fghNbEAVAUgPkNBALSEYZLESSjLcTmNXUd2MxT3r29OPoviisT4um4/3uIMomRBYRNmniUXvZyehOzWQHQCsYZgnMHgXqcDrzOCly1jZ9d8h+9gYfV1wfaeL2Czjze2skPmt2EIQzKQlMkAghOtCb3BZKTXJIXKEn61kJC//IAkJlhfPrj3fAGbfLyRlRCFtm/PLI2Nq5JUfQQ1hgV/GJ8T1eY4RhLK8un/mOh+XbwBCEibox9e4JxPZrSMUjZfAL1VNPooIdrARlFiGoCZ9334BYqaHiYiPsOsDlpfF3TveQM2JXqjUHlapr7tHHGHWCqb5xJwy3Wc1s2AVRrsGZNe5+yZ39UnfcXr64LvbW/AJkV9CpV8VtigDhLeXp2KIb1D35QsQ30NjeupbRPHKfY/VAdbWH1dsL3nC9icqMuhFnZbbepHYRV5lsPoylHR84jvu+eGZmm4EouKOGPgz4bfJlRfF2jvuQK2w+s7yI293VrZwG70za2zLyilTBcXOVWnbFcDEsc277IK2PBHyZ6N1tcF3XvegElO+lwm84+K9JwQdDrKHPs2iTluTRcBo/EK2/Mfu16HrzOfW2EC9nUB+I5D4LCTPpspJy7st2J07DU0AtId9icnIN+VguJRt/2e7Gj3LMkx8Pq6wHvPHbC5SZ/LpFrFyYkbZJ+0D+ldMWfW98HX7aoJ8NwYtB1Ek3m78YeSHAOyLxfhex6BR675ZFxioUEpcQMtKIszvQD73GTj2BwMG3EqckiyRd24NEp4hhL+/CR6s7+lOrJ2P0yvf6bdLu7WXg4nP7F7FJ37OnZhNg8GvA8JydDrqWmcvp1sC1qTdJtijU57TEP8pdnZXz2e5btHnjdl8pI+jSmdpto2QtAkVb0Pju9j5afuPnRZKceJI7PeVUjxn6cfWiZYoH25EN9zCGwC0CcMccyL5FbJGupOOOZ9cGabOC5YA8BzOrVMgCCh6+8hDeXpBVvAc11wqodrbQbQZwxl+snc9hUCWV9+hiRwDlkEbED8nIHHucaqD2XqyjPKbyHPdUGqHrK1GcAbYwiXum9xymeGW+YksaAp5JWtuVM6kyVK0T7jXAT02ROsmUB1+cBWWuaEuCEh62LVU5cOqF06p+i5Gor+2Y0ql7xlfOJM66KlTLPV/fucmNzxkHELeK4LUHWArUNL3mhM4Bt2TJGTxzOusJ2VmUWq0vltU900DJ5bORVVvzlcy/YYrs60xsD6KhUQ6P+hrKc4+FKww0WULO9qk6QuL3mjMZlXNw5Y7Ep1UI9iwYET3YnoBryI89iScVxV9gGd4jMV2sTP64K3bXRuE5M3IhN6YGS9O946vdIqJt5FtoeppPCNz2RGqZJIR5H+0GXbhM/LRdsuODeJyQuNOaa0zFSgmDckK+yI16Q7sCwhnax9VjdFpSort7M/Wg3Y2HldsLaHzW3303dXSZTCOOh1xuCVT6OnlqQltawCOmhfJ10QZKxuY+PN0h/BDBs8rwvY9sC5SbBe6Fj8dm7sBfQ45r4cSohBDVemxj4PZU1Q0CPN/OT0ID8hu9Cg7zLQGrBE4VXanYD9Pyr3xc4OowjUwTlMmo/PukN+ySSQqWCn8sNWfZnU5YxK9kcrxw/mk7WsSSy1blZGTOQkZpasEKZB5/3YwJSZLEky8Db6M43nl5CX5XSsi5PiOTU2O+1x2UKtaVYaxekk/jNxAPpQVAw9FSx0bJep4/SFvK1ofVJfps+xLj6K59NY/KrLxlYxAHkcJ2GkV/vuzJi8akNpBXmaGEyaYlUxrUodzSf0slyOdXFRPJfGJgldTrGKxzD0WA0ckBfXCC0z9vXYjgkIdKg1/YfcfRrPniUmcF4XoO0Ac4cj9DlF5nhkdiwS3cCyrLrvUxhPUuUdOXim7ucGdqdSIeP75CfbZ0HndYHaHjS32TifvYO0EktuJY0VafUo7lN5/BTkBJ3LrM+ljT6r4G8eUM3EzsvH2h42dxg5n8GjvOaxvx7xzDj34Qg4OUUsdYLveKIGMaqW4YCa+MOQThM7Lx9qe8jcJuR8Ao9x7D73S8FPn/U0CsT3VhVXqO/DbgJMTMp334uAnn7shAm11wWaM7pAC6VvlfhfyHVBvrHuo0o2XH9fueq+788cPJVyTjVif9Z9VqEq5iPX6hdLh752t1eTYQ/a9cYB4Q3xoXc2WKWD9aosAAKkrWcFdgpn8C9+BKVEoEL9hK+RTqM3nPJC/Am1iMfuihCmqpHz1aw4klvpm7LNTMdjXRwVz7GxSVaflC0f3Pa0TxfciXnuM6Q/tUgmAMSGu3hu5vxUlRm2RntwuKbrsXxXxXVtbJLVJ2WJFPCEtrH2CC+ytsL+iLnmwW+hlP1c5jZ2fc/ESOaPg3y/Oh/r4qx4zo1Jsvqc7NTpxXrk8YN0qFqS2EWWAN3XFUOwMQtUQJ1bh8M/fvYBtpyPdXFWHN/GplhvlCyU2ZaNPOoe2M5eTvA55F2xhlo2DsJTgT5a0W3DdrZnbYXpeqyLq+K4Ng4BcSMsYCJS2YAxs+fKvh522hg3Iu7iMYLzIlSsbERr5ROEMck2s5OJlMMzS5xqL9Mi7RRc969aIgMbnQnIBFTVeQpkmC/ddxuU0tLpk2j3KbEn/l4GBNteiuXV6GPxcSVBIwS2eQzte2Lott+2fDfPdAo9gv1GyLda6EWLamB3O729qLY4VIZb7nmXZUpkpwx9Swh5rM8QuuV8rIuzYrs2Nk18o5X7JFW/1VtI8+QGcVJ0Up1e8c3DeSogSVUtOXlCntEgy/lYvrPiOjc2T3zjlSc7peh1mJBUDs8tPdUUMrFd3zwpLoBhypAUoobyxH2m97Eu3orj3Ng88Y1XHtDMW8OFPMPrPpxlKY/lPOk4Pod7NfbnVCXTw3wGBEzvY128Fc+7sYlin1hm9QlnoekqyvEXcpahb/qy7ExyRntBWmQUGNfAoNLTF7J8j3XxVTzfxiZkXQIX12HkpTU5xYMDH/K+D+cSyFmRyd5xe05z6LRAriHBGX5Odfmz2wKZuFX7HNtjL50adiFsJI2ItU5s6JO2QmCh7O4u1OAopaMQWJjHJELOi+cJP8mFHiy2YPQ3KPVRGc0PbW8/bJ1YNZgtZpSpK8wBd5sYtIh1n8q+Ud/MVd97X6s2WtCiLvzbPoXwxpRfxMtAafWwdf2Y6YdCQ8vvXBc/1fNrbS7b575x5Emub0QOfaiby2krBAQqweEV0mbpI0RxW6zKxhnP9lyW57kunqrj2Tp0tk9/RxrVKBlwVDfxjKhj/qiAW15nzpt6XFmKgNWnLSw2rY/Ai+2protnK6Nsw5YPtivQmNYkgo5bbmLu6gPR5Ywvc4nX2MCxybysqh8cuiw8i1Usv2ld/CzPL7MJdp+QZ8blrE1fSrbtBAgaG5EpbI3M2+v7uYkzYFV5s5FKeCbjWI7TujhanmNmc+w+J09FxZlj21OIOs2O98k1ycgnriJub5fvM7G5e4s4bvTJk1iu03IdLc8vs4lin1dmvpIMmVegCJV3GiEzoCnZWNIRK81TiBhhyJsuIbNJ39ORs1yn5XtanmNmM8U+s8wU5By21ODtio6yZosqaNktNVBBIZ9cHxjmmfX3nEv75D8tz2ldHC3PMbPppxtd1aBTiwoxRDj0E8GenLbVdCe66kWdqlXLPrkAV+pYfLb4/Yr/l+sv+P6FSXf77DjHm6cS49ZBfRNUgSMj8wi6hpFflQ1RktibqlfpCvoALhxfH+lvDjofjFvl2lknLZb78tc3J+NeO8MErJQKiY1IcQJftSvQdmx8TZ0/sHy1VlOqJ/nxWb8OS/M6fa2o5wMTlGhWT4YcLSk/AAsAZth9uL0GgHa/wO+IalnO07o4W55zZocKbqEFiPrcElAInU+j5c48rawSkLZ7lBg/nXnbV0DeVJ4CAKs9dIsHk+MDc2lK3x/g8tc3M0df2f/eiGll3ypctnlq+SoZXiyHdUQsuNDr8YOTI+T3TH4cqRyUZBeAeAUjXg2AXTPwHf3TLcdzXRxVz7G1oyy3qAwJ4KTICIZot6Rgfzf4P+EIwNhxvMo5y1OGAIsE5GdGHetnolTtDJmyS5uXWG0tH+Dy1zf7yC3/hHonmuHe0jI1KUAoxyf0VzFSaYIJeJ0jCcr+fcP/0LtNrLlne8FtUO2Kc7t79XdUdVhe+7p4+Q4rYEeobgGtxlh529CYIvauDN5g2LyIAEAwYjtkBFMtBVxlkjHj2drAcNrXxcX3KAE7QHULaI2yCxtkWlIPp+c0fqG1npo1106OGzPrmt4Hn/SRkPdrlWlmI4F1aTzgNSogRpyDwVjycz3uPMxEIF4nk1ao0rvE3fT3OA5Jb0NoVa5N7eweeN+hxr4SHsunR1w6xQwD+VEjdtTO2jKWSAd46TS6Yr8XgXTY/pw2iYjHDubC6XVGjuujM5rpty/fzXdYAScKdIsadVKYeh2/V8ec0S24O8x0k/5fHIyX9nPL6dvDCTw9PEePmW77urj5Hi1gB4IucaNJK6oHjqHCchK0Od58qjUBENliSx5pEBbvHaq5Pslhy2tfFy/fYwXsSJAfOWKjx82SxrSFr7DVSM0qM/RN25mMOnrTpLPMAaP12T3A8vGXywgMaZJS0+Fnc1ZNPyIxQJxbqY6iaByX4XF3EdTM4OF21juzWCG2uvdwK+J4SIbpsq+Li+9RAnZkygtksY1qH3n72KyASCc1sFCT6Pcrue3uSyxYaXNs+BHifAxTtR32dXHwPULADq/cwjFUOvvIzVBm25fjbk3NqiiOnDiTl1hTuU8D07Z+iN5YLvu6uPgeJWDGV/xwDAFip1sgX5ZW7LCyWGUauhFUj4ob2NEULx50cZTPH8jqEhJ9OaAgznIScER7vhMZvT++bddWD1+SCV1hT/+MHFUq5BrLNwAb2vFJv7bv+s1tl+W31/IGPViDIfS5cJhLU8vd2JzhmzIZTbpjXegRh05xYlN+LIvj6KDJtvmDed2jp4NQBtssJmrMuJ8b2Wlmm9E6VJIO5se7NgH1mZvASif8bH8A/4/akG3wEG+XD8dMqW7uBN6P2jFXTgPTwWfcuULKaQjk52zkeLp2c1hQFUjExe+iK2/qgTMkwRvJxXMRJWgm8yJn+Kbtt4iideGVPB7K5Itddpm+D75b3Kc/N01txF1g/8Y+5YnKMu6nZkaS9Togc3jOkjF5onXhlTweyg5M+oFMxgha6HFLZOs6Hgr3gS0V35ezVHPIh+aSHE51WSD4z3jTr+RQmNnP65It7WVXZ8lgyuxtzZBQ3DN2zDo7vR5I2zQdOFHCTgmi3k5TVBgb9czdWJ45kQ3nhfMpOHp7jM8Gnb9IWxk00fJZJY+FcoK6XggYlgA+oD5TyuzP0Gqg4xrU2rIPxJ7JyLEQJe3dL7X+OMPB4jnWhRfxeBQ7putFgNnGKozeNjIIuw5IS+ty3EtoZWv4Jj3O95JZn/ZMPrAc9eU79i4RYEf0/AigvEnb3zsd60LjnNMQ35o1nWM7aSzbhzkQ60JOiwMqP4WQaK7TUkAvwyGknz3oo6kQXv765pB7OtEIGocRPZn/gw+rPrecqiT5f0XKA+suOmIaXeDOcuRyDyfT2KGaPWba6x1j95o5nMNgm0paysoKIrIKScozlHPw/6qp+JFd3tQAAvTsDruEMbMW7gRHSOA4vloJfrW7rqXzDaM329Lrm0qmjWUZCviwgvQ9llR0LHvy6QnHwhjvosdOmoP8gp7hlLT+3U4T8CPzfiS/w5yVss0fO9elcx86Xdsxg3jlcJ4b2A1o+5Ap/5Df/Od3tjXLpbUpKiwsEzliZ1fr2sJrot6XfOjf3PzjW77yDEMgvMxvHvXVLTUwHN2lUw57tsTTnr+zT8EQc0mI8V20k0n0rQsx6BGJdj7ALX8A95nbw+PhVNjEpsrQxAKnqOygbA6BWdgEUCUGh60+p5SYfNW68FseH2ZH32/ResCjsS2IVNiXfT20oXlqSamS81w2+NiuIm6bx7PHncX1rAs3ZFNJTuT6FunuTCdWpBrJU6j65rQCoLcoiyBsjGdOHSCd+ruJ+cn1M5LhsG7rwtJ5rJ6dQuCnHAhYH/vTYs0pneHLDZBKRCDRDO6mhex+hE+qr5lYOfhABhZltTx6y+PC7Nj7LVbPstw2Ntbe4RRpbdyjfIdE0BZeyduwHC3VzTqk9Jy4ajJcyyfEpN1a1G8dSIeLGA+hs/L+SLjfxgGD753K1tI4l3p6Bp2aUrY1gWKdz8kCJl+1fH7Lo8PsdAA3e0C/zcbZUPBRHaGuaa9RPZ5OiKPXA4f/tK5bz5aL7VlAa/FVy6e3bDbMywa4ZQ9QrvZjI/yoeJKiCV+LIsNSeoiHhYOREpaX3hyd+c99MOmqdaG3PDrMjmhfAuCzsbDhyGtVhJ5Yjx7KQb21bZWbZCBi2ovo6p0++1d88VfXxb313GE7JOeH8Fic27Qwhmj9lU8MuYDsiVBGaRjYD2PCqYel7cXN8gw1mLTRutBMHi1lRpb9QDRBdxp578RkMHzfBgvqWTUN7jjPnBKS20XNAF/yWQ1i0h/rQpc47IrNvLtM/Qgfu/4l89dTu+IQqwWZhy4r4Eyh89A4go7mSXyZ8aAxYFo4ECsww5+J/ZxDDBCwaYzLX98cYk3T1xk1of0vdBprGadvYKCtTeIpTW7PGXJbAdLor7NlWQ4hvjohfu2/6HZr9Hg7k+b7htwjM9S/LqkBXioBDD8wadNkFYjsjrwzgFuimCviRfgdL4aeifLEGCRA5jhTrPzm9Vaz+wOfhxgwAmRskwBkWJW5HYjLX98cn335Lr7HCNjRPD/6xzD/PHoIH223W4mMM6Um+o+uStyjXkh7AdfK/Vm4COjyTR01Te5o+VSTzUvZWQV+FkKlmu99PxSfN5yCiAKXbJ9zYKncTovKObUxJhP9YZ6e7Zws6mj5TJNJSzmBcT+QHpmNUOY2YBCyeGbvtDw1aYkrONUWnNvDTgbbGIbwqAC3veZ18bI9r9wOjLuBdFwPFFX93JPnquz7kDds+rY5Vq344/vQZu/FwSss7ccxO189v+V7ip5n6cSV3TB0YofcmPSl6IhrDQa7crfatu9zeOgSJIG9KeKq+yafI1a+OkzLd7Bch8wOHPqBRlapkCLU544QXwla8DqSHvrEyQanwwY1ltC6dMrSc36C6bmui6frecZmFPoWtCbUzttLw+934gpd31iSXgcK293TpPx4bvRe86PNuunwrYt/6PmTdgjaD1mzNWkdGxlCAMeZ+MMTWFUmoE/yhujM5iL0UujORgWP4PCv9Hi2apMU3tvjOJ1EJ7bh64LrmDDImX9nul8L7J71rhlVcbwGhYQiYw8gXpkt1A7qtyuf7Eqp74gNW/7y8t1rzxu3Q7e3UC8bUkx9LH6/PwD7irOJjioMcrrpsAA17oCeNHAsz+wX07FbF0fQcxzN+J0b7WPfk6SJV0myfcZrRjQz/FVhJObsnafCn4vCyREJMjvkcw0WSbAunEITgSuqDHOU3ma8LoRj20edZkETjQe7K6StGDIglUKGwdRdllTsc9h/KDc1vf51YQkcUsGO7d5iwUwybfqycDe3EOA6PnKV14ky4FRhHB6LA93O4jIM8TNb/hfwqumorotj6zjCTkzqFsMCyCpdVwolE/LpgjUJ67jrQcbvaMYGq+ABcwR8BbYcnPVB+f9S4NXiG9aFn7DpDCc2eoul9h7CtkqZow9PZ6SJX0/5LtiAPVYTT61wcZra7smq7EcTNGwa6xYDyxfgNnOFA3fJuv7LX9+cAoATeY+RhkDSaODUtr2jzOfHz1kpXmZvJ/BOX5xAiKpvcjDG9jTsEKEXUvTqC+x6hFfqwZ8/QS2oA9TVaQXYD+H03+qpnOjbCD3NkwNhpzfh8HbBWkIm03C+smTMhg9eg4iv7ST0qXgZ0lH8FFhPzt8U8bFonnVhhTwWyYys+4F4AoFdT8l8tK1HKuuLa0+qFwZAaj/dbjsg+janwHThh/7DXfqMcIFZ0uNoquNuAuj/8c1xkNfFofYccDsG4sdMGB4Lsp14bpjpzNHm7KgusLEyLbQ0JSzZ9zkrYRUk7fLZA/GXIr6RmY5jL7SyYFh9xcTwb95qDie+D/UJrQixF5G9xW8rnSXdzsJToJ4omf2knXelnHOMvJ+atRm7bD99uGfdokXzLY8UdClEO1rhBjd4IIuUx3AJYVP2g8JcVZwAY2M6zwySx6TvD1D5CJHZNMW60BoeDWLHRP0Y6iAL1Pcu5BDP9IRO9zntQ8Hc5Hz6HA+sM43tu9RRHv66RVWsC7PhMSF2SNQPodJK1Lg1A362h5SLUx91AhUtKSzsqYgIbFSxMdbEez4COiZVsXxqw6VC7HDiJfqI/7JV/XZslaN3IQhMYaqWqCWdmCcsGHRk3UA7kwT5HjxocgTLpxQ8BsIO1vjBHTaNYJaIPLYwXexF7NJ37VvvxUf/OLha+zo8zfEDIP4Vd/ErzbMupJDDIdmxWD92y1GHfC3dfq2L0vtAcDQuGFmGofP4+FjgSMXsOIOhPGwhDFWoRdBenNLghKVt82BB/69vTjhCw2gwVVIrxUm5g2ZPQEkni0gEzKhQZSbM8RKwiCzgjjqm7pH1XrGpV5zqhDvs4MjZ/CZ/4vZKnxKm/OR5slAvf31zvI918VY878am1290PNvp89TR6sMV0FBrpIWt0ruJOAraKJ5iW4ZaaZPqFBLpe8CASU4tn8vyqC8z3OxFp3mdcwC3zYxtpLHvAgOhhpcbl2I5PSmgN3WWEhuijTm/yxm2eI114UEc2sQO8vpBYVaGhSItRKQBY+tn3Dn0T6HOrZwbP9IhayIbhauQMlg9v8kVNsnVdSFjHfLWyZnwcyyiJoXr9cAa7TPLq9c5tjGCGE31hTh/HJ7n2McLYPuZhc24pKwRcspmLDIgm6ncWkfh/1W7R3ACHRNfGEgsbIK6u0ekWaVvCh13EvMq0lbC6G9uhqaf0cks0cSmK9RB7D+TTwKIXaoTaPWl+0+iV5VT/yZv0OQnl89nevynkyXgJhWwTerMY6MyGNx+xip2NnVTFJdG37RKZeCak7wU3dX6oANsLnBdqMPJAekb83ESl06BncITCLUtYCDtgWeDuQn9nGPeULX4YCpDCZuiKbk9M8hMam9dqECPOjRTF26ZDlAb2rGfcbC4Wawus/SUOCZ1V0Y9PZNY37DXRh7zB8H6Fdtqebbr4gk7nrMdrboFtwYVWZXHzjL7GcQVOFeXFpcD4vLc9SN8NWZIyvUZhLd5rb9DMiRpfnB8JRfIMPXWLP4f3+zUd503hjMoSZAFv4Dk7Tndk+UdkyRLTTJ7eePnINtJsWdSENDSTqYiRyEzmXgy8GlrPBFFqE3R6MSYsLn99F7wurhYXV++g2Y1eM3l06AubWpG7v1AvwSIJZrFx1KDncIXqJUyNp2cTmJIJunZte8uEQDQ4MO2AnMA+ssOd4UREdAm7NSYy1/fHB5Uy8g5+k8gXiTRvt8wNjYrFrFloXUPJ8M3cEo1D5EEIfvrsJjy4sqXU4lh1m18B8do0XrLZwE90tBOe7hkSQwhk1VVwJnJp5ck4NYIeaucsBtX4bGsT03qVhcmrT+VH9S/AAbWpMgCgxSe6/LdP745MH5dYL/nJpgkoM8ZygRDtoTkYxmrCvEiWuyJkwZBHiuzoG2/rZekReqtCwnokYZ2uoifXsKhq1Hqh+Tw76gZ71MkhKPbDwi/i1Pg/WL7ttdWIkzrM3z5ldhbPgvocIZ2MNKNXZIuqHLaZQGlKW/Hqpt0GCyi6B0xZWeUeixpCY/howyZ1SwbhLuLcYLDlXZ8xP3bm+2ErIvP4vk4dvzOjfex9U4R7hZmGE7G7sUZpHCbkSgRUliO7Yl1Kb9jmSTNOR76DI8NCcfxcA6ZN4YHsdA96eovf32zw13aRHRiQ+RFKo9Zmyd8ZXvs9unyz6JtFLxgmh18+450PosKXhfq2KGa7TwpP6mK3zC2DbCxK2lflwrdua02ld5+aOMMjbydhPr7Tp9fieB1IY49otlIMfLzkTobDE+FO/ALix4PaWzftX2uTjVTMWDpFPnlgztieo5rMGng5bPGDsdsZxjdMpJIXWySmYlAUfkXqPPSlA1gSDXtyNDkGOMsZ5NWK+1mA0cI2fpB0NFkBbBYyED/S4XQ/+ubc+qXqyRcnWKxZjeOzT7hTvybrSOmKLjK7NX+hA4j8iCIipGJ4NJX7NWJ+vLXN4dj3WPKAn1meSDkaI7TbcxUkfYLusvxov8+g2sxvr9Oytk04PJYQ59ktHOTbrlMg23U9KRKkOMwO4AR7Mstmb+8Xvdz8U3bNojUdY8ApRnGWJewhxcmsbNA3KQRyVmLRQFjJ0Tt+zY5wIuKBzCmE4SBoDFDRFzlKS1cP+MKUC9FIwd8B+4S7MKZtHf565vjbq6Le+q5s1mLpobYOdjTM4FOWuExeVzsH/P5T3e2xE7f+V1DKaVp0eqlhaHV8vA7aDUrkrMukR8vUmSnCfpphUMmOk3F3kC0I5x0wwyZDVs08OHLiUThFNawXY8o1NHnFwBYl+YzeC5xdZDmW0cGLn99M5HOuvgonk9j8zMun8PCbUYI+rv2oeglXwkWx8H+jiY1Fpm9LuS3R5bbuYB+7qBQI7XkY8Z3NAL3aTHnrVcbvtc484ThM82yvaMGn+Yb3Ahzf5ZPz3lsnh33vcWJ2UeeCkAmFZfT9JeFAMyLe1cKIu1iUlYJVe2PjuswdC1/FwNiEdnrQnw7PLmdB+XnTVVW1SgxFpn3F/ddGjV9lc9V67E7Ncv02rQBNqxleZQnmrz38nlywtZaWlZdMpjsJ7qHQBFKucRt9QA55OmTEY49Fo9u2c68ZvtHwLId7gbuKeWZsBHoOPRDZHOpkt7PjJtOja8PH1ULC+18Jz/D6JaRxOkfUd8qUoHq7wEb8bShirWG2fdTyV8n/eCD1SvP2IBFxq8Lee+Q/U6WkZ+T1EbRqp9IyJX07A0h8HWab5C2H+k8lbsvmfG0822EZ7tai1FdFwbWY2ztHCM/J4kDc5KqT8LDXjV4k9lBtNa58Vjp8/SrjTB18umkB0gKz+DpL8Q3TGC4LkDSA552ePcSDW5duiVAwQU2iTtJpBBVDu6laihMqz+BRsZp6dRRD4cZfyCJfsG+m09c/gs6y7GJHJ/48bwgLzOlMaVMGtbw9xDuz6FHv6jgLVJ5+SS0w1k76Wm3dDa2o0lb/mfcs0RF6Q2tkmOR7nYJmjZZrqqIiJQfrTpMYnRdiFSHeHXS0/x0NiLNqLpXpetVT5iqjrTnEYYKO7zuYALnOAREfM5Bs8jRdeFSHerVjOXeQr9ALnFT80A3G5SxshI4b+v9HMLuJ8D+SBy0OTd9yic86ALmPOlBg94rctAq/0HpAv+vbw6wXT4QdoGzjYR85ESeW8r7q6TtJ2155XpydiDzO3KYLHpqXegsj/6y04z8tCQmxtVeVFpxWsKmxfD1WGG/7cKM2iVTOuzCY80qMoHVtY+UYJPqXBdq1CZSrTzBW1Yh54pvuoDFLNrbmQYMqFA/KNaT26mrZVOKrIaqtvjDLBmT6Vw+MerxqHaqzy01SDrv6e50IaD39djZdUIXUdXW4qmdgzP1KzOHZDxYq1/ppGd2HliXTgVeZwPYMUgnzSfLZKBvXoyPMB5TeDi2Kt51l/SbxZXbDIb22L11u7e64x9FlEkjiMoJ0usCBogdv1UPuX/UVDqJd3RRQ0OaTu1UuiBBaPFkIAnxtIa14Yptrm/m3U5U9fpsSKMBpZOggkv4HtLSZNjWhZCz+TsnG+GWvTBZeKNnDu6P1utLz0IAiKhYKxCkHH6Qoxlz2ZA1fmdD5q/00rrQUQ595aR53dLCGEBQHdzK3KP6OAOVLaJUKwQO9Tjjs6AS+tjmuc/2g1tmMSTrwqh4DIydU+XnYMHVgdrasVJOoXzdB7Zjbg8Dr7Ob9XdhP8N2MPDaT1MKHTSk5A1nga3NZZ/SoWwuf9XKOBar0ayUKfUn2jSMXHqTQVnywSFNr8bfXw+9d8r8M+n1yvGaVtPjnp1kLrNWEqHh+68TVhbOWRdGyWOgbFLd5eA7ywgmF4/bk9nYdoBFhFOKlkj1wJ0sh/jCvwjNoX7RrN/lz1gc0XIZJY9/slNq/BScQSdO59hwQlSqShfgPoW/V55wxI1B8Fj2czxmfUjSzOsAW4TSuvBPRbq5ZlXD8I23WmVDatYnta3M4m5dNbnlqWyihJKstnmyp3RJaXvwHC30aEdhEETrQid59JOdq3LLbYHMhG15MnGH+lLwBVprG512iFtr+7mZEU9FRjxsz4ELJkW0LpSSTUCZ+SpudguT8OH1bjXH6ryy74IN7F0lg9R4P6RXZtPRjcfZAuNbMjnN2NG6xJq82BT9DuFFCmvqT4kQG2fULO1HqnT2mOVcZx4Rnd7CXhmA+PMKHO0WWr9aMGu7M+vi/tjukhMv9cOr0na5Fo31JzbHOonw+M3kkFCoiEjX6MwjmaVorH/Qk30w2b+YEWMQi+vCQ3q8pZ2z4ue48Ds25VTYjBgosu77lBiohXXUdthQsNGiCtCi2YG4hoddIF4S8Ir/jgSe+J+H5vP/+Ob488t3/z22wDZbNzPHUyH0H7sN5c+pXPbhsgPFv14iJy082QFQQ9aMUaUzX7SHFthSTsBv7LsYyMJQPmrxUY43ysNrQU5kOrjrknuVcynfE8kyWbl1IfE80s9OF7qlF+F79Z29QxURTl9gkghZD0AikD3PJTWY9Pecz/WEBhY9ui5sqse+2nlbfp4XR+nkko7SC6r02dA2s5WCgsEIt+iQvjCWUnTDNQ8gzGeVi0UurgsZ6ZCXToDtEo+DZek7DgQBDJq0zUbncMr71kTU7qe6RkYvbVWUmb7wkMQ/O6vaVP3rYio802KHRHxOwqEwPOeHruoQeQZ0BvzP4ZtCyiYxt3wez6P97JQPP0UEChsnvfUNeznzfN+n05PaEZ3GvLv9XIC30PdBhGpMD138K5NurVZlmlVlTnD0KDBGWbGIKR1ngPiGckmZjHnjWFo11j2XM+i3MF2R92H5N87JuY/TCc1qnPYd5ZpfOc3lM6AeY+rke9zyQyA6c3togd//XA9kBKduf+w7NQPP5fyetvH56PGhwkxiZvk8jkf72HkLtzwH9hzb2UUzpt0Yt0p1EfWW2BLG1c9zK/2+vJ11mLNHXoRJr60LHefRd3Zs+hLK7qSY9cPSaVYWBkKJsy8ZkNBnFQchHNYQR5uNZ3m9j0d9xxt2i2PQJSDFL0IkJVGTDk1ZpUsTN0Ixqp1z4Wc5eDkRzHdjREb1Qg99d5KhIZUpLbIJ0ADiqXbWA2pOJPeAbv8j6mdyY+vCpXncm53k4CZFjCDhjKJvhZvU3dZaLEzf+DtBOatRwfuQL6vbSDLR4Zlf9ueSVRZsXhc2ySGfbD7Y5Y/ZPRqKSTOnoR43VKWCHOqqVFa35k3W4KmwApVta8jbyICk76GqDHJoXbgkh3uyY+NuJJ3/KRSWfqxOc9/3XQCFpgoEZ/xop5CqQetXvkPJ9UkKWTTMutA2Hs1jh8bdSPoU2mWvoU4dEMm7MOC7GU5ggFN+hU8vxAylA45JeFBCJhm2LuRZJ7EVQtvUO2GhXJ90bjboYKdQZXNIL8AUj/Pw0pX9we0n23HsXciipD8RssUNrQuX5FBPdrTej+4zqRUaaMP5Fnd/X+5mVhNM2SBEP/VcWIKEb5VTSfNJ4v5K8rzlHK2LM+U5X3aw+hbc5hirqRicswi6/r4SU0syFFXGlEohfS6bik1N+8Hupm+bZ2TwI8unUzz6xQl2+8FxpvHUGvdjS2na0IEDl4WtlYVCNBUO8X0Gmztse8HJRA8RaIkdrwmDK+AvtT+VUz2Ehf/XPaKkT+njVwRgFG0GPoWNqJuvHMCNr/yGrwSHTyjcCAh7ZprdMoPPhcvAWKeUCPyQl/Xnz8aNjJ8XFopSViGSOPu78F56VnPeJG3D2C3UzAFgv715A7f8AV10pAGTszT0GCxVPvnoxAW0vLFKakM6eedQDDKTNEClwTTnh5P0K+0tzVGWy5986Q3KbDJws/L65PCU06/T+sD6e+DuQKDDsXfA7FqpSAXACiupWWT3mFPYCIM8ZPkdJ6rE7ypgNKmV5TMxHnFjZ4p4eSUkw9s2SpW1SX3fBCqx7+RGNqU/hYWRo7P154yWfTY0cmiVdaFhHNbGDkrdglgdO7c1e+GxPsnbOJvyIbiGtKsL+VhOp93fGQaG06O+JaPN5HjXhRP2OGQTft7QKtB/ETdERFX1ox+gMeM5Z/3AGlremFtsssDG2U+6fPePqr5bBx6YQjcRq4a41TfbDua9GljWeurQrICIR0P5tJUX4/f4bMkGlmZYVaJ939Y5xOSV1oWH8ngrO9nDTw4BoCn4zxWt5c5d2ffBV6WpET86TbWPRRLb8nZbYUNmeHAEJjuyLmyKx76YuR631JAGmz0VAOc4NrHci0yobeoY4qPEdBqN4wOX/ZpAlPFZ/sSCPkmA54yfJmwc7PeJm1z+qglhHJ4IsY5RJ//lV0IYxzp3XOdINAGBm31lqlR5jxyLgVfVAhhmhA1m8uL3nSMmSzuzjtqIHAobWWnG8T4ny2RyUHR8hyH7gMXfjXwD84ETJ9ZDtJgBGl/sLrAw1WqUZLL+Y2vNP79AwMa+64KVPWxthzb9UKitKWzNsgdX1DY1NAfIE74pcGSza+vCxnnsnZ30cckRaUzAV+8KvtiOS0ANYm9HzIcnG+UUR8GLbJs/Y/DkB0/dYKfWhcyyqS87u+KWjcFxbkMfyubzulVsM1Jm39WQ+LS71H9IhzZmuIuRrq090fQvTPiicLTKRv8ShiTd1dMO/9eSpSSJFT857JWaDfV+cxvY+Q3voANapkwJEsXWtlcaQdVhm4TogxPk9nPZIDnoxDGWV36XFJvM3vKZQJc5tPNTbvksc3AuispAelUqJDbSl1MiMjD32KPBFodT1Q2bckwtvDqctUUSrwup7HDQdpqBm5VAAFzCVnXsZbSTG9gxs8nIdxYJAZDsRteVKc8K8Qa7DqfPrgImTbVcTsthwJwosR9VTkr5bKICfuDuA80RjWnnOUxWKL8rvzYLh2K/7w4V4YcBqAZTuC7EosND2jHiW0wZ7zfDrqDmGN24r8Paps1MAHrk3VuL3RV62dQMbWN48O4mL7c8Gg9qgdWAKnYMC9ckAZwssVkIgC4iHfSYgxT/SuNdfm5oknZYQs5rzvpSrArID7Bl8mzrwst5PJ4duXYj3ZQx/GqjKk4PaCfwDisdat1iHDfWGOKRpLlXB5Es34M1bKdmuYy9S/CbISM/wkSqQeZK0hTjLCnwztJ6QwPylQditjMChXkUab8kW549dPSvNNszk+LWJYnO8+koi2Hu6zDSfS+UQ1WC0KGsXpqtHFcSy5TuhIVxHg7s2NftYg27uON7uph/pRnXhZb0aEw7dn+L9UNFta2wicf3Vdwi5F1jBrdSMy+KwJS6YUpNRGMP9WiwJcvnVkwixg4++7HqKN3cph5gfLUcTiPiUmVAgSyAkpL3Q6Fdxk4GJ/Z4hrR+qRExVhyqxIIzndLBjujq9kNhSAdEZpxjQeGGg4inmKtAligy/bDEPxhi4w29sYbk6HOp/SXpgVoh5O/KPzeJpnUhpjwiy44Q+RGlTq/jZe9wjHY3AzZfhL7QIxVG2oQL5wXiLhvTFECGZ1m8RRYsn1vwuAgnAcFPWJB2YKLoaFly7Dv0yaKbuF3EObY1ZYokPWy1Q4Tl85ka0CRd4dhgIBbp3Ym74MZBrRoxMf6v+JtmKoEfwPfi/cCvUDyh5+MWp3puA09DxrAK1Brq/fGx+HQh69nNKczxwLsm4bEuBIlHqNjxez/eLxj1IECGSfZkuM5QyRCLi1tSAs5zYU4ljZqrgNp89l+GSxfUN8PWitXDm88TB7r8VXv7T65UCTq6kzIiXetcQxZVzmzdEg7LYLEDHs934wWtvFgvzMTnUg9W5R3x3+UfBj39Cv1g+fvrwg84dIIdyHfj/uyRD/CnCqCQ9zq3gdBzCqqyQZJ/qU8FdE/12Er4TE+Xx3L414Ug8AgFO5bvR/4Z847pCGXZJ5cqsUmlFut84Ehtt4dFrjqrTVRlLs+i0l9pMmECtXUh6x1y34GePlRlwuTou81ECKwAuwNBCzd+R0D/q5+5Ll6p58Xa4XY/PF85tTWIH9AJebSTD+8Tiy6ziXu+S+EBIqCio/4csO6HZoi/coZNsmNdyBGPTLEzLm4ZGrDhUw9Gho0o5zIM9Ohp+1NQpOexrcS4m54wpfiHwdYW27Eu7IhDptgpA26KAedj00ZvEDvq2B13aIxn1jUInbwfyhcTye7czvmgXmyyYF3IBY+MsEOfl0hph7gVXQI0TFBYg+swTz3rseB/mU5bVdinvJtYTI4x/dwHm1xYFzKCY6JD6LpvQIJavQ0gz541eb8V+wLUvK8zkN5UPcLejnzIDugMmZXKVdRSn9JhkgXLJxdcMsIOyPoBXI4zzFKOK+IRdwUn7oMDrLCN9W6zaMbCZEpiiwfBwIC0R30d+8xm6Y4AGxc1X1GGSeoh9//6ZmuVdVFCntIy4xi3sIeJgyzYtLvjttTOXfaAs+/pFPnVWV6ua+054nY08hK8hC80e9oWu+bNCzB6BrCsIkydrk5PobMFFK0Hi7Oxno4v9paPY0JSq9LWN0XAhJ2t5P5xD6BicbVOIAgswBobpMKfE3vNtrO5xtD3Zn5NbvKSifxpPfZ0Hy94IYku7CGX5fadp/Ih+r8yjNesUViXth4Os8T/GN5lUHQNLy3XDWNG7dIEVwTkUMuZTYCkpp0D7VoJ8xB0dgWEXTHxPU0yvxIt60LMeESOHcf2496FCQRt2y1ogf1zaQoYNl+K19xTSDqp+BLCVjlAfeV5+v/sabQm/Fw+serxsHbY5BZmYUZn31Wa7CxY9/UIkyn3r5zhlJQKwXPh1YdQ92tO7ft1aC/2eCOvxfi9xA/xX57t9/+omT7AvoEphhyaDPSxpb8R3rI/nvSfpphrtShLSgP7qTGvrIWxp2wxvb1XaTzJquwYT5OV3qqkcELeKb/j5AXxS0urniE1fK/rjL7T1WeqUeMoVrkumW2JXzfiELWZvmtKikkxrQsl5VFYdnTEi6YwKiPZ0GriOdAvnCgLlUVQEy/zHtp+LsPy2xJ3dgl7kH6/lCUS1eee7zHKIMgQy+k40pk5HiWdkZT0+29OUslvbhKHn/RRJaGVo7ulAWHeuXS4D2dWtCrPbfGVC0skkJlvxKQVqJdvayL4lZ9bFzbPY//sDAY/46FSi5as+zlm+GwTi1PDFj3ix8GgjPNcaPxY1PrDSIf4yJAwCbrlE3oe/2fnMPg5D6wBm2zeJouAb1DKvg9+Uaa+DjCRzqgckoAgFTCdfdR6frg3Jju3Lmyew/45MXg/Zg/xT2FvA43Nacja2EMx7hXAXU/7qYAocattfKDQn8laQ74p6QdsusQXEps17mPo/1V7XHQyW3iTQDolKwyjNgWiHgRKnGQIwUln3O9Xxe2rSl+1dvb4kibhVNxdspb0PhwkkzTKAIUUznTgMDUpAceQGaPle7hCm9laFybM5s3s8L+TLMA8dLai3KcNcLOMfZfGAIbms7YS910GMWGSDh8iFoA+z8pKi19cPh/p0JdO9N/PFuAQCQUw/FRJkYFW/rPbnyIMhq4PacpW8NvCQPY1OeazledXemX5bIxH3thh9ltYHvqgK7jD5/ms6pkVbrHWg8Oq7sLawTzUPrrug3Cpz77IX9mV5XMxLndjR0r9yCphfJYmNVQNgGrhRFzpFwz1rVn0/2ofGYiI9PeR004egPYX5ifRT4YoZ2GmWUNzukU00prSc4DWDSZqlqu7bYcF/DCCV93iOYzQVECmU+eXAIKMH9iMXylAsLipdeGyHOrLDjXfQtOQmJfg4R/0NoxelMzidQoADGk+nTALPOypP4ePnD9bATpM1rowX40OyNxKJsJMyNfMrO3YtHhnMyttNMHLAYvoL+nbPBkTDJmlo18upv675l5feal14bE83suO3/rx3sb5vGF/KZrGcgopiEtlI7i1ksKvz8VlFt3I4hrU1aNNqkmwrAsh4/A3dgTXifdyZi9HW/SN69suzWJ5RcvyTKwAhyye5oyZK+jbPQzls4ED4B7BY9KAFZ3TvqPDPI3zdOGA/slqtcxosh++vYV7G2Bw2loXJ0/z/DpnOKlEsg4ktXkei7dOG8oyS+FJZ5t+/vJpAY9FsIO3t2Avkyf3eZD04XMfJnxEtTSNiHPu5wIz5S0sIe2W8b/cScWKYq1L0MsLktm0gE8jFJaUNZGcQhRc5kkvA1wPIuPMAS67UwWeywlOQ2dVhcIpbQ+8i+8RSaj0WNl2jvRZC2OXGF3++qY96mtibFQGwEDcVJcQzMJToOSHIbI9Tpd6+KZ0vMkFwtFOry71gc1LWVXI/LLY+5maxUbcMUv1IEO6GsKRioRWilYPAjefbGc6BThUmm0DIWjpFDkEjhWPch0GIz/LZIFg6KDDPMKqyBKJT88HcP/45vjF61I84RVbYP0MpsEvZr9xZr6fiWyZwZeG64RUZc+z4lRIqCeoExZ5wIfP80yRxO4ASgkNkBlKnfu5+E/JQsZIBFVK/CYrbVIdy6VGfCrFju34sSD2otx5JnSxNa+Ht2lR+itLfzT2ku37sThUM6qKxjPHk3cvAoV4yGnJKe2UzLRVwOWvbw6XpimTsFiJVHqibpi7HtTpdsNkNehRuh2ZDb5qjYd5xjeNMlhaIotDdzRLo5PABWV2Vi2fnYkdru4rs/frKNXm0Zef0enE/R0NddNorW83gDoqtnAaOds8vUnrf0O/alNFrwsz7DHJdtTYjzHDMdWsDXq2OBN69860MRmNwlkFebfGw0MrB8eq3RlMvnqcfkCpwGUR4nGfASixXVv5eX/TuS1Qx4LDU4J0RGa7Lp3PUjgGSMgF/OOOxpNbhE7k3uiolhezyIOJhUs0KYV2GpXblsKzLJYl0qfCrsTdRQquTejflRZlkXzrQgp6JKKduHRLdBo0ZRsXF10/pYxEhkIfcni7LzC/S9WsKzK6LT8HZvxKRo1JryyfjnHIGzvlxc2QgX8+KVMiypC+qBNVJv3zJPE/hpXZT7bvhzLGevKYUvmmRHGTHV0XMtUjX+2Mr1uGGO+y9USQ+vt9nXzQ7guaJbn/XcndjmNYtIZxhDieRSgmQbpcOtUjX+2kHT/JhwMJWt1RuTCreiC8D0A6VbP0DazsFbGfi0OrvVAbjXDIj/45JkO2fELN49/sjBc/Q4aJUJueYd+JmXUEfWOP+9q34OZwBvNxIjJ7lO2sCn7TZ+jjV7I+LNFfl6PinCwzL8PnlTweyqCtdhNS8nA7z5Ax+W9Swya7uHwy0uEunawcP4uH3UxDm1uvkkQY+z4MB0iID58Xy9fQ8mC2HND4NtlQ8j9ku1v04rrQkR59aaeX+OkoMtwpj81c0Jyf7BissDWVVhYWa9oE3of+ddZVFPXBP4+ixZEtl1LzGDgnScBPKuA4wnokoFeWoe37dA4r0o/KdSo134kzdoIXF9H7owbO5NSWz8BNujOz6gfHj5VdzBwajUNT4tZK5E737ydrKPXZtHZN/RaGOdgnRdfQZnvqOJMiWxdKzaPg7PjzLV4NDJa3zpo7kpiEC66S3sOS8hpnOP3+e5p5GyG6BePJ2Bkk2fI5NYeBsyOofsQ1k746r9rYmmzfptE5GAoLIPZ6qis7+o66tXTOOx/4MHYGRbYujJrDwNkRVDfeCi3a2HVUgV2NmsPAu2AjpSsHl4BNliXwqUlGH6p677U+9sAkyNaFUPMIODuCeou4Qh3UrTfYtWKrgMlOFHrUuQia4P1cqMhtXFOn4/04oZaPv3xKwGMQbJbcJdX5IrP2LdyTFPK5TcTd53auksZYs/TnSEJRcQ3p0ZfLgWvrAu88OGiHMm+hz96L9DiSlhYxvNoiwp9U+1OZWjQ2PGWIrrSNnrGmp9EyXY7lOiiOO+NEMm+RT7rHWc8DVJXiKxYbYauibkOn71j2Y3lkgn6JyELMRyzEhJzrAlE9SGuHMv3QJ74LN0JPaaYAnUgs/HQ1G0xQrVMHV7FM5bRs4vQfTkv6hE9sNigEFbRymcJY5XycOP+P2gocl3nYYxag02PdrcDJRrFpWS7iNo2TCAoUQQMSOVAPSy4nnygzahjfIxkooID+Gk9mNqPxmtd4eUlR0uAhGeRHmfc0vilr2KJM1oVhMfkYJwp8ixoD1eXt0QS8YT5NFGFg6p41ycQqNUuZ4DHpsSVMjw91aHsc6+KheB6NHcn0I5+DnLomb8gQozhPszZAL5XtygHcbT+X/EeftWxlol3Hfn2yhMmoLr/duJecm7kp+DnHasHjjCQY35WDhGpj7ilhd2fl9GkLzQrNokXoeIOdo3NhbC2G9xuaFpgs6brEiby4ks0TurRil6zwoDMGG8uFyr4NWyAPLQhgzCaeNt3sURT1OnynUvr3HGLT6VoXJ81z6uyQsx+iLpzFLE2vaVxgAuIpCcEhKUnNKY7I9kjw3ET4pd+3A9Q+tNgvVL3b3TSXXAcylOr2QIJj7FInM0/tNzcx7JJHRphBvcSBNZDRcGYodY5GmBJtYHebcmbdlii5b2xGhA83nnHYX8qWwSpwNzkC7Lfedq/WwvS8vKfuzLa5aJelsJNZ/OQXr7rCqsY45YCNL72jIj1/UxjOdNjXxcH3CAE7ZeGS4TB3FQEdQThMp2Mg8IHCFU69O7PL8dTOMn01Ab21Z/IoTBILtdr2dCK+lhZaM5mgscnH9o0hQgKKrQQKP2PhkuAw6XTWDYm3r8Hr7HrZVBli6fvuhZPajhXrLBx6+lcW5bAuFIVHadgJC36CA0H79mVo3s+IDr5tgIr6/1j7mjTJcV3Xea2iV3A+61/aU2v/0wuQVKbzFqlBZwzefX0isuywLVMkAIIacUo7Xlk4L/a31SzPLJYDnALLAyl2DGokemVgQ7JfxXpMKimRftdioEZGeZnszxGH1tJbyFrmUcxEaFIZeCROdXgpXxghjloF+2QZLY0gxCCGbZCXb220dRpSAlb6QHZe+RltrU6BHPLS19Pq9f31+5fifqfI3M0zgzNQlS06VayisaWX9togfiFT8OT4+yLfj+T+vozgJjuYi1Oo8bnYCbWv6cT0mUXISRwLiuhg/WSNL2ZZYlHJvOlTVqguYrVjgMvHwyIVwU11wF3GEirqm3uzz2kQM/QNIGKkKTi770j/aWKGFzS9rThc0GrHGFcEifmMYMwgEvjAzWuWFRIcsONUhgMN8igXnnXcJ7lrPFrENA65fjex/4Zx9FCKfUE1AhTEJwVvHCKuotjgqsI2m6M75+hdoRjoxNkU1OJpUYN0a5QdWBjtM7u8j/ntC0YYQIo+KRiTiFXmTNrC48Y0lh2ncNKbLlcOwFLOaIqD/WPLHqu+lBfp6GJ+O8YII0wxoAVvNOLgitF1SZMohSw5bIivj14ES4RjP9mepPeuCV3/btXqi6kOW3An3WLFoRQ1uMXi+Ns/ASaiwRgLhb87cQAS7/JRPCDH4R6equxjz5GSDdTfhFAIPyCtakdKhoeItSEQDbmJrxhNS/o5REoms4mOJC/y//X8gn+/in3EdF8Q1gCQ9SmTmGJZ/5PkLtsqziWtcxzc1KEvFWLEY5prRviaDVFE9VzezbqFlDLLMMI7k9eKJHud3fjyrY3CJBwx1KOMhMMZhYk3ujO+ZY62XPnLgdy1EEO+jL2VwE8iXtdLuQltIlmOJ+P518ZWDL7RrP6QJej8md+KhjyB5o4FnZEAlOggZ8PjpVhsr5lT74k7tIGfsxMQdVsTe1xCJ9polpLyd1XkQXRt7UdgiY1osnBERlPZQ/KhTm0XqN4hrh3C4L6eINYfsGzn3m1J9zK/g05CjTMN5XNUIhYWcF7UPAfFw67cfghHPJx6X3DtCAf3WfGQRcfnWOYGXOFFfdRkd9KjpxgQReuuluysyCe+4VSzJ/iE5sLb+vclVYhSC18WEeITEZzhoB/muUuHJh1RQFTwh00qwVEdn9AfeVHT8xDA0uuPv/0T6Cz3RZcZ6Th9SDCGEJtspRTbcqQh3gBdR5TAziG8bRUP6azhgMDveESlUtnBVsu75ZzmBkOeMSkRQVXTQ394BZzib/8EKPKOHSEiYar/A28XhOcsY6QrSUtqyv65gdQ+qG03AFWAtpLPypqVsbsRXtEbcPnWXPl7lleahkqUN09rUEOJ0qeOeSfP14+rjF/z+objN4Nyz8jTN/48GB0q9SLnLdMwyk9gbh5bsy/sTsQG+aKaWIRDLL/r295EQmNgHEK8QgZSdzRBR/W8eKFK0mCN+DnfjVQuXbMv9E5ABwWqmpsKZ5VhyBRbYb4+xo/JdhEzZTNm6dzlu+2anDM5X4bgLt6+L/h8hOf7ApZY8CKmIrkdnLOndCxPGRFku5MnUfRJ47xIzQ+PR7HQeNX3Lmq6Y5DVh2QDCctN8jJ5UP1NhQWglvdc/uJ/K+ROKV9AMNGtrg8C8TD9sDBwQNN9wVgDSNaVsNwUL5xYb3giYq6VoYMrtfdq/FSy6YM8a8WKr0qL0Yb/pQhwEdN9QVgjRNZVsMSCFyqzuIT1GtoyHJhzSPGxPQWkU+aa2unHrfsmLoHjiV4CGRdg3TEe26Q56gsOaSXp553zuuo0IKeZhIV/TxKq6I/CNSzDb4kyzgP8ZEqivuOMj3ntC0YWYWquruYmw2HaP3TZ4+DpOf1DePB56OJAHnUOT6QeEWBYppZ/tAv8plPES2n2hUUNSFdXCnBTDmAdiKEXKWBsCfN4F6ZhfgyFUX+lM2hiEBk4s8E+ZVDlY0X7gi1FWJSrSIoFTIMRc019UcZknLDDcNb90jWMUDG1zX0Kc6nLhW1VWCKv+Qgu5LkvEGkEqfqipFjEtEjY12r3rmjMEP06YS99tqzpFMhFtH1Mq0qsaWmMOaWbh3ftGB6L0DRfkRQrmJrwDrps8WnXcnXSY8D8dGm+gxzw9BQUhgXDUGf/wQX9Z8ETs8TS2a3wD24oU/JezlQ4DpKhgIm1SmHHmmWhfwuk/g0FSbGAKfBh8mybNMnF2qb6FTGN01We9Jmxjj7atS/oWICmBWRdTO5lDoyulrQ+IpuTg7CI0qeM1aSwAE+KvD5Xy59wPW+9k4dY7AvCESEirh4pli8xqS1qeF6FK7N8mEQNtmJdwfifLZ8xMtm2NVJcq+U3fuIAFjuEN0I0xJWT3NQnuNpx4gJWWz1qGGa3j37O3lCVCQnIQaBSt0iChK9Y6FYb+1KdRNWMrwmINQSs54a6mcrQ5TaPoqGxLVdv+MNHe6qohwYw+txqsUlLJ2ElvIZApv9qkgeXbWlkERGcqxhFHQJ9jUIsCwhVBExFhkw340Vw1maxwyBkqEt+laiq7WP4OQzaTRdMbeW9mNySaccVVlSQ+ZqAm4YA5yqPvaQMauc4zPCn/pyn19VPIUgb9WRqNM7ley0nt2TalxIrKsl8CjWiXNmnzrlFUxMkkrsaHTj8L389IWx6+TnTL57Rp+65+Ln1PT/Jq5n2pcSKSjKfQb0xrjiZ5QHtvBBixotNdEoqh+syv31Cgew4tNedYxPX64XwiqYdF1lRURZwgDFnyLx7ZHtLuYVnO0zno9J8lDX7PD0UCPg56WPLxbCUT5DMXma4L5lklHn6LPCNNeaNl2hLuSqNQuxzlItqu5xFWp3ttMz3piHHurQ/YyXr1Zw7LlGDitbnT2O6lRbDTU0OKyN5VUPzSTJNWCJZAFh32jA/aOWte5xstP2HknD0JE94rsT3XAZ6nEEJ8Zc6JoCtZ4/aZXHkp80apT1FU58gzsAtZZ5BAS7y7gv9bsJAX4jkCZesDXpQFSawMZbx/N7UfpcfusX9voABbM5K2rEi6FaRjbJwHjwTRNuUsCwkqcArQbp5VH0t6Gffuh2H+60FViyX9EJl/Gp9X6r7CA3wOd2YAyZozcFftu/O08ZH9WpW4RC3wUdJdp6XBM3SsJSmDCh+Wwv+XbDtsLwLisGAmYuZvExvndo1cLFnt5/5hHTckNMWLjOjj2XeAydC6c6HYP0ugV3gYMdAQwRMBKD0DcTG9jiaeSohH9PcmKwGX3+NmniguslR+oA43zSa0tL6e5BIUHXuuEiNalqfXwzpyCkR8ZCDKds8islWTKxRfRDYyVs9pTR3RPt7moW/m15+IxdPdP6XXuckQ19w+3n5SVxHH2aAjxQU2vOSOG2vcmqCCCBZ4CinjhA89ZHwvULtah40j5i6ssExySNfxsHTZx+RcKgVR0tT0xdWvjR1HyJ7wO1Uwa4IBB6yZv/wn+Yho+w/E+S8unNHRWpU0fpwZwyP8ohFvW4JemGPnXYczlyUGMMS1ggVnhdZhnKdhfNJy4/Lp0UjLy8RLyU3KWZqevHRd38CYnFfmNWIiXWBwhhXnDJjW9JKUtEpG9HL9gtW53JaxKTnOa0oFKLYfjtoifhun3Ryoh2nUFHKFfDjFzrdzwG8nMF8aZGoShMh3WCf/uZef2WN6WEO+4JRRJiGS6rFHNwSSw2LwViyuR1KkMaEjz30ZDOCeVqywvKGFEm31otpcWGHfYEpIljDJ9VuJBwX8aM1dkIJks7n9GlaZ8s4XAvOSynE0jpqYqN+XmiUCzvsC0wRwRo+rxbRcO1rfruWp/n44NLOflV7W5mjKz3A/vMn25tBkONbWB6gDvuCUgSghsur3Wg4ZL9P1cyeUW+cPo1Emya93wWBUoeKDIISeFj6+Xhopfj9HFzUYV9QigjV8Jm1GxPXEUMfq7JxmWZ1qTaeWeMjfrfh6UPSSF2tWFjYbeoLnHdRhx2iFDGq4bJYMelVxNmn64u60jPt7zONrpWEoZolnYFOD/X7venf4xb1dx8TooI2aGXSUxSSIEL1M8Yg/PJPoEXdF+1qoHVlc4JYyyFoUnil4ShRg0PIDh/TbH5kfSUTHRQ7vRQL7RuMCrp5L3pejZ+QBnqIzQ7xnQgN8umfmC7iXBxLlCc7l5sdZZAQ0KSU04LnwaCQJpel67ehHF+vSOLCNTtGdyIwyGfhYtauMdgOvQZ6KfejW2cYL+pRhNiavzAo7B7LMq7K0fVvTwAPcdgXhCJCNHwKK6a8BPXT1jtO38M9LnYcHDhbJEmp2oiExLpTDZuKeG0+r4LZLbN3XJZnETo2+7FsJZAwiVeV7TwaL5imSUac2e5cpU7gqfGQ7Y81b7CqGMlrf4NynFq1BHfBHS8ik8/zSObjL20C65BZ2nxBsZmUarOtJhtap1hgoph6uuZjvhIsGrl8G9HsyLF99baetmZZNhTp4Xc9n6LsPLBhX8CJCMxwWbWQhOPEoC4tfooPCKuph8Gi6V0/59HHOW1hNayRobLv8i0z89CGfUEnIjTDpdVuLNwkfqb3Dqn8Opzgg1xeqhpGhmE9UDgrFtdjs+xKRZ717l36xQBWV6C5L4LOSADqF0a3QoqjYxjfeRzOYTxK2slJmUMQROa39ShyqdRiIKhknpdGoc8Ytf0Nc+wLLOKjKAErGbOYJKqxZeppaYH7NYaxI1ldWvwtytCanTZR7l+tiJz9PYMVVb5pgmXZ04fhoXG3XH/8pdr0kfxqcl8RHIbujGo5kPk8K0dqp2Yj9CLk128RvbWU+nJcT75rEnPOSEgiYEZNrGMUPgG6eDjHvuAiEY7iI8U3ZJlDPx9DKp5VnmyfJzwQKaEI8SCUHJxmsIdQ4xheiJ8+fX+hjfsCTkZgps9J3zhsTkOyNVnF71s+Z3SbWhZQvtPs1eGTY/+cRmim3C+GrzN+S4u2IjcUyEq1R2tmGpZZcrXa1DZ7jyIPOemYwmZNjVsxLOlaZ05BZuJezUhyTPzcc1osxmfq37N+euU3PuSwY4gigjQCUjomscX05bEiFMv5+SK3sfm3x66iU2f5j0ImS7qIeA01acr47er3N+CwLwBFBGi4lPSNwcZKfWxLZI5mjDoFh0PVJ5mVspVNi8xPo8+erKY53kwb8l4uLqTMWVqn2EPVxnOGZcXf/gnMpHRmHeee5CV1Wkv63lu7G3524silp55Bc8jdCBYkGgbSC007yYOmyajHMvKp8n2tPtE84AA1O8Z1IhjI5/Jj7p9ZSCmrWUFPH2I7TqaZgbq8Ik2q5lnNTW3Ns0niPX1vhlPkudzv+iO++KxHql1+/OWfwCNpXzyVovYWP1uJsxuhdSiy499XXPBz+ocyITc9Pva8YjLZzD4NmWKA30OzyfmZ3dBHufYFFQtQtEAIcRNOYNtaFsAy2waOWeXKmpxlIkMWhGU40erqy7+0EfEbc/Mwrn3BxCIMzeXyY+qfs9y71RkIUo+h1pNdQsvWKp7hrAe5QyKfnnMNT3l3ctMVWXCo+ZAzY6wiPbBs9EP87Z+A6KLrUuLYlCouStQbELrjL3Fdmv4NbZFuNkp4/ALjZUrjR7EhD4V0LVEWWqLRBlg/TuQtJMXELyCStN48xG807V7RsS9sT8AOBWxtSO7y/hZNn3B43q4jghdNrv4cSejOcAVUD00ySXzO+PepcYcewrRjQCrCr3wxT6j9oVvy0oaN/D/x+Kh2GDxl5eqSLFmLEcz1zRWaPWj1jTn7IO++gMIRiOxrH2KtBPWTZSW9aBoIpXMcurIPfbotiY+xnheZrn3Mpq75ykPIRU5xCEQB0JI+pnwI0cu3f4KZKTscsRL6+/l7Rby3CHTG/EimFCZx3NfjYDNgyzsXNErmR5P9QvMZBG7+TBL1NY8P0Yku1rtDZDjCkX3dSKgz6ZxhXZb1PrNinkf3ghA5k73dCBjPOS+KYzEk4MuwfmxFHki6L5hqhMH6koubRGOxYVU/J4pxPkbqqgUYAdRStd2ZuDY1cVYlyDb89R66qOqOINhCbFLWLH8QdlUF5zLhefJDuiU/5nVMXQXyu2b5HdfXssPgxieLsA8NH75vqo/07RgZDJFEX8kQKx8KOYJywLknpXYOg4Tdql0SD+MAmDjfYzR+52P6aY/6N9S3Y2QwAhJ9LvvGfQ82dugdZ/hV+KpTKTOa7Rg5HUvKTkp7ysAkRj2+PW/zs9/Zo/49M3hfxrcHI6SC+HOLV+zcZDrCDRivQzqTrhaFpArnt2pdnzwvwzRXG20EHgP8PmMP+jfUty/QYAQl+kqAWDnAkqwdaIManHLsQVsSEYrMzsBD00RtMT+sOrEj031zjtdgAhev2hd8K8DDApbmxurMinujv2pgv0/nONy+7HVEDa7tJ3JeZHpdrxoJ/0ovHsCFrPYF4oogMV/REAogOGfaVNoyaU7N4WVcaFlP10fB5t11ukkYPIvFmvXT/ukX5j++48y+ONREjjbYt6hwKlJMIB1KmlZ42j7980XJkorvkF/1eT5/8HlSmx+WSToSAr+h10EsjmWFrK838vHf3Yr9LHVfslo/CQ7UVTc1Fplwm4NMuem0j9NTxFyK/AjWuQ1p4Nuj4Bn/YV0/YPD/bp3in3DHvy+6HF8BflOM+zyDQ0uY5x1nA+V/1BK21A/RAD7euy/4cIQn+3KgWD5ERJAAt2YJnJ5zXGRxs3UdsdzkZN1/FK9ek5uihjFExvFynHDx3n3BhyM82ZcDxfIhMfSadt5OD/1px+H85aKbA5FM3ZoGc4+pBrOMKs/rOQaQ775AxD6kHOmBYv0QwalHJ0Sw9EGoG3Ycsa7Q6ZAkt+Zp6qLQxDZwLIe3gYmLXe4L1hlho76y5aaEWdhF1rQ6VRvUha1e6zEQgmIFFZFL3VDPpo+8d/3oQ/wbftsxWBeCe76w5SaE4Qxiq6k5gMn+XnrB1WOB3YLIEw+oiAT/sSQVuevLvzsA4HaI10XwXiBsCXUwRIDGM3UNV+yD/TQa4SUf6qCF3GvU00+E1ZLsR1J79Pao8KCHfYEqImjDl0LE0gnOqEe2Ua3kfc5MKHZZLb0Esrjr66x892z0Gl7f/nqn3fJ5x+V2WJ77UohYOiHvWLb1jRfSKJeeZe09+k53KlZO+8mDrcgswdiu8Hof/Ap6xwV3VJ/7ZP6N/EcM1QkImRqk40HKMbeEQPQiEokGO2+TyKcBi2jOO9f18Mh9wS8DuNNlc2Pyl/vLky2WPJl7kB0GvyhbcEXst9FZVd63Zl5z7XnqS1frIwc7BhooN8Cmr5fGOduqPWKFSbzTYgNeCNmVCwd2dJn1LDfw6V8wxuI8eAuWM//4TS4QsGPcIIIZPKI/lgXQlJHzO/QnsfQpdhS6MNn6bk28gPSsePc0NiTeifKhBNont/ZF6hNJg3xYPIbRl7QOCP8s5mxqU0Yn9CKtEzwttruejoFNoRn5kM8TS8i3luoXKSStyfDyJn1EmcyMoO6dPFKxXAdbok7n8QUPscLgpkgYqcroYcbdTDpMPifZOfKjrTOVRjDFzos0TGcIUXr8bnd3YaB9gY0imMnTF4RqBEo8sixcuYJkXSBYLDQ/MbNJPEF1DMM5Ud2fbIzI/ngh7ojpbRBrwoURGSbbX0o7kFT87R9/nIiOTKdHJrcuDikfRR19fQQrRoxChIlyzaXTFgp/QVIKgcfhBGYRjDbpD9LAyxHuBDFF6Cn5ycsM6ReMA4u0h1OPm4isKD0t2caViAf9EAoBm+mTz2xWX6zlexvevBB9xawjsLWuZPyfR5E9Yu/zQ+oHFwHbF8QsQthcbUosZWFH4VOW5Rycwz7sMHT7yLoL0bPTTsvnMUvSNwDJrQ4VP1ujB4DtC2AWAWw+CH8D7RFjmu1zhBb6F5iP1D3pVRSUhrpDUdGCat92olHSW5frAmD7Apj5+FogFImFJYnojVaMScYtG7n08B6Vrp/jpIaCcQehzkdjbP8xOimo4fel5o8wAl/uEIkjkBSyINH9E2tGDR5wkKSsuW63XQ21+WPoGvHon2OHf9obUPAK+H0p+COAwFc73NQReFVnzl8XsY7zIF6VelKG8nVWmmpZGlzm8z2gI6je96Xaj9ABl+iNeWGZ3F3L2WbZoGyH4ZK0JZOfoQpynrZQCmjpDfa1t7X3L5z9k8IUND9PMh5mZZ3+89ADnVND2EhUh+LtkfcXUd6FGFV1NiKy8a9Rin/PcPlXJWq49ZVtSswYni9bd6wnvCQc4NiROmhmwGe0Cm90KjrLsn6GZPExg33BGCJMwhcrxOKGLqNuyilrUk/DjkOLKVld3I+lTUzPyx5R+51sEn7Vzh52s2OoJ0KGXKb6RmwjydTcjrb2TRe2TNxFPZ60uMRTL5rF0UqwVCV2sIY4+fCVWXq4x77AJAGq4jLVMbHdiBLWdcB4SX70MG3UbqXH82WMOElqtGZbUuVwrzcM4wEfO4RJAlAloIVvNPJiUNazdi7U83nCmrUC78EflK/zIqOyxYIQ+qMf1YU99gUmiWAVnxeOeWQ+oWaPX+y6lx2msDtpyNuwaDJyUJv1JCXr+DbM0t+qCg/22DFMEsEqAbF5I0KRA+mIosRQbzMpFjW7uVVtzKc1hF4duSAOA7TtqtT8AohdjGFfIInFxdJsleHRWzpG/rtVWx5YJ7oRI/ayi3tajphYaWvWNVn0P9lwAQSPH2SuhxrsC8oQoRI+2RqTs4vCtNz1ThF+m8eWp/WmE2ypdsxrfjVJPA8V2Gos/fKhDBClfUGgIsTKJ1tv5OzKtN7TN280BfZl1mFpdg0DVWU+gBjS69x1FePnrPJG3r3qfV+q/Qgd8PmimF+qsrDtzuIibMbDKNJrPJXwQ6SYNr6QmXRTgjzxobRX7uXX8Duq+EN8wGeLYnapiBnvo3eWPNE8x+HGlZc9iZW+vOAz3QL0Gp7ZX/PtgipsX6q2qMpz2aKIXOLniU2SyUqO+e0AWDgL88BddWlEZhE9hprEJJlA+bxVXF4Rti9FW1Tk+QhoCJgyFXkeq5u475nYg76CVbx1pLQiPmin5QA0eaIk7xjPXnkgqgAxDZpraqKHu1IOOBl++ScQO+6L8D4S6vvg4Q1sXKoZkcq1jno+pkTi0e7KSqflaaeVDV5p7yIjhl6X/xv7QC/t3Jc0NUprXf1BLFdYMsnR7srSmoEHQY72GCJc2qPZHX8MbmG1fRR3Jf8YDPMbKalXv+9LvR/hAz5bGrOrlYMCukVxgh26tRBoIQqv97E1carU8z5FVThNlnQrbzzBK+F3XPG78EBAlt7IVZrd2DaFtdy+OjzWXFlH6iBBzX3YSdn8mnSfmBRYvuGEv8v3fSn2A3DAJ0sv1Cr29pMq4FnoI5tqsJj1jWhPn0ow4qR4wqlZysHG/1cI+pWFY+Z4Bn3nEX7PYJpM+VixEDTKsJlKgQDG74O99c360K0H9eppO+1FpuhxOF7tx6CB39gFeLjHvuAkEa7i08wxLT2kFq3JEpSuoYnHYZv60FcQi71/eSWi9J1JF/bEPvymF37VluJtEjsksCK+KyBGYyKVNenSjJ/KvqmFJY8jjlsanXGjLcHAebnxFw3lyEE+ZG/nAwf7AjQEwERA0d8o/d76sPCIUsE6Hfojkz27JiEcGqA3AOdFlremfj5oq/3TpPFv7GBfsIYIm/A5+pjTpxhaeGvZGto0OmwKdreSfl7Yj3jOS/v7YinWzE95p1K/mDLnbt872uyj1CCQ8oWBLwiTXlTVxAP/sJZiR6/PZ0heH3bZF5gmgnV8Hv7G27Njz8LVenTNy2GQBVRNmMk5rdOUQC/srp/3zH34O5HoXeb4ZUsz6FogxSW7CXqzUIxL6DoPySW2Iyb5xjsv8y5E2aAjrfnhM5YKZzjTwtT4/CWdBmnpK2i9SzIXNtoxyhSBUj6THDPPBPpWtUhKNVg9LHjmeA99BWllcUYzjFm1gntEyPDOJLjlSQ9nXpkkFv9iUqhlw0rDb/8Eg811XGljnZilX1wKD7UYCzzDEsOkgAYydgQXop6GKQvxWqa0uk/CSF/jSkmvVGlf7xwAecaekvAlZ1AZ4zh4xM77YL0P7VOn3PxjTK0Hue0LRBdBej6VGlOveD3ZTlisjjIICYeZlKPqAniSSVYW+VRyqJpj4E7kV03uQnQ7RvQy2zysIsNvWPJyFjLmLOwMRuJQW/1zquO62EpxX2BqIhGDIx+Z3ZtTj/DA38/kF6MXSeIsPiNtTHzYRiz7u4zS4lVyDeDN7vcBv5wP35IMXnwIrD/qm/mIyS2TPTrzkj+0UTikBGT4MlUYfZ5xI8w3R+bmyZYf/PmsXyNvaudPkxahYhziJ7YGD6zcMbgZgaE+MR7z6Fld7w2ZE1nFOczzPPa5tMx+YbBslNRXp2aT7n8bh/6NVu4Y3IywUJ8YvxHpxLxXthxYrLf+1SGDI8n0nEor76IRl55UZTzrpG6t/DAO9bDKfcE2IyzUp8ZjKn1wikbqlsinbtYznY0tkjLwGnr9UvjjRqdlL2itOtroVMoeVrkv2GaEhbrUeMSjd5lJlA8sN5bNYOHYnyVsP6+g0Q/NToqLnCfGIHn5lvw+LCRRdojYqjfpPEFEwGNVJVb45Z/AYYBKLCZHYsRFgRY2KxUWucKtfyOhVKyrolPeFIqXXlUIEpp5Z2bquG/6eaef1bKzYhkItM6QnT/nuOlivDvEhGMM2dcUxBoECnm7GjUTljJlFY+DP0yaweOn93NWzrFZNlWZk1VfVo8uxLsvkHCAIPt8Vcxvofao6wRh/JcOxORxUFayJlMVqs3tldPmqhY2ogZ8tz94GNe+QGIRhOZx+zclANlXK/QQUBVYm0VwD5ndgWtk3/uwk+JE2qrDOV31ma8w4gKN+wJMRkCmT+7HYgAhBkcbhq6s8eXfWnT8Dp8CnY7PqKCVsNXYNTPjfM0UwOZRtHGtEKQhrCajcRV0C7/8EzQB74vJQWSK4APzMZAvPk+V5RerWA59O7wCbdUYYmqj1sDaRpkv0b23K6yHEPWeqfAre0MP5twxKhpgqL4w4iakwELrlhDzFbfRFJnjl4o+/tGw1JqdtVUKX/Xx0zDqPQ68cq4LH3GR58dYg2Pb5V++/RNkgfuSNUZZ5pBhtIyBCf/JDgLNYiet7aVOoAFg68rW8+8bm1Pq2cFGV2OwTqWZoO/ck1LO9WS3iVPmi3w+EHg/8/x9mHNfYNEIRvVlJaEMJalLUbPUADlLOj1FeKvEGoxhjOB0tfOybdYMRJ9BCOyVSvx3owGqjnGZnJrB11UkfKpqlj4D6WwunO+BpE8hcN9Il2UMNbBDW5IJjWuqGxYyftnjFUl61jrEKpdBAmlxqh9KJlyYc19g0QhG9TU5sYaHFPLMtvIy40Sz4+CN6QYfIllrX9a6mUmfcqvss17v0ZQezLkvsGgAowaanFjDo/YSRgcgnmRzPSQ6j5xdr6KhLteCaDJfQdVlV5H7e4q3C7nvC0QfQfq+dCSWmrArqkyr+fH3xYZfithx2nZMm0Id8lyZBy5L9/Gupnc3ogs57hihjABNV8JzU/wgvFdbZakaG8RgXHBfFF1GnqyoO8/a8GOapXuoAV8KIR913AFEGeGZgfLlppRBPjTs/jx9KVBDRQ/ee+nK5CUkaqPtvLSk73ppHCXyHlPiYY77AlEGkGYgfblJZTi60nL+hw6s9nFKlluXtWxWKk7K+DK7Lff5Hp7mYmY7RtgiQM6XvcQyGTYQ9Pzo58+j/hE8DNOertsSHl8Zx9y0JJm6LJeAGPlmUX4xUsLRQe9YNR2JrFmO5kKp9mA+v7S459irsQZqvZTpRt7rOu6jD/GCLFOj8RRtNMNDJOIhDsjBFJyqrff8oYUTe/4EHuZUkg/Btz44uS9gJmfKL8VE6QfMt1A+H2ymV0e7R0ZlK8bF/JswhRVLVQbWK1g6SYEbJkYo4ZVoJvFK/4cJK+cP8ZFh+U0zXbx8a8MAkBFMsYHFVjdldBdbmwYqExq+Yn8btZDo1lYoznFDXBXSBbvKOub+rPiosqfWxIpj35NWP6css2VZRwuBW/PyYD64nJYu3QXH6WTO5vOhPNNFG/cFnYzQTF8BFivGmDhTh6T7LSKb7hdZbJNr0v0Zm5mOtOTvWfSz0P25mw/J2Z8dtHHH4GQEZgYqnpvqhxii7QD4cRqTWIHVVm0RE/pvB0PFm/N1CYQs3szuEENaPibiVJQgPPkA+PGXf4JidscitkDz5usHbnIDVGhjKFO7dGTWvzq5Ea/5UgkeErz21dfbktifidnSeD40z8KFaXcM6kYYsK9/iuRSk4jeEDcygaWe+tXahexsWaWM0nApDY5fgz8qJ+2cbz+2AKfdF1zXR4F9BVSsmMKGiVV08MGWSzm9XY2JooklV7dhfIMji7WfltcwfgzB9HGuHcNiEYrmawlj7SHr4XwEA2uKMkGPg5JeUmrrPbTPOdsI2YOuFjo1vkQiHmC6L/BqBMf6UqSbdAkBULodJWOcZoPDSXSFlK+KVvEqfnWiYWEXTc8aLud7EGAAmO4YYI0A2YBvjPlJtpM0q59GLToATQ6D7L/qj0VV/qRipy1dzJcke+59vOK5hzbuCzgZgZm+ICgUEHVugClVveHjKascYVFGmWTqYZan7YCoWLZ0VJBryPTNfFW+Dma2LxBbBMn5eqCbfghLycK4GENpBxZ7zh4xl+Z7gsJznNMSvrLdANlze5MhiHCsMhkQhyrkUIKiJreu9PjbPyJtRPQX7wGRMCIgSLGGjOthZjdE8kj9aFLJY9A17s5Buo1N8tEhD03Ss3Ysf8YVCjCR2qVXZolo/4g4nWq9wf/Ae/RFq1++1ZYt1Pc0KkpMA5EvtjOiaKE4wunxm1B9dS30iijocHJ22y9z3+uco8nX7R8OalnLwJDeyWom3JQl/u5TUe1Orz7uPvwYgTO3c5AHbylzWZlBVaqWD50lySDlhJuZUKR/yADYxwp3jC2GWKQvhorFUwxNKRv6YbpLHgW5s+woXPn4ma2esz5jnh0Fv+Btxi92viwW8IIWwalRDNCkVZ98/O0f91mqQ6xs1cj5URcSIFnfVq2JemMWidhhTRZN9VNuUg0mbv5TO11F/USnVVaPdBbtj0LdnTvhpGE0niWngprte7xYnKV1mBt2WItgBD9S3uyHI5OsQr58+yewy9gXA9fI8NXnVm5cDH5WlwSEbhRdd12GjUEp35Dj0M/UejxIstJVRCYfUQb1Cny/0dO4A6h3PLA6GnAdGO2HvvyCa4nQqPAZTUXieRj8FqnYCvVheH1U5LVovE63bWHW2Q34KUMd6jWmakElFUwydxO5OPa7ZGkUnrhms76qMdYSxtpD2qdPyyioGtOUvLMQ6OI+iPd/nmnF/DVLG0SkTCuzvX3PXLR7X9DxCE33xYSh9pC0drNaBmEhfbXh9qz0E6+B/l2nDxcBIJlIFytjrdci/pVU0cOithBkc8kOgnj3P+5jmke40sZ/QynhTXpIFmMopkWVSjpjUnGPhsxm7Rw8aMch74VngOhGJGXW8ZLq/VLM4TEF+8IsREyELyYMtYdkl5DjGTJe6a1qh8lL1WiVbhBPr+e0qCzTtIKm0yT2tQT++0AlpkbIBxNVqeq/nnUuOm2CJJtg+KV0+yRepSMIJtWkcgZhskSNIXdwvi1bQLISBrFfhedu4XthqAXRQtTkb8SvIRf9pI88fp+h2DGhEfAfgWrvpvKjPUI6mHyu7XRaYyORv+fjP7WMnJfjuqxYpw/vWxXoEUX7QixFRJSv2wtlfnSsKIoN8bRpGsQ0uL0VcxnG1tXTGUiHpGfZz3xSew965ZKu3GMr5QESp8TARsHd8Ms//tSuraGtyZSnxBaWusY6WoHeEpcYZ9EhM9YIRpsI5GpIYkjtkLR8jji7ZbG84o40+aJm+/tJEJczxBp17bmc47jTpXFavHL0W0Y+zIv/MRTrV8iYx1DtC6MVMWC+4vEikGxsqDuJ9dPMYpkzSC0N761pGsKTIsaLMJLPHlvLu2PAIah2zGZF5Jcvd7zJI/EspeYUDHp+azUf1iyKNdEifXQ7byNFZMs3Kz3zW1zXh7D2BfKKIDK3pyZswVlSxjIj4OecpGpOOotTGcWri3/Prs5ip8W+L5V1ZWWdPjXh1eX2dkwF+sxhJHeMxJFJsP5ZDLwvKlXlUTqflj4LVPvpdPVn+lNPfRYdy+DlLOrSWftCfxEjXwJecEEisKoNKnGS1avlBK0SzrXP8UGfltp+zUjiaFaCkbaAKR9+67L+6+Rs391/X6YBBMMDCF9P6ffBtobXp+ou4xZO+vd8mXWySK+ccSAfI53Ayyz6XnbidXPkTk0mjq9phU1OH+uU8FRg+6Iai1RmS+ozSnJwzZWWws2S4r+HOehWg5Ut5ATu+6IJ5LTjVKYiOluFTur1JMXYuEUixGp8pk/NDnfZuX1h8yL2z1XvxmLfyTh0AmyagjPrYTjdcRrDxYJintOS+dL3Aslkem0pLj23YzYvIv986WuolCXfMR9LJ2mFpY+Wo1ex/q2ywwvc2rGVzypD45s9uIl+P8JfdLOzlzFN1cmS8tFedlRa8yAnWKq1niZ0v9ncN/IMEdwI8PUA4n/l1zBGSwpcxPrmY1MyPXZux2xeRP750u2b1BslkDSrSXpb2/n4aQJqyL6M16qfs3bO3bFnT3OXl6DOZed2zOZF7F+g3Q2lvrSPKqIw5jXgL77s9WuiB7auXywWxQNoYkERqr6aVD7095BAj9raMRMWEWe++PQmVqXUzRI7LizzJpgswLMlSByAcPg6Dp+wa0BBW9/cwH92tfEzqR1nXmGm5ps+xO9t8Jr/HRM0DZxDdCasCh/O4PiUiMijBHfMIEaEo68JijVETdCNbpvClxFoYdMSkXN9+uQnyjkvCteljBm9Dn9QlB4nuGMOMeQcffXsTW1LVmAYj0fro3OcRC7AnI/mUttCnherQtWILLnX8zZFcMUaOxZ3hGIQV3h606lSIqVnxQJuZtBGj+Yhg34pESndjDErhetJBhzwV0qHxvc1uMzmjonQiDd1BcCxXlius+kNwh6RNbObjHVJX8lJPD6NM9mBqMmwS061vy7Bp6h2SGhF9JevnY21tvRpqFKF8BrK0Nstx8GWa3WnDMXKdl6EzGJAeutP+jG9/HcjCP6mdPalHSdq33E1RrEkiQKQ1G29IciYGSYOQy3uo2PAsRcak4KfM3uSQrezBbi+c7JfESYeRbFjRiMgQALlcaxUJtmKe6QPmhocTdgG06GlGpkp08bUIQI/hz5zBiQgH9J2xe8ZBH9zFDumNAICxNceB0pl/FL6klhZTpnmOrJpdtsqWEoiVIWxNMToyKbsAsjRvsdXeQj7viDyAYDvS49vUuVFaaPGL4Ss5zgZEPzRK2CjxPE9YIVq4bySZvqUEJZYZaLSnPwdh45p87Vm700+l/aRZj4wjnA2VqrGytYl+EcjbcDZRkvZ7JhO6OTWkdz+kwTjm61/CvD3EPYdI/Ihgu8qVWNhK8XaT6pnM1T0V46Ci5UBe2JMmfJx3688ldnvtJ+aIxdg3xdA3sfvA6VqrGxlM8uUViruDLh4xSe4PaVHAwY39GST5Xl/yeBZ5cM95W2h+jdOvC+ocgBC+4LLWKCJ34HVlDXmIVFUkHQQa9UpbgQ3kTZ8ue/jzbEfiV00v4cguDjxvuDKEQ7tCy5vAk0sk2RPH3+dTdDZ2ZiWBQ4kQpsNKMN5mVg3DSaZYyZfwDWedJMoMac1RNAE9TEfgMu3f4JW/R2PTAlHrLgajZukY3Hm5z9MJTMbRad9zHmeTXAGbLNG4BDCm2wCF1yilJk/1LrngsX7gi37SLQv84xloZXF0Zxnd8Y9P/MPung/6dPPyOeWnTUhoxr6KzN26/Sq0F1oecdQdNVrsyiZuszY5eeZCKBWdVNsOXQuFh/Qw3kSltP3JOl5YeWBUGLxrT2tr9cGh/9RxdcM5VMS4oSTlYclmZdv//iymS0fo0jIzL1yJ+hsMcr1svg3dI+4uU3wmVdZ8Sij1R+B3cuEGFkEF8IMpuzjLrEE0CzMRuqTP5Ni+lDpvkCrARTr63ZjmS+b04SHU3go5fEl/+VGtWRRiu3yGexG649pqTr1Mt8bgwuY7Rhfi+A4XwJ+k4yPZguVutx07B7mmOLrTnaccf0Mwaydy073PLLCb18HD+7dF3g4QJN95XGsVKaIVvhAvXPItY7dAzLAZIjTIIQ07bSccFf1sTHLfE+rdTG/fcEIA0jRlx7HUuVGF5VxYDosw3mOU0RVhkugY1E7OCZr2HGe20+dvwP47Qs+GOCJgYT0JjlFVlUt78FPLF+zJZ7CClivIdfyNeCz4QWzO/Egq37Lu36R7fvOclsYKOw5lNOoZfZUySF/OHYo3A0ay+U08lRiquA8uYuUYmDLR5Wk6i6xIWeWRXXfQGAw1VdhmZlHlr9HwLB5xqFxnW909wkQ0kP99gUljFBFn2qNqVluamlYUxYr4D7PcYhr6y6NXe+7IXKUlK0MqOs1FEQ7E3u1Oh1bfJZuzERhN7137BrIU0pt5uoyYyVkrJxkyp1Lsmt48OKe47Q6pOWK11Cr8ro8L4pB6ennRaCA+jFrwEMu9wXpjJBRXwt5005OKkEsxhEhGfY5+9urXUU+8iCclxqjboH9We+2bhf32yFMGKGKgZgvFv/RYTkfqkgaX4odZ1BprHG9cnzgmaiSu4z9YCpIGdfPISJ/4377ghNGuKIvSYslbIwoRTxtGOXGPKNI6F26FJzjlql+0YkkI1J1zRzIjr1BKBdC3jHiHAHUriAt1q8hcUQhYXGdTnW6B+EwtE2w34rDZ1V2k35BLCn6QvRmUrDvESJ/w2/7AtdF8J6vrIp1WKTSii77tWbJxy4BoUvGCQpIaiZtPCut66e+DiPLhv0eIPIXALdjvC5A91xdVSzD4jhw211xBXy/zviQiqeTDOZFklQPeLg4k1o/51b0asdNLS2byPbQ4pvbp6wa3Vzjb/8ETeJbsC6uPGpbaQf4TKMeiI0VeoP/Q4sygqKa5bFt6EkM+QLtTmyvKh+hvcjCRRN6y48OVUE5h/2Do5+TgMVLI0fYge42rH9CtfU3brljkDPCRH1Z1UWFtbgKlm0wKIPP57ixs+uKYI+JiskXE8Ve7fPeZGLEdwelB73tGKmLgD1XhBJrVrpMuW0asieNOo+EBuWstscMMVvsZ+QKbvqT9XPUG8+bn6UaJWVZqUhsSLzUvrAYTPcdf/tHfdrJhGF9IdhSiVHMdwjJcRePC+I/w8yIJQthJxA+n8S707ERwj9M0qa0hGd7zrbrtztF7VF+Y1z+H9MUwsNPY8I43jj4L0eO/I1Z7gvGGWGiroDnpvfByknJtjUUYl8TRx7EX8tGkN2osky8ypOmcoO1an+Ng/ZRyx2DnAEmGghRYuEK+/iY9mlARbjS/HIy6tP8RK8hdR0uyp+zkKWeJfyI/983iuqhlvuCckaoqK9ECZUrU9wCVtbzjvlMBR0HC5PUkz2JnI1d5E21SR28iFzfakNuv537Q0WZWFWeno7YMP7yTyAX37G8PJKj0+A+dzZNc8vuw3BzlmLI+CjgJLSOzUV1HyzFqJmnOY1oE4patsQlIJvJUTxIvw4y/vdQ6zxprvGPuJ8i2eSVcrRsPVEo/FYFFpVls3SHYGvW9qMus1LFOafpnqvBxglZcZSIY4rXmOu18f6rgo6n0GUvUeaZKUl+RaDfzHzykKUd4lARauXKsm8qbiSUy8htosTlzEnFzqLJZdee+2KnRZVRrdbDrvjDYAlp2BA9u+QhRcEHGg7ouo+//eNlN2qwJBKCJat4UfdzHJaQyzYCB2ysJxOjTRgdsXIyU2AwxEKZ5fg7uj0eUUuI00GiZx10yeY7mKRs+Ba3/ZI58MD6fQH3IzLAl66FSjfmxerqI8l8z0d3hxdz2S7D6qCcsz5qySm1GQ0QX0ZzLrS/L1QAEyisAN1mKL7UYZSVCdRQOoeC5mrECCUig3FP83l2XcnHhcVWtvSfPYEvS2AfcN4XgDoCtH1VWKwio2imqKyIWWfqtdpxMrunk70/SN2//DIoH7OSEYvlxyS9340x+lvVsi8qmEA1E6ixbuqthWBlkSIXFmD2OeW/sl/z9zxN/TcLRRMcrCKfE1BL+SMvl4927ws6HqDpgaYu1uCp57chR3S91C21c+sc2u5BVCP3c9qn5WQFNx5UeWOe/30AkE+b7kvnfNRp7+qgYtkUHcKbDB/EYTh2QJV4wns1sW3BaRFyyzrTFDP9xlSQisK9f8jszGMK9oVXiHgIX8sXa/8YvPKaBu0OBI1zHDySIul1l1DXjlULcq7R7IWhp8PLn93lCvaFW4i4CF/Nd1P/sdw2XovQjx2/cOUOu4pJP7F6zouCqWo4INn98jd34e59QccDND1gi2N2WTw0kxXTnD3Qv46TaBuuF0FV0Wm84mgsK8rZRPY93z7Au/cFH4/wdF9XF+vwBB0ZtkfgrFXrNTqDNIEwZdYWUp6mc6DUU8v2vtSLzlH6Hsr0N969L/h4hKf74rqLFo+qHftRlajXsTFZ2Aq6BsXRUXScYVAIbsOKSzKkr7fCB7z3BSCPAHVfXxep8Rggc7cFUEhLJDsKktW+VLc6CO4lO2sihmJC/lX7jyHeHuK9Q3w8QNMDgVgsKKMMxPZ+3DT17aRnCBLirBeADOtZXxB+Tgf0Rfx4njf47sHd+wKPR3C6Lw+L5WQEjZO1R2TcqHa60NtQ/xBeBC6hHxQ/IeOt1bbdoUDB7y3L/X68Hffvhf1+ND4atG+iPAV30Vpc3f5Lo2GxsJ/jQp9SPXO/aGLLKoB5KK5crSeS9jdKH2NmF8Vcn6lffLZgX9gFn4tw1XU3MV5nY4ttNVpLaCP6qNZb0bnxajsNR+4geAwN9liLqb7oSJct2Bd2IWIjfHFdLMbrTB6TwUukL5UE4JAjXLkNUGzdRqsXqhuUoGJ054CV1xP87z3nXrm/L/BAACcE3UNRrxEHo6UmiXPj7zluu3wp8DQ0c0ycJFrtrClXSR6wSZX0w0f1d/N7/uYLdsgvBHREpKy7KfEmb7VlGcwEpn2Od6YPDWANca2fEfNd2X08Cl7Iz/E9f9MF+0IvRHSEK8SKdVvUp6KiPxAvdrZ1DkM0bth6qlMt33haFFZNL21ycvR7WvNvpKeeDm9fpkQFU6UCdWgoJiVxl7rcmCS2OAo40V6z1KkKVqxfDQ446aPSdbHjJdr8oSXs8QX7Qi9EdIQvALsJxpA2dsvOsLk27WhvjYWdWG/w+Scs82znxYPpST/HXVeZzff8pr8Jg30hGCJCwtfixdo9Ws51ddCg+x4FpXYc+nktGyOEsGDHYdaZcrZclZ4DLzG+SxjsmGAICQlXyRbJ3sr/xCPTAjKTlKPBGwQqNbDjnVCOJwvhjH9uDwJB9eWC5gOAO8YLA3TRl7GFsrckrhPr0aCxONm22nEqvWr08RSCJNNOix1MdVBdrO/fshYPLtwXdHHQpM6SSSxoNSyQqrPPohecqddN9nliImWnpqu4FpqSNYv1BS8Bay2/wUgP/NsXsDACF111WKglw6kIRFjemx5L9qXLzowP5D91orOcta9uMbqX9D1S/g+x+dVJANgFDjYnsvZNsm8ku31dbd18qVosDbtJyXp/rCFwIoGoOtFYxkV1S4fwQpolDgkgvAyWAXYyjG+RioO/7QtcF8F7rjAs1pFVwltaJ9PJ7rGQiMMUq/4kty+aw3cOqK6PXRrWVP/BNfxiHribXe1LNubnbr5bQ+zuUGXQl/ZoTA5WGHaYwtrR3D6xV41qqeHC2zEUJCRh+HymVPHht32B6wJ4z9fU3SR4i2obW8KpqcaYn7MssAw7NeMTeVrsFbnpIm1FcKL3ZKK/QfR9Ad0jkN5XpN0UbAiHClJ3DjN51NaySgTTtBEBdqV8Ors7p4/rz0RyNsq7/dmDEPcFcowgSl8aGEsJaTCKgK8XMRAwDVrhcujNAALibpqn01gIC6jr39f5NhYKMMR9wRwjjNLnsULaq+KKRCwjF4ESTG8SD4Md2KL6o/WFnpbDfqdl5EgV68vF34UQdww5RhBloA6M1YQcQtwtkerzmV+dy4QrNfbhb2s9I+kHyg17V+gpO9+Apocg7gvi6AOUvjwwVhNyWhke23kjuplacQzVM8a054BUoZ1GZybAliGU+XojJGCx9GTgrvSGYokz03H4uXz7J4ikOw68UZz2jdFjI3WiarMvNQXCusu92XFwgTpXhAluNn0Cu6eRWEscxC0tHN/5mcDuoq/7gtb62K6vEYw1hXxzhszqqGITplQEj4OSUupIRsSWnnraxKkOtH0dkbU/7zLeA2B3hNZG0K4vEYwlhfRzRTGgS5gj3+zvqziwFOUBkffkL+gY6cshAvMwkcX3UJ6/4dcdorURuBso3UJhHBs/m1gFCezcrIiSCe58KnoNzVwQpXUbKU7SmgIb5estnNRjCc4w+XCkd5WlhaIQ4Zd/gkW/Ly9J9FL50yWjaZT8HCm+wArcIkqq3Q6TZK4fX2UEvqbBW5Z40xSFzjq5fdMRv4SBHeR1X4DaCNj1BYKxoFA0Y8OkA6SgniM0xNNaUu+T1XpSOedNqCgNnUJIai/JiIe87gtOG+G6rjwwVhNS6C7IvFyBBCY9Ss5DzCZ4BSgZNZ/jqHta5msUSdjcXu6pPoC4L4BjBFD6ep+bPgjBoNl2joWnuK0cBxWEsABNCsJ8Wp0bd1pLuLIUX5+RPDho3Y4bxaO+cl+RcFMwTKz+qp/jHVeajO8qbrrMC606796Ow+tHAjDl95DZ/KFm/o3ox/uF+6LJiDQcvignFPEwnlAhcyD6bI6YhRYwa1lpiRTkOafFs1mnFEVsm5/BQ32AZseADj2hRikHYOD4d8maZVJasdSfhpXtVcC4KPeOUfEIRQ/EX7FYLBNFbemAevngRUjkhkzaOgXc6HbezHlIxsrQsfWNunoo576gohGK6ktDb1JS3KNWv2rG1PTvG/W4eveQujWs72LnFZv6aelI6v2H5vgXnQ/OqJR9mawSTWJZYg2q4z0b40C2CgG1JrWkWarKpk4Ag+ruLP7fiWzRTOXoJkj1UlnN4aFIlL6Mk4gLTu2TaE/5UNrsQvX7Au1HVIArX7uI3fo8pTZWnHVJsGUiJ90nEEXqc05J201jDbg03sa2k43/shNgOYmsOMlUI8vX4m//+BnSjvKpOP2iXUnn/5CpNuVM5nOn2evfzza72KFwfsiqplLmKAm9K5IOHuOX55G2atYqVEohz+0f6npx6YF9oRN88sFXrsVKty5QQj3I81DAhsfBnpltm6BOSncPnDURVF8aKXAb3+3gv+k2cGdk7XikVjBTyXs1by/yYt/NlPBBO4f8dRSsijykyYE4vR1H7EkIHyTKu+vHNOcerbJjGiakbXzFX6wQLNTGrW6gPRs4jnsC/bu7lmqtJh35xt+D/aCeShq78atdyGcx9oX1CEgSX/F3Uwjily6DfZJ1X8hh2Oiq11CJla5z1vOeNR3S9NqBXRpjx6xHRJL4er9YH6iwZLHsG8VGtcOwWXVq1YS4puYOSRvtVbbF1wO3/tW25dEY+8J6RCyJL/eL5YHU0+kAdcFsZ0rnTUUyItIrHRDT22lPnMgEij0IhKLxuggXjN8X8D4C+33B300giPejngStFX3l+PlDsZ8+CsIn4/T591QfjYf4bNbXfshfMUWrNipBFnnrc7a66fLtn8Bbf8dW/JFzvz9jLJxJRhWc+vRwY0VOZG0+HDVFcC2JW1LmmaadFyWIVNf4e3YMfzu9/9IN0OMA9oUziDgGXzEZKixxBzhhpiRLhqf2aPI4KKeGrVcRqdtpi/hI6QrAj1kvLZvHxuwLeRORPb5g8iaw5CwA+62SO57pQviTYp8j5+hfbgvUjdk7iqf/I6dFSLe87SHhSufYh+pjXcXhl3+CVbYvk/KCwXquJ1fo4NUo0ZBRSUXwzay5S2YAVDZdDC255crnmZPmxXOIsEFePwaw/qr09RigfWGMAoLJlzLE0gcKKBD4qz390rUfXo4zFHTi08e7Ur5O+xyAnJ6fL/WGywDtmC+K6CVf8nlRiE4uZ8szE83U/1GPDBRIj4HIlNbqMFoaVQz6POglIAyvl12WywDtC2MUMUy+5jNSiNLsZzzVruEpirXyKLRbTfYSInrOY7aBGk1/ZSMMqC5dZ0P0WIx9YT18lsSXLsZCRzGc1Qn2zDSmDnzmUZDqFVtKeNxznLMiwnbLrpDTpTfN7NIY+0J7RDSJr12MtY5sjMgaPqkwLCYH5XEeiUmqs0gmpWQUqIepQO37w1vU5TH2hfcIaBJffxfr9cgSlj51hXMljDMFpXBeo36O6NmeQ8MsrHR7g+jy9jbyc/H4HeP3Ed4f6O9ivR718Mj1FDnquNDS7Tic6Zl0n3yQpSd1ymH68iRb9Xg92w96iLCxjL+e0qbM0hIv/hnDEn/7J6jw9wURiBAEoqV00TPlv6bu/qAi/XNsSINLndOxsWC04H4k2WJxU3h/n6kwDM5acItszyIe+alOPJfP2DH9EbAlgXrxpnZcuKJH357O4S7dPk+Ss9kC6POQMYSIh/7Kmlb+kV7+psffwzb3BQuNsFNPCX/Tzfc+VQFRuTB1GCXV/YT4ZHtEckCXk2FnRXqlNjyVPQ/5Q3iTzwTtC3MUMU2+9PMmFRVVpS0ARM+hOwrlkwjd1a40zXk64JGOLvudhe7Sbx2nh7PvCy4f4fiu0jIWZrb/1WWhGGE0pzMPZdB/Q7t4CdPb8DicFEWirRHcmfpi6VOj6WtXFJfZV2dJskXfyWTAKtHCd1UxBE/3GSstb8pMYVcM4qMlm2IXIlxTN2RcBUpeNTnrRMnnMFFixlvZXjI4Dy/eEbgcINGB0DLUZdInBanqQanUy5lHwaMcRyU5CffZSQshLksd+8qv1MQHPPcFII0AVV8sGIsLF1FtC0J4AeYZYtLYG6mkoUSVbGfl3vBYBs+Ws5+zZP6i9nbMBIbMoS8VDJWFbMvCIW11c66gHYV1cdGXoUsm/I/ykotwh73nTHBefLmLPO4LUhkhm75QMBYWCnJYlqGFFO0UO04ZOlaHjiN9zK+W64dH1Vvd1hv1+c+z4dyCdscG1pHftd/aEjfCYLUrlkyLu2YLlk5irQnQVEla9mJ/z4JInJ149Elw6UOAj4vY7hDgjfDgQF55k2Muji8wZG9Kb54dZ06VQ7FHJ+nQETnvk0uz1+yp9bvxL6ix96Umj2p4n+4W1hwP3V5mPGRT2MpxkG9rojDXepETAZC8Y9w5gql91WckEuWwZiSWVgyWZl7GPAw2j6drdMO2m09z/mJbnP45u6zfNbwLI+8L7BzB1K7qMxSJDvKP5TGquxBvbXYYhKnV7BrYpz/ttDI4TcsuNrXPV+3oosj7gjpHKLUvXbxJHQcVf7b3TZMb8XPaZw5NR9meOM95EXvz0O38ecyy4gRpBwndMXAaAq2+eDEWOxYs4rLMDCXLFOxzHOwIllNTaqOxnuet9qJWGh/VtzbSQ0L3BTkNkFZXvXjTOiJ4T6tykjmIibM8qp+le2LLVFTYSQuzUsv+n5lfKZePhe0LdhZAbb4E7ybZ46x0e6tTS9ZuMrpUkfJ4WMKc15rgmJU7o6T5huU8IGxfgDMfZvMFeLFgj+TAPBR2wv6TjnywszDX31rJrzU7Kwd8WWGC/TG/5v34QNi+AGcR0OYL8GLBXhXloz18/LuiWPFDC0D+eL2KnIoN6kzkgTTBIdRQ8w+l6W8Ebp6kbl8keJFkz1egXQRrHZWfvTP0JtejDLnZjwoIsSrml1CQe799XMZ4T85DfcRwz+xs6JUSLX3Mx//y7Z/A4WFfHCEiBwl/ZvZtxvZC4jb1vK3SfNE+f2hzLskidgYTrqjugZOTRUtZmO2/nv9/tyvwgIsdAx0RMBJ0mcVdaWIro8AgXp3WqgKJ5GOZaST7+0cHe/O8NI+Q97EI8vOhMQYehrwvkHMAUQfCwFhISDPckq34RRVQezrHQa0/9bUotKM+0Dj211b0/ccWV3508f1G4Pt3WbEv3fhB876vv431ulUMu2Xr4GwTBKajH8biFCIhy4BzHadGWSeWoxyeJsr1h0UscR0pxWh0Iq6YhXmMqZbCL/8EVspbtRO5ceBKIreBvf3LWqkgg8bLj52BIySPFmKKlAFbB6dscJJhP8rEvHKjEIm6YPyj+dW6hEeOXSGR1Sym2IjUkF3mODT+SrI/c36q0cclH/aFrIjIDV9WGKoQ2YQ/mm3VxJA1t+cElMqZDbr4seErWNPkDSzJFj/iY39xIS73sC9cRcRt+KrYWEXLSN2bhc5Jz79hx0GEWJaUc5Mvx/R50IhdX23UW5pUfo8E+gtA3xe8PcLnfYHfTRCIdHYu282L5mQULDNtVwyRLUbzeCB0+rfrg8ClPK+pRj4EvC+QcQAxBzK1WNbGBqelvtXMUlepy44zUZY9dhWEeco5L/Mq/Ry37vlhrOehwDvEjCOE2ZepxbI2Gr71lOwaci1fajf2cekao8eo6dyJKcxzq1mfrLcKzoOA9wUyjiBmX6d207URL7VlM6jqVMCAGWtZem10hNExYoILm7mIDNZp/Q0YeDjwjmHjAGT2VWqxqo0PJS/LbvH62PRcCggJVOrnCS+qzlfsdBeT/yHXgLTkxwTI/y6odhnFfSEgI8KS/A6SkSqfYwFrZHaN1vTPW5mTdx0LHlunwcFi+yz6X/k5eDvNPppF8yMjyKgTZQ/2Z8Q3Poa+I8Q9wud9fV8sB8yCrjz2+LlE7Cgsf6oW8sx/DH95EKmxx+ifI9TO/DYadcDnfcGqI2zbV6iFgjYOjltaN3PR1mxRks6syHPNoxaPcJzTYmm1k3Fit3leb6FLA+yYNQg4Bl+fFuvZuiRRFkg6nnE5x0FyqDKG8j8Zj6dAC2vCfKoYNhm8n4OLBO8Lchwhzb7O6qbLwg048A8pQq3lqzSMS5ODXAXK+nXOO5DlWvpDjcI7qDuo645B2gjT9YVWsTCL6peh1pncK8uZeJFZj6mHaaGhm/XbCg5bpkVtJFf57W/poq47RmlDVNeXWt2kWbTuemynGbqL8uNEvwV1XmH2O85cI6z0lnXR54Wb9NKEuqDrvoC0Eajra61u2qwhFiN6EbhoC3Gc7ZYVrCwEuExHuaijxn6kywnf1f5mejgMoErwzbSSpPCTvl8WmuNv/wRF+r4U9REI4DsYxI4HFBBkZTaz2GznZMep3CCyfJ6TtKHoeVnTNa1KJ2dOfaY928es9wXjjjBxX6oWKtu6eJxWw2iZtx/fgUFDSS2z51M1CPC0WDbd3jfK1fO7bv5No5/MdO+PDifiBM+WzPqpYinjQtPDGYK1lDMaxB8CUjhGkXbN0kCG7OfMOPq7m0jTMKolWWg/3M9qbUdiwJ2Ts48SW951LqOcdT7fjYS4kR/yPnIh/x0yBCGh4Kv8YlWgdJPpm0F4eBarkFEOoqqySDa6PmeeNhNF0B0IhVsabxGhh/jvC0MQMQq+yC8UBU4GuDZPmU8FerLjCIJvF4FtVA1ThkAnahCFq8DterFZPu6/LzxBxCv4UrVI2UZFZf2Cx4l9aUE91vf408JWDx1yxtM+pHUshUTS97IQ92H/faEJIlrBV1vF6ix2N7XnwLbYbOo5Dm64ulfKq6UlG38PA7ldBOct/5wQ8jd2uS9YZ4SN+nqrmz5r4f2zYIxY0G2CLI7D9nMlDRqT4nHOW8mJ6LY/sx7nTN75xVBgPpYiUnrOcsJTNTztYQqW6SOeaBeNjHqd6mnRQVFxQPzwuk7RxskpWKOJXTx1mO20+EDmISOt2AOGV+RUbfhV3Og4ixBlzRnuI/4k5L4o/0IeMRSX5OPlSCgbv8N48Rk4nUOJWdNbclQI9UhMaVOQ0KWxA8neUoNRVz0Xq9VidRtBajaA6hpgEdPsOFlM9XUNcPyepBJEJhGynmQ5+CgvJMuH8PYF8osgQl/+eZOLrvwoGseV2XUEBT9HATin7u+VgdxOi5A9km37hT0P34HRRVP3BX31wdpAd3fT6a1Gz1i9dxmv2zkOpytVyw3ntGZ3Cu5SfSwHxx36gYp6QOQOYcsI5PRldzeZHk1lD9iDiG9zSESvqZoUjh9F1D/z1rH1FmM5JkUwr84Pl9LcMQPq86WB7i7W6SWqi7RHiUuJ6YcdZ+B5Wo6OxHLm4ytCQ04rSjt2p/e4dxdK3RfoNYJqXeFdKNPjWB2U5Xpt9FDOyY4yZXvR14GitzOppbAstEoIcaq+tycPS90x9BogtYF+LNabJWI8J2Y8HOpx+qE5xdWwDERQG4eO02JXHfochqk8Xk68fyEH+4I0RMiErzYzlVu1HRwv+jO/O8/6tLpuvB1UfXR3X8DgCDz25WOh2ozTamazwz8Mb2fkes9qtVLoGzVbsrOyRC6WluE1eXcru+juvqDBEXrsq8ditRlNnlkM6kVwtvDpxcY9Ujyk0ALkGWdyDE1iDHVB9Pkx2etXE5cLfmGjOQMFPy2rcQsr64QAIYOYFwflFaP7GZpo4vUPH38mDqdetpTqNcLt2FvJ1GnUoT1bIWCWhCCdSPTKMVDTKk9eJaoa7ChF2pJwFBZ8eCeP4+FYucqEzqq9Ch8q51yAd8d4cAQf+7q7WKfXyB6cl32xjhl2HO5RWbMTtvRrf+3igE2khfo51tF6qwBSFq7mIcXGCY2cZ9rYNqjPP/72TzBBW/1bcP0sxCgJoXezNTYx8HPK5D98thwLsI5RC8cpcsYxJ1jQ5lTnQ0ZjJqOxlO6Ebn+c9yecnD0EaV8Qpwih8g0BQ/9AVrZNc6iHqb2KX+W1QBidaimKjGGMA4CtZ+pcjCQkz4fwDJ8d2Bc2wScffM1mLPHkPT244CLhcY7Ct25omMu8X+ecD4sLXf2Ikm9trssN7AuXEHEPvmjzJvJcK1VLRhCT+tfwJGxG2X4tVkA9lMegaizZXrp+QjIerL4vMHwE2/8t2rwJPPHelWUXQG8I+xgFfrIYhKSl98MIoHKsyZKB+h48EkDqO0bgI8DeF23eRJ744cnkYfjVNluZF0EAW38s6yb7nI7z1UAasZl6t2p7gPoOAfgIsI80m7HGM5NUKn1ZjjKSTX9IFOANQ3dpHrJOEzd21NHMOH709KZefyMJdVRY+yLaikRermYzlniyoc98lAvZ3GEHwW3QJ0t6odYjLBuogZL+xjbXhywfXCR9X5D3AKj35XqxvI9FX08nPcUtHPUcpzbdCIqAj3ZSeroOq38QTvKrqxrBmr5R7BpbSSEq3O7junv59o8A5mxVoqMWT50VhlR4XaY4UPeGbcjg6M5XmaWR4Ejs79Lmo048pNEGnDgYfUM0Pwr1c5HeztPn6XkT77WyD8hJ6/MhGzcPSN8X3D3C6X3FWqxw4w2oKmrBvZbpNnacTudI01XSTv24D6CGSFnfoTKfll/wlQuk7xh4D4F6X7EWK9wKM4FiEA/2K9X54DCV/JDSfKtWrbB5WsTENazKwcvxvHF9D0jfMfAe4fS+ZC2WuBF87uU5wayrwwaPg4o5JXsSCLzz0ANI7U8Kjydaf4SixLF1knV2M89DcZ9OFI6//RP43eyLP05gp+M3/N0aBPE8VfnNqmFYeM60rkSJmv7RwdaPAU2ZMoLBlcvQMN5zqB6BKORVo2hYcm6W/nb10Xd/gh+3425HvzcykA2HKmM+YtydoX++stU0OEzPNhBURneb4XoROuBJeviHRNuHPHdd+mVf6JqI3vGVjqEyMvEppG47OadJzqPULEjqJSpSQ9hsZjvOS06rWaI+np/u7/+5kdZ1K9uxu1nohuZbQ8VWUgRbUHVmeVfobqn7TaYx45xSv012eWbzu8JjJ/alx+mHefoAj+Ih/vtCEASEgt82ceuyGATkLNM0GQ4rf4LaSd2+G/YaLV+nIKdVU7PFk746q1z2bV/Yuojd86WuN2ks1cPDxCaIFi2d43AUu5b4s5gImadNs59aE3nMt0omoI/2hW6K6Clf6npRxq5k9rDM7BHPjhcEm5Afew8fjnWw03aKuix1ZnL6VtI6zMu+EDURseNLXW/S2MmRPLoAKt6leT5HWt00GyDqn+2stOl6dKUmpA7jhe3850ESvnB1X4SugTA2mPgbTwhOkuoujWBZwWweBQmtOOSVIRWFEb7MhruwONzT8Vw+1JXvc1b7wnEFnFggdb1JYzmw0Ko/hhjdZKdMgtVZb+xhaHbfGUso7LBKHWt/vilphOVHvDbX1Euky/cRq4Vf/gmgtH2B3lykLjKOjo2mmRAs8fyW4adPU2khcVYsOu7szKJWqu0ggXjHW8+W2GSVsH0hu6SQWKvhmT1Zi7b8hezH3/6RhYiXjbEEmyIprawUKs2GuQBQQ6HqowZClfGJrGAjKEAICMWd2Y+TjGMrIZHghxqGNk6DIyk33BnuTrR3KKeREUUvXyQiT3hASRPpVOVOstbrXZDg+TWCG1EfCQpFBIhO5VM2ji5duC/0YsBG+kLpWFhNU+SvFV1q61/HGSTRddtkX5IyfzwtE2/dlJ9ey8uYwudt94XnjXhhXyodS6v5shOX1/2RfdDHNqYjCOprLDZj57SJYc/KpFleFI3Pee4LRRpRqr5QOhZW4xpQrs1Dpzwtfwm9u4gY9SKq7lxy3iHW6/IkfvbWOPzivtCRPnsZyKRjWXXiuNi5NJoiPE/DdB/aG5WpSQ3WtSZNPC2FSGWcx9Beo0d9enFf6MiAvgx00rGumnNB09EY5Max73aciuw121Vgp1AphFyFUfBkvsgyfV+FS5LtC6kWkXC+TjrWVdNdfvQDjK9qbvTcaZBKTk1sWpbkQkk+JIIKcxAFL7oVfM8p+4vr2DEzEhEpvtA3FgY3Pl6dZs12yGUxjsdhem+lMfLdtOy8g60Pmnc20Wy/55T9xXTsCzESECmBWPWibZ0cNWjQKO14z7izhwYFuvSrGK/ZaTsO2ix3xi/+3mEDtmPH5EjEpfhS1Zu0dXCv1rX6sAlA32sW1kNdcbIQzPVwOMiSkhXiJELaa49w2Y59YUciNsXXqt60rdwWbDU9tSZrxyAsUfXm0d1uTKXYeBXILKsup0FF4yvb/QVs4Hgn7IvVQmTN4Hui3zzU2RQ9NHmntZmm0olT+LQxbnEO5DmpZGOG3uH2jBdk8ivQyKOJ9oVWimgoV+MbS4IJUUtWbSjAYaeopZrDxmUigrTZ7bSlmc+uvNn15c7rER47pkciOiVQ+MaKYMa6dhpRkHAosyzHQSQ4sgD8x5k+RUMv25fwA3J+ZQiC2XPul14C0l5p5camKbXfuYEIBgIu+ZLZWKIaS1oXPX77tH2GA7iP1JWdasagkX7I1c6LFKCnbNlPf4cSl3jYF6IiIjZ8eWeoBl0CVme9s0z9+hlnRFGkIVCZeHay06KyKnYJHC7+/S4RWupEmPGiqWYbpT+xPeXB4m9VO7uwcVAORbwKP7Q1084iLHNiFwXbZHiM7xHf5SrdJ0z6NVPokuWJeuqZwnD1ezNM1DzjNducu0VfNLJmeB/rh9QgPmOzY4In4oN8fXIoZ+5Iu7OiWES3HiX9eRgkb80iBkcH6nBL/BrEnWI4fmvvWWw+X7Mv/E7EB/na3lgLTA8uGQ2sMONMXwYMzLKqkucUliq5gN+DRzGtBsEKaR9i8X3Udocgb4gJ+010t6Y7qsSKPhURPejn4ljRq7IoHcG3Hcefwldb/x4vynqPJPsN9OVJB3aoM4hUCb4u+qajXo+0gOjeMJrZZqGWYVexOuesNcwfqsgAqGapNZmuH/ZkHvGyY6ImJHZ8ZXSspC6SROudQ3WtkHtSNaTVaTi/cqByVr5furYbW6r+31yp/w+87wtOH+H6rjD6IqPGnp+HXUGmgaR9zh+q9xMb3DxuHR1Rzl4VBPv1JjG5rYn/PIIzbQOpnJ3HXyj+0sBHYjBFZbKEJaeBj4wX3EbYGcg1qqPBuY3gV6lf0FgEAP7596gwmX2kItpoA1M5Lg87UJU2oV6H1d80r0Mu+1BXO4QBSwd8pAtvIvRGAmMUtQoU8HFxU+HnrViG8KEJKn8hLPuCyEQIjitAF937s6y+4A+Y6esoktfzlcLO+W0WFnAo+8K5BBSNLyi/6M8H3h/bFpjB1mOZgqBQDQx8OLTknJV1ioWRypr/XSYgVXhUzEoJ5qOQ9YHDwy//BPjzvuDVEb7tDza4zEGgiJSXSfi82bBYfs5ysSrcjseSnnNarALmX9IPQ9/+z1DrHvu0L1xVxG35QvybcH+MlB6DSyci+rGbQWmqOodMmwYFvUVY9ZRTYWDXaOl1/Yn9KiLlHpRCkFOaX5cff3nYMP4MGfSTRhG3S5Jh2AUI6MvsWRR/Xy4xie06XVTelH9oqxhprMa7JVJ9pM8KySRW0TSN/EeUyuwvKPY5M+iq4u+O56JzengYFFKi50eygpQwndMSz8GtFnsLutK+rx7VT+Hz7WLv9Y9YulGKaGRI+K22OeDm0yGVSSieVJnN+hxws9lqxbQpM2/U5IS+IJnkM/MXVPpaxfOyOYWADZqTvzB1E2hP6lOy9Etw5lc+yZKE4cJOB5HYlVq+jlOJ7bGqQyU8x9dpEdJFFV8F/psfanRw6bcd03Uhved3IsSdC4V9BzPZC6B1zcqivRDJFv0j2/PFKZZp5T52OHz84hBc+mRf6JaInvHV5JH4nNITwsqGUY9uhrAsyJC9VcvrntXHOa2OfNC0rq7yJnMc8mRfuJaIm/G15KH0nGOXkoqqOV+jmIpFxh1VBahFMaVZkbYwyXAHBQ76S2UbUA/7QlVE1IavJ4/155Q+1mrJJlfPOlJ4akYEw0mEnto4RjioZLSDQeqUl9l/QD3sC1URURuuoDzWnzM5R9Zj2ztduYodhpPL1HWT2aLCC2yNQeJhLwTt8d+zO1ziYV+ICp/YCPTksfw8sTXk5PUVy017Px/OmmrDCr2Be1oPb0IPqHMR9eeszV/p1T2B3r4I+gL9n6cpDwXo9Cnq0wxS5zQpjiDMSRsyhM8YXwapeJeWfU5Hum/7h18q1j3KZl8onogS8kXlsQSd7ez23iD/qV/GNURwqsaS8ZQjZMdZkShMfWsfGcH7vYJdzmZfOJ6AEvJV0TcVNUpiNaAkRI1AeUa+Ub6erM0KZYu+tY3PX8owhTYoe3gFRI+z2ReOJ+CEAln0TUaNnLM+FqZRTmgv5nykW86CCVaF8po8L/+o6nEQkNerS9rnbPaF4wk4oUAXfdNRM/+yaEL3C61lqTWho4l22tFxuJ3JYjTPWgdPeQ3WCriHfeEqIm7D17fGelhxyGm2yhHhyzrHGfQh0kDUqGE9w7HKU3QgB41eR3lN7nTZh30hKyJyw1c4hoJIMbB4jJzD3z7zHAbb65P1GojX6DBHnhaL6YisZ37eZN6vmlE8P+QduSdHXsvc/x9eZZIk5uBug9U56jIcvNKfdvUv7QJfIKxn7DCUJJazA2NDZP6exZuxfY0RWenbX6rV9hns0idtdkzyRKRQoAyNlaSZkv+y9HPcyarBCsdhHtN1i60cpSeClca5gkW9n5hodSURz9PnjScEURAJmoJjmStRn378rU4kK+wZa9JDNARttJFkaYiDHMEtbN4pn6FkT6VfAS1wcGfVmoWcSsFF8yhsyCXC+c+/fqOT/jUnyrB9OVPwOZryTPic/oT4I/wOrL6UlN2S8WgsClJezAfa/BB27RJeOybIAj4tUNVGGtwslnW2TyJHsVYR8lJ0ldbUuhLgPKwXsTWrfSR3/kxG55MF+0IuRGSE3zAdN1hTXzHVa1W24Wy+BvR8rjJ+gcA/E5lm56VWMlu6hyf2obTOJ732hSQLODVXoh8r+hfH4agSj2AOyrdzGATU59FcotBrTxk+TjUayVJ9jrN/CbRcymtfKLKIUvOlwbGUmCM92zoJDqXN2Y5DuUezZfw8ZR3Kjo002a6CuM4bbPzvRpl+z9S+9FgFPVlBp9GtMwlJwdLVOtk3ru0q/A1dowGjbiuaw2UGmyFtMnLaNuYbbKbjmejrGT1VcjPTEeRcvv0T6N13qI6PtPT+8JNwVgq7GZIUrDgpM9VvZXMTmEckOfiHGsYIW1IkqKA1W9PL21Wj1iFjUxoegbh0k6Qd+aCt4beqvaYHPPMD5qHSiGDaa+zAfOiJUsQqk071BixcKF0yqJJDUjy/rgg1mxA3rEGa+d0m5rMI30lwQk7QsysV3bLAkEhcCKurBo72S3mKa8tiGj4VAErUTkyK2ylSQRD7UBbjE4Y7pBcjMtIXRsdCajE8XrYZ4Nq1rONx8Fu1h5s+FVUpfp6XqV3ToE9S7NU84/K2O+Z5I164+sLoi44aSY6iVgR/Wv4a+rm6zQ+UEVVN4Qj2MGADbcM2TISz90yDv1nPHXOkAaVaPVX0TUO92C8x7AJoHXOO8gWb5JOPyjlHO/Nm6KHyDkG45w9fsvFwgfwjDRJUfZklY/Tln8B3Rm30OV2clOeSNhfr9Hu4vSaR7fGf9mH6JhIn1NdgGTyk2ObznHYhlyEJGRWHgDmnZYPqP4QRWrNZeh/II1yCcV8IyYC/9AXlNwF6Y5Jgjx/vgdURk5NOk+1kyENnPqfNRFws4SNU+UJpXZpsX2i1iIbzBeU3ATpKQRnRyqtIBCLkc1olduWjyW3NNc70yJpUUUk1TZ3fDcEB27EjaiTiUXwxeSw+p9uaNkYT2jcdMQ/Dzv6qIS99+VSJdE+2a+IUY9UfPTj/tQnLp3n3hRYOWGR/2MRtOAUlanr0zDk/+rLJPZSyhd282A81/Xiogc7SpInPsdry/FA/t0sS7ZhUijgoV4Ufi/axiU78vS441GzlS8ufn2Q1DjkG8yxhiU8zbn342FL66/J/A+Q0mX1KvCiJLVrWAQxUWTYCXEXSI/b1a1npVf5xtR0V54REkvS3YeMXr7uLVJOmqEjk6KxbeFNWbu/9p0kc5L5YRldSPfGGm7Ne+O2fgELeUmoi0x3UBpFEp33BoYoFXsJjeEhCZWvxJrVMA3YeJ0kJ2r46Cv9yblMtUWH3Ih39WE1NnaMcU9Q+pf2BCXNu9/y+dNtH3fmu00RsTKGjjKb+/Xjao33Mme19s0uVsWSqs8bETH1yYjItx289vc0MfmUW7xGs+0LIBvyt38ESdry0R8RPltbS+mTZYSp/naaQyJMfRdTxa/DHOgo3MYkqLyden17dFzo2om/9DpZbxws2lGRbLTb4pWzIEFu3VvTXPih9rINOEr6x7Cpo1fOCJDx+dV/o2Ii+9RtY4oYXNsbajFuC+o8ZkQyWrWNZ1ssmdF2KLOY42cmw9jzTa4qKT7DuCyEbEbh+J0bcucHhPqMdWgxFazrH4XhYbV3G+duXbRnSq2GVE1/c95g1lyjcF2LRpSGDToxL48bSIlm2uCUCOf0ccVqRJKYySXuV5aTPmAYfEl98CSAa2VMOErSSRRzgCNHT8EkyGbkCXKK6Jrl9IWEfxq1to9mUGaZoiF+CxDXO/5q6hBmGWrHuDxpeY3O0gpGdPa+c1GU694UZjZhUrw/j1rXRlzQkKx12dCutiwO5YJjcS85r0qRYe4wDxFvTX+a9Ps+5L7xoxKO67QRx9wElrGtYat0e3LtzGPpdFwPfapml2GkRDZP9PaJKai/a1aU594UWjWhUv50gbj9gD/yzDAgn5qp1w1QNvOw17PZvJnDEeZHIGVSKFzi/oRJH+rAvSolAWOEL4mMBPVP72uy+lmKMmMpSl1rfEFxYVcmMwlqyPraRPY+MkfqOrR5Tuy/MbsAEB5L4WEKfiN9Mq4trNYM5Hofq0qmv9RiraWMv+4OwAxsfl/4f8fSfx0G7PMe+8CIRj+LbWcT2F6Q1kf7r39ModJ5ktVKqoIUj/XTWOe9DpafeFgTh+nyoVHNp7n2hxQMW3e8oiPoPJtXeyZKWQnHc8ThCTjSb+ZrlqgLJIq9OyTaGmVMjv81yfIhtXxC5CMFzVfQq3UcgSrYBoYj/PkzWRilZXOVt4PPfsYO/u2j3peU2aNENjLpuxl44ztO0NGF1YaUJO/pqLwopUDGusYwulOMR1JelDF6It3vNL8pHXyO9L5rqSIPNzFfWFV/mWVeux46Fi5bI4xJ7wKedz+lfr0Lp9Tw62CF2hyGHwlkzwjhgy2r1My0kvvJgX5QKkbLB76i4dWAsBi5d54X1WLHPmXAO3Rk78X1VWuDdqVlb/7naai8vIzGXQN0XwjUgaINuuVt3HW3SbcNm9ah/Lon6MMNE6gU03k4ZMKRdkCQ3UR+8ZMuuDmBfdAO+ysDvbYh7IThrYChdjKsnMNXsOAWXbHsAXp4yj7Rjsstd85Cnr9eoh991BXtT5vZlKF00xI66osFRlolTe3X2BjFlkRIMwatWenREgmDKSKaIbmVJHlo5MygGjVi6IFZ5WXort6t3OljhQeBNTJqXfqJ5gtmbjJDiOqFYbZ6xj0js2bogTRVdAPN/g2aLuLshbIbojEQtaXcaKa9xtB3+DIpChwXaNxBUwKLI5XUDfjmS+G8Bwb4IDgKBgt/fELdD8JhlFuNMVjdl22IthAzKMtyM1H3YafE81I87cRpYeTm0+yzovrCmEcvqNjjc+iEW9relbzH+X9N2Tx5GxydIJBoMHue0KDvN6XUdH77TQOHRoPtCmwYsq9/hcOuIoJ1s13uHDdOqIvGoR4gqehFHZy6dNDMNgxXwXr9Ezz4VtmPqLKLaggaHuCEiE5A2bCnRZ+1YTFW2COiPReVtONtDn26roqjOebv9uzzYjnmziGcL+hvCdogsjdi2xvAG6H3lYThnKJk7MBsYDr2HbPSx58AY+wPcpwkA0y7WPVUUHDOdain+8k/QT7sv/bdBu26RWTZ0vqNIBivGpvp50wSVp3pkmo+Mx+GoCpuxIgovaTYWXtS4NMIJnXgEUxQS/vWdmv53dQuJ8zy5fUsu+PBt+BqagjBDCa30Tz6P2omHY32Y2YuNWNJpSuk5RaHXDR13T3vd1rpRTOaydDrEgp2lfSY1dVnUHXOuEUXr98XEfTSID1gMJvp6kFSq6Ic1N7KkqgVYzcb38bx4IZuJylg0/TDc8djAHZOHEdfo93fE/SAEFEa1VxvVhTUbkeNZOdcviZpGDjkvlppJ1KTd+tUB5VIaO2RAQsLE7++I+0HICWhjhywVzbl5GAZtuXUEJ2oxc5tHtpKln4/0rNfoF1+ct0MtXyj98xuNLn1Jne+k5RC4eI0xMqY0j6IhE9nE+jotXXObXgM2yvV6Dj4psy8kTkT6+C0qt5aWiRK0VksWBEP+V1pvkJasqskFntTTjr1aUxmpYoMowd49gR4rsy8sTsT6uC0qYUcLPudf22pCrlxPowte2G7APl69aYOGBxFaHVtIH8b2qjd/x9e6+ogdyyki9YXvaXzzQO52GPKfxnlRSSU4pEIxGftQO6IPEqZdoZtKFeGHOuo8Pmtf6K+ILvObe+JmIPJAT7OaHNvU89UklNMaui6w2elt52kHHbf08/6Y8uwo/jxGa18YsIAw85t7bs1Aq9Rp9w4Jreac/DxRtm+CZ0J03U6LPG4aWcKsd73mmLic1o4psIgx83tUwp4WTrwlImkX8VAnaMfB5vwkveP0Cil22iePYtsAFv/80drocVr7woFFnJnfaxH2ZnSuCc6o081m9rM50UAMr6gGcIQPhW9FdEMFqNVhKG3rK7C7pNa+kGARaeb2C8TtBUxdvud6ZBkFpIdh94gl+jjrsNZJpsOlP3pxtdX0su71Oa194cAizszvF4j7C7BcS+9L30UOp2jnOFi7yd5sRCIlQ3hezvi2vRe5U/3MlENfAL8vgvlAX+9bWAZ+l4PIuwHjeBw2CClRnEN1jn7esK2oQp3E85QZa/ycadRnqhV/dvqW7YgTnIZWWfTUSsfM5G/t/r+RWD6U1jMdQ1EiHw+aBx3FPepwApYy9rIum/JM2pDIG0ukxSqifWgwu08k7gvxGBGVrlg+1tZTU1mr2exz2kQ7Wn/mOpYLc9tr45wWO0XTvy+4pd/Fyq+ITY9I3CHxGBGVkTFRbGTEB/0IYkRfJbwWivWJtO8RhSeJ7WVzNfl7EKqn+TBVult9yPnF5cP3hT8P+Pag08CH5PTzhCTWKoaerV1TGo3E4FJucCs2WpkzqmrPh9itOmPxZDUeH7ov/KnLtga9BmFrAnfYNosRPsiHyhkETgecsewKHqP4eVIE2WIzYJH3pVdO4zIvOyZqIl7Hbzy8NSpi282WDhQV6yhYPlWrRI2kDc7iWVE5dktp8GTqdxgKGLB9Ycwihs3X/N96BFB/FCN82lJlGMEuDiOZ+srQq7UeYg9/MYaV4cjWf7R1sV4UhmORRRTFcu31a1hy+O2foE1rS7BHwkvwnylqxWbTz6bmj7zAjcGjIqEy+Lk6LXPLxJUMoXY7HgSXvO2ZOGYhksdaEQvbdqS4C8zrGvuEiZpHve0LVRdRe26/RNxeMelANYbm0hxsv067B5Ya6UeJ7aJx0LOyijdALBOpewt6f2E440qI90VyHEmU/cbLuFFTuo3y1F1jck6xHQb5ftWj49umzx+/ZlIAP22WTf6USMZnnvaFqYqYLb/fJGxPYfPAODBPyzKmSQ+T2U+pe8nE3SqHUMNizPb3ONTzlnq5zNO+MFUBsxX0Tdz6LJAEPTYjnDSnQauJerjR9OGONdV2nudF7ZCMCUNp1dKrvvSop31hqiJmyxd/x2JxrFyOXbEaJctQPj0OcrwlrTtLzeaXnRdHPCs9sWR4T19wuKcdM1URseVLv2OpOKWx9CfTtwxluknXGd0e4U95DYi/6gSqM6y1BFdXzZcfmk8+7QtZFXBbvvQ7lopjw0fhfibOc89tdhwSm5ZfCWra7bQULS19dVnefQfFgEPYIecQcRSR9juUiovoXjtRecS+5jmMjMzRV4JKiXScyijBtFyWrjzflE7AIewL5xBxFK76OxaLEx4qWgJJA03N5zAo/gUHZMmAgNq7nZai5lNijPm8BMFktpBzH9YGl1qEW2s0fcEJTXD5UCTEtemK0WP5900uPvCC2YZUmrbCk6+j83deVvZUSysbGe4m06QkB865vQbDuETIjnmTiGbx5d+xXBxluZQoehFZMjU9DnZQ6ebgRdR1Bs/QTrqI1kpbokt5cxoeh7BjziHiKAL9900vTj2lBZvR+zH7GjNpj6IMxVABIs+KWCIiTm6BqKfym9HwOIQdUg4hQ+GJv2OpOJvECx2R5Aq+lOiZpLk0PUmFW+0oxCeqOLvwAmYaL5tGFwPfF8g8gthd1fRNZI3nmCxcJSSWFsXEgmhaWMITsylMZEKwqLIuMI7ceSPBLqW2LxRcwNj5+vVY796Jey179rgp2iLD4wzmXpo1UrI3jgsi8jnOIzs57A/v2f+KwPjS2X2R2kbSXL9NL27rk+KLGYVAGsiMNLOhOA5pTreBjnlqrUaNHVLlooMemYN+phHfp0D2hTKJKBZf+33Tiq8kuaQ8/0Zc+hynPyLR5/OfWaOhnJee11bDjO+aIYA89gUiCRAVXyquCvVnGKWZOWrkyzMCd+WZtvtwHPBrp3RomR2zOCHr4+t3Y70vZ0esfnIQxLXn6IDpWG33D4XuM45DG+fjVbuvFYd8sf8uLbNjGiekfXzxayyWLTKNeJ6gVMrXcVCXyjRmXkXNtgXw7iFiL0sr83rrMHxeZl94nIj38WXIoWx5Cc8hpZlAQH30Y3OVqefQ9YqfrcM7VI7Kgl7zSnaVv3kij5fZFx4n4n18HWao21wsG8Y8GHWzd4/H4UtkM2nzPIrhyQKWnYN6FaO+GpYDhH1fEPkIwfeFmLFwkwwSA6ChMVmrJB4HcUXEkLwKEgfDzotXsz+W46f5liv/9+3GBdj3BZCPAHzfFCI2kaBoLyvowv3DHCo4yaQ91Vrd8XqtQw/QLWja3jfG+9p/YTzmiiZ2qLGIJBmBM1bspMUOcBVQ8fjP0JyYx+l8Q1QKgppztWbnRVb31GF//4z0vgG/abn36IUdsxEReeEreEPBL13LsMqHAVG4YckOk+hkqosR4WfZ0N0k5fay0hAZQX/h7A42vy9IfoT8+61yt9Y6+kwUPW3t0yqM1bn5VfNqwSuXvtT8KCiq7QhMTPqL7nDB+R1j+QH076uQL5plZjb2LmNj7l8mRiTxLY/Af6lqoPMNweI2To+NXK+cr3AoFpl0vAfU8T7MLVFq6iq8fKtBCAUtnY9l3jjthqYFIeyonAGRRSWU+olB+ZHGZHZr4TU9ZjgdVyZ/TOf2UVQcHVpVRdZWnhWWnpXlJz1PF3MU4u2feQk9XH5fYPwA9g/k2ze5Nzf6pWuOsEo/DsGJ9ihWOSCp0b/v9P9twjnz+SOYvVUjLri8L2B0gF37KtybahdBchplQB9a1engc7HM0ZBBU0RdO4ugF+1v9a2V1r1vRMyDlvcFio6ga1+Fe1PtLnYSWYaCECh5Fj9PnPI9rSbLqi3IhDzWFzSA/aO9sEkXWt4XKDqArgMZbizblSCTDA5GtTB0HGxjMTSkcGNAnMnMq+oShMIKaBR8bxcpGgKqW93A+839uybuKhZN4m//BM5AWz5H9k/anjGhE99YFuH7w1lv/3BjxlOeluowV5gyyB6xoj1DO3v9aPXvmT5Gd3om1Gwbbl8aCdd5yHcq+kAvqIvM7wuSHyH/vv431gtPTuMWvFly1FzHOQ4rNRUrsQPPDoMQUJeMJ9Ac81uZGgDz+wLkR8C/r/+N9cJ0Aq4GELY1bWbToHoX+7Llt/hlzzktct1kaTzihZLNR6zuMI475icDOjMQk9/E5ySR9RJ4T/TFpWEXkhfLaikHVclk5u2txQyjHk6tfXXJu9zCvnARAXXhy3BD1S4HtY5uSwOZdu3HW4dSGlMzT8SqdgiTRMpCVwulxe9BYP+9PHL1dzuW67nSPr/p/dYkjw2w62NCSW9tsonlGVJyLTLw/+tAEp6zt6XA3ZT4PT6Tl/iMzI4ZnIjxCdTLsdo5izG34cN19mlqagm8U6FIumE/x62I7WdVo510mr1sb1xKZscMTkT4+Orli9iZcql1qgOy4PL5IHK9rODEVrB0wFkTRYSlJYiXz0vO5RMy+0LgRISPr12+aZ1JNBlwgorkqUd7jXyuW+2O3GYdWyLpZtR3FvtsevNDLiOzQ/4mYnt85XKsdG6Cjg+rupBaz3Mc9l3aS8O5BjnbeVmWJF0tHFz5wnVdTmbHDE5E+Li65ZvMGSdiDqOX8BRtm5kUEZVi0Rz38Ytm6rierouFbZTvqXAuJbNjCieifAL96U2vumjPYdtkoSmTfY7rrKsfGKi2M6AX/+MxLO+h+udFmLqczL5wOBHn44oofVDkX5F6InSVA83N+qhsh7+cQhC7CHpsnFnJeJw16+eEf9aLfneJhX0hIiLiwtdR3nSXC5Ei21Y51vN8iUCpMTJE7hF8xs5rfdNyFXW9XcVcGH9fYP+IJvBViDfVIpfxPBu+Ysb8GDVVM5asoX6ch4Xg0R9DZQgUvDQpLoq/L6h/xBL4SrpQeNcJLR0ZHFvW8zkMpdOWqLVOB1s7LQPSsBxUAuQrwHog/o5B/5Ak8EWtsQQWW1uyKo5dFOmMMceDqLZHsFlZxUeLq7L2pnjwRKb9bil0IfwdQ/4hReAr2mIFHCe5VQMLCAppLF30mU5GrTaa5XQ7a2rdIi+Klvra53z8fl/w/ogf8OVsofwtswjO2W4dH6CGAR6nclCaPgim0ue8iYSvPqBZpVn5G1P1UMx9QT0jlNTX6Ue6ftbK7PG2fblzItOw45DPTPoosEuqyIjnRWo3p3U34qe9kGEfT94X/DmAq31R3k3Et8qjfUK4OCqNj6gQayjbeqqJpgV2Wiz0YUkhubB39ucR8PvC10f8vq9yDUWxQ5oEk6UXeH/WcQtufQ77nJ7+mivitCj3uz0gPNgfBRgt7lhdVNzprPYQ43sSc/jlH39clfK9Kz+sj8VSgvWk8reiESRiJiOREWjTsVjCSqCDuhLelA9YSMUDp4SZSjJE7KwBQSyMEgVUiStntfbN9/4fa1+SJDmSY7v3U8QJSnQe7pR6/+3HA6Dm9A4AXyScvejKNPOkGkkdALwBdj8so3vW78E5Cw47LnjmQW22AjhSDNMNzi35KgKQj4BZvDUY/OoiYeTSGC1q7Xy+4SvxUm83C4Y4PmrhgRw2G9Vnr6KlCgcAWg0R6AvXoXteGh7BHkQHpaiA7X0qezmm9Lj73/R1w91XNvvM0tdnCymQbh/KN7h94OiAe0fUeY9uh6JUVGXRpw8FLFmvKK9lhkjQ1w8z9tOgd1VaNeo1D5P46yWzaVbj77moJMsE7X8bM1QowuBDJL9DA7JBiBOAFh7IYfN4I94vvKg0nkk13TpflaxIiziwyddhR6vg60hNbeRn+c8EIU4AWtggh8fjjXi/NP2TVpY2DKGbfk4hQtezhP5zPchQAW9ML+Wdg7ai9qgAWijECUALD+SwebwR73dT4tf0JvJa9bbUBRlGQ5PCGdkdt82tYdngzuZvbMImKH8CEN8D/W3Jri/xpYOcbkiHBfH2XgbZcJIqIwLY+a2gXSOrdSfN1JfgydwRfo50ARxKngRhhz3MBhfmj7KDROhhUrJ9DnTEmQaRQFM2PHeeF/g8pdGahIj0dMUWDsN2+Hjq+6fN9QdxzEKhToBaeSiXTYL2SdMNdz2Xhtn4BVWvg9Y7WhugUzR9THHQbajJLMHcfqhYTCDlBLiLg9M4LOiINU07aNP9AT25JJkHL5r+XHMIiqw0tZz45YWt2bhfTW4/fGMsKOX4yIsD1DhMaJc4zZQzJEV8D7Tk5MBboFVMtmDAPbStNaOJJGpyBRL3UOf+QbS2cIgT4BYOzGEzoX3m9OJCVtHy8RgfqxQ673Tmg5A+ryNKRlMn+eu2NBW4RTQLDjo+euSBTTYPOuJNw/5bt3U6vnq7NG4Ktppu33TsbmlqWOHhN+AjwGcW/f1Tw2JBAidAEDzEwSLz+tRfesmY93IL8+LvfJWWNVpHclvumG2wbAZvAQTP5w1YVbfjV+m8qp7D/WXKcapLeXkLcrxP8zo8F3nchZbywxbHhilOAGvYKIjD5fW5v0xuLatoBtOWWJgOkC4613U5+89inIthE04O+ZyWd2vP6Pt3PbX/dpkVTg5qkMj/UNKGEF1cZq1o3Q+QvXCa7S7gZJO5kDzn/oTZ6KUn+SWd7XvfvmtziHK5TI5Svjllvwu/LYjnBIiQgyA5NOiINr3AvdIJMGAGpp8nLPyuMdUQyyJudUUvXdcWhDnrwXg3QZ4TgEIeiGTToH3aNJoaorYjR/gq7bKpG2gmEtHRpBuScS7AeOxQLFl++9HTz4J5ToAKeSiSTYKOSNN00KLaIpjGtSClz5FETX0TWgbGsOhjoGUhOt7GfNZELZTnBKiQhyKZHOiIMk0/tSeto6OMfincGaIm8fFZwOOvZ8uonAHwnjjrelqA/kYIb2L3x4X6PWaALboJJDoQwOjtpy42ohASwfOoSwIBvon2B4OL9WJYEiRmnBkvyeBNfOz4eJqHvzk0YJ82DD+iLNgR6vd9SWjH8vPRlKiBTVkKaJhrtHi2FsQwiR+7iQktHR+J8oArm0UbkG7pV08t6rUb8oEYvEF0kHW4UKjYOmzPaeh5n3dJT6c4E5U5AYpjYz42lTmiPgOxKHIPQLbaNWfZtGckWYe90QYydVTY0+k0R/fgZy8mEx07AZrmgG82m9Vnv4KjSM9VfhSenEymwQ0555CboP9SnQIGGEJradyK6PxRUzGRpePjUB5sZZJZfe4rjIWHPlbKSr97paJnzdQ7QKfD2+UUVY2td1DUyPL326GN5hwX/fHRIksW4otI0CB2rakb3JjqrgEmG8X0SSrYqV6LWFTR4Ps47vTMT4ut37U5/RuSOz6E50J+Ng/YpQ1XdvlXrAx0FCEW4DKZ5oK8f8DD0rIaw9Iyy7oMx4+OaCaWdQLsy8PKTBZwRBpeyL00G0STvq6fc6c4eYeDsl4VoACpoHBN76FwrPidIQDiYx4xnaoZOQC6VtyG2cG3X06Hl+M3hPH6xwyUMHFmYJbTm50ytcHqo2wQp3FCHwgK3ob+/aIlXCf3p5kTe4R+nuDD3HhcuF7W258GmxYSE1RxKNid71ToLUDkBPCJB7eYHGCXMTxQxdq64lEWylOvQtFikpVNIUWbMmj9Hy3gpZAVrZsnAccs6Z8AAfAQA5sBHDGGF5Bbrfx1StGbfk6Pa2zdbuZuH6SiT/pYY0fKE/Yjyf1NVGoAeieA/xy40BGnRWI2OgxlScL9q045hkBBo1iAMw40Xa9bnktC2MMNK5lQBb3lS770JpZ9Auzbgcpt/rTLt66Qo30KQmmr6Quu09D/Vd5Hq+rmjWETJeN6DtFp/g0uO5DOCSAgDzKyCdQR4Zom4hgaZgochk+TekJhSpWq9vbcXIF9SiT1VYnFBZgsROcECJCDGDlE4IA3jD49WgJDj5yW72VKvz+2Qfr7Aaqw5WvaCJ/upwmzBUucAMbwYA+TCRwRhyf6YmmQdnMc0JtpqaYtuwYliqPeYRvtblkmE5036QlYmqjECVAMD/WwqcAuc3jCD3yVereQ1a9zTdssppWtgiLcO2xCJVhvApZXj0MNWZR4ESYmcjOhpNxGJe6XIsSrCE0aV+XS5CGk6lcbd9jF65woOfWbEyC85oYZ9Hy0Xc6ErnQwSWSgLrL3B0MvsBfs3FKc9pci0N0Eiy2BfCq+RbSDTL0OPVz8S+YabVWbOOSE9KKnNELJdBKNdzJ1G9A5AQDkAUY2jTqiXU/RMfKWiP1eSmMFGrQ9Fewcq99hKdXj3ooSydengYyJ6JwAAXIAI5tI7fKuG+qYW7u0JzTBrHoZmhY3i4A+Uz/nDlhMeOV7SPkHvmQgOsfHfxy4yGFR+6xr1N9p5iqXh46udrurdvQrk3VYr+sqj0u/W3dKOgRLeyk0MVHu44PiHoZua2N8LQ2On3pP4MJRl1wGAqwk7TJp90saXKMIO9OWX0n/m/ZL9BcTDTsBeuahbTYF3S7Jyd+jgZN6lmOmiQVr5Z5zTUkNqOj32yUY0fuSFzJYmfc9iw1A7ATwmQe32QR0n7CORUJ7pUb9IPt9rlNxRsk9YAP9jEvTa8jnOIi/vdQd7OkEWJWHbdkMdJ+x3jis3ooWJATEep0CfFbuDtCS9u0EdII0Xu6i0NV+tqT8G0A5AeDiATQ2BT2irC8k6e0mAVXk3HQXe2fd12l9yU1gWDrutt70QDX2e1O0AZTj4y0OPONQ0H3KegY+utX1gybxLY5SHI8qtWwiPL3l8EOsWqq+IToFR31U/iwA5QR4i4PP2Bz0gLFOL6Rn3TfrEO8CfJ7QEFNeD8zr+0WFOjqBbU0N8xNXs/GTE+AtHj5jU9AjyjraIOWbCKWRbm9EenFCcEU8BJn7HZfSNQU64Kr1jBL/vdkwZtaGk/ji5sGD4qJ2pRZ0liBK48lE2dKoOoP+7gj6n9uC02/Z2Rj/gvJ84MivVTiuGwBIRyUIlZBedCvamQlEdbBBdsKe8BI8bCIoJ0BcPITGZr77THlGHmqTcdHVuN7Gkg2kLJmRFKqNfREgtvSVmUEz6elsbOMPJ8ArPHzDFiFEogXQJYuETbT0m34+QQESnBkerG3qRjMA8GY9fCmt7Q8xnI0EnQA5soEmh8ns855BQ9EIHFVbYXxw6kNrQyMi+n9p6KDwNZP9h/18HwG7CaEcH3LxIBqHjOtyd9GPdevcwDr/XKWhTZXOpbTk2MCoNCNT7RqSrvGspDaUgrk3OzJtZnWju4IGu8G30nIFxacyuDaMID1vdaGiEJnNahPC8Z60ssY+BmydyuSUotIPhPV0DKH2jnLzLDJPUKqmMLEN+Zxm1VY7KzrkKftNYojBbV2lcY3XG10Z6lx6ptsQgt4bhTgLkj4+gu3g3bYEJZKsTKB+OioloOo2j2eH1jW8DOmNaUcPtHosGglOVq2Mh+Mn9w0AiX9BvIhbpW0DE5PvP/j2y7Eokk5yFMjDnpt7KVSY0OKXwLe19YwYInMXXKVEJql6YdvM3PtLj3NvwngTzJyQMi44B1gCqC9Spv2aU76FQR4fsvQQTpvI7hPfwTqpkvpP0Q/e63Ql4iPzoRMgXXeixOCS7AH0Bss7kKgNQp4AtPRATluO44l3BvdXalJzX5WZanIViiIX339nVxvZGVD1nbTh6glFd5SebadWx+YLFHPxG6Z/w9YhEZX7pTgcZBR0/qBuSYFSYrUhPkZxEXFQA0Z/+ySg6ImSSudOuECVZKXDpGF2HG3o9Z4rBaO3mVuDvxQUM7Rs5azCX9Om3NEfF1qGWhVi6zhQJ0dTMJ2l4OJTjexI1NDpqnGz+f5OzyEbgT0BYusAvLYCwldMDO60O2Q295l3/ygpINSQt7zE24QHzSCUadQy5nyUvxtysDWWJtEdfgiIQoDvUqQ+LzGMwnERCViiAp/F77P+kbRtuWfEcEPKbrhORpasM5sSaQmVG+i9e+iKp3cohrAX1bZg5OPDzh5M7bD4I9b/7G1rek45URKaaGdjyd6k8LQg0h46bvt+2mDaP+IpEw09AXjqYK02id8n/SMUS1tNMBtgqqnXKUimdTYloD9/BMtdIKxqIQPY/CM7oZcnDl8UsQ/eNlb5IPP+l19OFyEtHVKmjwZ26LObWs4XgbeRc0QiHSUG5Fc0Z6TfdOEstHBbP+iy4OeV9XN6n9zNfKMN+cq3BFnMLkVmU6M3lHMWjnwC3NnDqW0BRCSYoL0naU21SXOO/1jWsddkuHegO7kkp4W9xfrUKUzhlnQhufVvC0g8LuzogZS2ACLQS0D7qNklfKOlo00CQTd1XiGg1yovFMPS/Gh6NtNh8bMJ32+iAQsLPz527mLttigsEpGNtuvWl1WLNuYq8LXIDCZi2raWPr0f6TXr9lTZRvuljMDCwo+PnbtYu60e8dUmAK4g35MHQynuFaFU9NWRPQzvSVg6lVF2DQcT8pZnhanyCcDCAqhxEfLU/mmd5n/75ejSpXNYp1R2oFFm5Z4gwpdi8iMbD2E3gSt1u53D4L+AihTyWoqO5P4d5NIFOi1gVMq+0APQEYqmoLT3PxxJfhcSmSD8CUB7B+O3xTe+VIfyXiEp4e0zt1CvkrXwiNc/pWspD1rS1NJLmnOtRzjckZhx0o/Oy/gH4CZL33/w7ZfjSSl9OOlnoP8IDhY0kWuXq1hg/kp/j0YRwLmuzwZFeJkzSM6rbvpgW+g6fru+4aVlkPnG27egmhNAOw4U5KicKqseS+mX2ln3/lwH/Y62xCoDNIvvuMrkVJyAg+FxNmzZUiRzojghK8hWUYOT6zB2u6dsv8De09ZxUczRAha6/D7N5CxOxQk4GA5lw1beuEqdARueXpouLYoZPt5zrXADC74H9oC6SZiYz3I6PNZ+AkEGLeAELAKPdWALbyKhDnoUZ7kHivyk7gg9EV5JkoIRonelKTRUeWZuWkXY7dsdwSEGnIBI4PAObOWNK9SZoO7d91OGkn1xmQa3Q3kPlENP2flp1IQ2FHoPNMOeJZ9MG2pBAI6yUOKsHgKIT3dQ99svRidQhoHTBNvl0uJuqkWgDxBVsTcgbd/rahFMkKMhNkHzKGAl9DJFQ8MlSrQLAqmGniityXb93+khQrHAfw/5RdPrQGEHO/AJSHalj5EVrWzgEvg5ZbSXDjiTU3ECDobH2bBFS77ICUTczc1+GXpNUvLBdYCF8GaFSdwk6+fTB6RWef90Cvww4rNoASegETi0A0d5Eyl1UNzTGj33zpHrQx1Rts5iSk3mZ1zat4QNORgnT08cyAJyTwD8ekCxrVvxdS4N/XNylagS/SNEtk/XodB6DKm+0caV1EyLDnOpDckr6utHCwGLGHACIoFHPLAVRL7iCI+M5YT8LsoSxjuuk6u4jTKaRVu6EB7YeWZqOaCV9fAdM3kBJ6AReLQDW3wTiXUmqoWajGJXXhpW01hN66Otzk/Yiwz7lmUwyx6LwmQLHZ9c5HCRHD2er99juUbf+qOQUd/rFFDkZO7TPEiaGy6OZqqcWg39yZ/WNRYz4ARMAod4YGuIIs3R3FkPLfTs2NefD5YiXeZSZeKsjtrRuXzoCqIj+skN/41EycJiT4Dd2livIyLyNUcZWNWeckP0tMq1xZupc9ES1NeZJSDZoLW0JR9PWuQvyb9tRsUJGBgOY8OWEEWKI7Rm0bNJT2Z8moDGyzOpdMSU65BI613nxJS+at+VXIsRcAIGgcc4sAVEvuBoweVoLfmxtHerLrsBLtpFKwgU5IkLfQO6krsuQnq089GbykbTT4C+21i9rYJxRTOoDUnKxE60RQrtdJWRIUWWG2hZuxjAs4DCAt3toI/5jpAcMP342LuD1NsSGF8y09Fqei8NWtFm70ppsO/q6kK20z/mZhQR6hZJe92jocYvC3kWkHYC4M2G6WwJjC+Z4QTzBhBwiJMtP+E8b5UTxoY0OWn1YKBJyeZyYOct5TVc1wJSjwu8ekCtJyDxBSeF7Xf1TcN8futlOj2vLdEsvYH8GTbRqFrhhR/lg8c86LyfgBsWWBSo1NGSqBfXDL79Mussh8HblDqbnmfx6BQaM30Orz58jhYyoHrr64E4HjYq2CE7To4/EQ3Aow14nZDszklvlHEtKsUJqBceVcOUQEWKqQFtt5axxzU3LEDQV5a3nNYUmxqMCsAoNT3rZ3/4r1po6AmwUw9rtcVDvtiIWdxbDz3KcLX3Z2E4sWitIbPeScelKHLor4QS43EPNhp6AvTUQ1tt9VCkNqJNPiVFToY0KsXH6P41uoakdHkpmKEHfBcGOOgF+AnfZ4kJhp4APPXAVls9FKmN6LVI1z/eKKvMMii4GqAWuYvZNKDvQO3n1JQZGGJ6kER+QRRD4lnQVQPVXy4c7yX2DRU1eRhEY5sp8NG9/FIK99lbOg+WYWnnoc4xGhLYxK7MtxOS1TlJaikUa8JOi8sqFLusTy1lAedmvitdXXQngpd2QK0c6IIy+U5gaoPJxwefPbDaURAFgiM650XnxABAU50TLBCXFE1pClAE3KXh3mYPqKlTgN7Yt+zcRkSPD6B6gKujIIoUR6gO6bjjuv5BF0XBX9HILmXOm2VcbAhd1luDc8bDuMwERU8AojqYqy0hiiRH6LtzoRjYYt3r0CYiUAxqJmXWOyxN6LuP0tRuD4SSXgsspGG7DthHwDiUqrR86X4rhC1588wymHqw4WSnG6Z/4b0P9bfrkpyQUmQGyqrEeHIkVzCSBOerc7RPHEh7DuIjNlGbTB7XSI2WJZoTDuRc3ElBrk8HKjgPcFGEQ8Q92XF5etQcp/dWnnw1ir8mhy5IuRfY7ojD623Z6H8rNTPaLCuUWKAO0gvdU2tm6MyOExyvBBCBbC3W1uVvFf7W0nBMIQ9ifQesnYdeh9ZCT+K7gIatys0GDx9Jgvou5FwfT+BXEjULFD8+hu5B7raGzNecofJXBaKi/5Rm9rxatDEhD5EaQdE9GuPin7N83uCf9DyN5kQRAg3VM457tN5YIDfJaeR/++XQhE9AK/ZoyA3UU85m4ZFLb0gtMwbQyMqfd2azCtaNO81isIuEpixl/7kWGxW2KnR88emFI/ulXvU2LeD4LAKPdGCL6HzRHWoVYMNLrEeRT78iQMrdONvA1KAHpuLACv+62SW9pROmPbwebXD7BGC4DZ3bIrpIdLemPriO/Hfeq9BhsGRN0TO/ncIaAvqmu3hBOePZ2d7CQY+Pm3o4qyOh8yV3BajCGpo19lk+Ujy6YRGkdTxE8WLHuLQXVX1vtOfV/qhW5oJbxylDUa5I1Gl7/9BF/G+/nOPicMI/oFKR9gkIEPIlfuNYAFG24UXQgrleHnAyA10ED281kbSxsoDCP7oj1J6gwFQ3GjQf7kBE2cilLtmNcR2KKFCkRQRGa/4muJurelC0w8gdCviXvDxMHPn4uLOLU9sKRFewyE2Bk6IZ/T5fzIyuoRzNgAGGwR9BwRd698qvLNys6nsemzjyCXBnD6e2BYi+YJHNw4aWy0D7EHxqARaC8IjvAstP0grQJOnRZZnHoD09WBI2knwC5NkBqm0JoitZ3HjRtc+tueNQyAc3R3vi1loYgDuJhidb3mmhFhlueda8fgMdWPDdCeA+Dx60ZV+RTGx3pMXyumCTdj9Hl1zOR1EVH2JIj3EpUBHZGlrStR9+j//etMTAKo6PbHhAiK008JUJdGe033BJAeWsofV7ug6qQmyNUJEC71x1XIjgtvw9dOftLezEANJPgLt7OL0pXvW1rkiS5tCNqNWU5r0MHJya7ESzq2YRw4KtvGW50OzI+ZGhmjj68XF3F6e39Ze+XrOiNezQpJKb3na9zlSiLdp25i2ToWXmWcs9o9IzHh7WJv58Arzaw7dN6WKkdFySxvEt0I/WoIP1Aa3Ii0AGIxWKMbn3mpakE8CH7/dg4c8ngKsdeNuRLkZSR0BROiydGKIRBWt0QfVS5B6g8K46bqV1JfFXAvXs2b/Kwp9PgFd7+LYtv/PleigyZj1qM6wkp16G7allA4E/QL2w+ixFCroIZVp7esqYAPTx8WoP3rb1Y5HejA5p4dEgYhy6Hnir30sPtY7aXNFxaa8TVRiSwzT3z/b2fwOpx4VdPZDW1gH5qiGaJFNLujC37PfzNIrEzogtatc6ecExUe/hWeFq+sqpZEFfJ4DKHGjNobxHFHk6GTI/c5orfanpEH2euN8Dn0s0D1q70N2oIiiquP1a34FiEOdT7NW1mle2uJg07MpzNVmcG9V1jklMOZcvn3LlVh1tR9CGTVbh5p4Mch1EBvrYO6znOBRtYMBM4esjAVyPVuQmhn4CyN2B6B3xlC+2kiKvhrt5XnJa524kU4P8fqvl+D30c2q9EUp/1H5tGP34qLuD0dvaKV9rNVEHlNZwOBazkiQn8Ak6rSRThXOhVNPAgKSIYMuBSzHJTs/6tQWjnwB292B6WwLkKob4Ped6d3S6o2u0CR1MlbmE25da6cTTX4IBA5/SzfmiutgCOuO2oMQBt610LGp3iODbLwdXkQifVjheYt54Edf9um8GEqBnr8LVVLAFGYhS89EtV8Jyi/qvYT8t7CFltUHT8P8D2tggzwsRromiHx909zB6Wz7ly61Q3qJFomEGbULjWlTi9CoyiUGf2/J5geHVKHqiL84OvsMSAws+AXTsQM22AsgXDGV2RdEUnyLjsq4nKMyXtEqLPjtSGy2wR+ZaGt8D5SsPfpANBh8fPPbAZkfH4uteuLxxc+2Eim3R69D07/LAwe8QbIaGpfNAQjHxKXs0VbdrfsetEHr1RFu5UcUJQuqSbNQ7VRgEOKrPpJt37o/WMQ5AfXw824O/TSFGpNugN1KzPglkYPL3OI3QDVCea1LeBoYFn3RpOA6C8yN3MOHpE8DZHvxtKjF84Qa2rzSTBnCTQzC5DAWKCk/A1rJdKT/kGElq1gNWu8+a6D/3jbXaYQrvDMUjsP+ldF5v18c6OH1E5EN7gTJm6KTbtHOyiEDasqdLPEN4MBn8S/RCxR1tgo5MpyH/Na2hkT69Jp1em1Zvzjd8PC1c+gQ4tgN72wKWSPCymqSlsFBamuKuiv92dnn3IAGLLdZCrXVVTYkRF6zn/f9rrG8XvE5QIPMKaia9NiDjLjryOYer8KdYqgpANCMWJvDnWRpJo5M2DcnPtiLIyy8VoGw8/wT4v8cXsKU/kVRoSH9VgZ9allIbZsUauvtjy5D8fDEhDu1beeXDJeKZ6fVe+QZzYvs1iuOxUOT2ve++nHrfCeqDXj3RpkT6FErkJkncYpk8NfqlVrbNpv444ynCEW4dEwIaN0mlWZFgb/kIzihdRm04SSWp8fSeONv59oNvvxwlqNRf6cdu/hzyKQVkMoBSKD848kER4PbKgEkdQnNw8uh0zLfMajIUPUKjLTO1RalvRKYWC+T4rBGPZeKongKRFIVGdWmmQTvZvD67iTZfrbAjeZGIFcPmJEIhbHz5EZo7sMvxYRoP1nHkQr68CNmJMg5odq6R1/W/BImN42sYz3DAKeNCucxFKO4F3J/MbxOMPgF47YHdtnTLl3oh64csXN4FxcSyC7EOqEmvsY4VI0EXx0CgNOq7gEPKW02/LEbGCRgcHuPDFur4wh6OzMR8vcPoQ/sSQyC1l2xcpdFyWDoqrefBVM/GacBTwv8bDwPTvvwEdueePTqcCCrKBOJduIaWCRALFzgWoqoC751+W5tTJoLDipH4VtvHBtAO8jLqNfg5Df3VZn7JxNnmAZyAN+DxDEzFnC+w6+w4szXvnexvL5dhcwdd39j25e/pJeQtDUzQyUYK4heBsJDs4wPfDkxuC+ZcfR3vEdJRo4PZKDxgXIbdBzT0Wmg/rqPS65/6eZutPBJMGwE+PmLsIsy22MwXp+HwK+mm7k2tujdSENUaYFsYTbGBhIOmazbXkBQ+WDomjncC3M/DCU3RlKuxKvBbyU1jNNDx271KGVV3fjASP+AkFOiKregBcqu3BoZ3AsjPgwhtxZQrsIKaFep/uYOEYpVeZmDLuIfXEgcIDIvGABr30f2PH6bBlD9A0I6eoVwV7PTa581H3S+Fn0JvY7B5XOf1krvyUxIM/pCQonyGXO2PMEVm5Rbd9KSgeFBcfEAdT7MKnzNZQPq3YAnQ2sQJA5M7ih7KJaLgIm2wIx5AXkG72KW80cNgLztwldslqEzI6TvzVCnUmz+4cpRrCR9wi4cfRc6A/WQvdL/8spOg4+ZMTorlgfYRyD+xJPAyAVDUPuKoN3ELQS4uifq2PSkRvzkKLPT3+Gixhy47artInTfx57K3w6d6XbffVaVnE2dnMuswLO1NZckRAWuzHybyFvx7fLjYhZdtuZ0vz6tscXHBoq6qE1wHMH2XNbzmbZOKdsngGvebuwmo9WsM0cTsToDxeZigTcmNKLyL5pbMbjrwVSyVVddZJIek6aVur0Jh4zlVuMXTeqmyYMLOJ4CpbVjbkdtF6jw+bPV5bW21ABHhhkOd1HnoeUofZwxLDzVr+ACgZj2gfJMAcHy+gEcvsEVjgcYM/gV66qMMU+5lEvzJZO4MeI1e9sJAtVqjBGzhjwIBTnC8HKzcwtMUcYS+Q//LLzuBP1yOGFhXk3fEBMr8LYPY5Qsw9bjJRdlssSQF0IRW1JkT2wLH7tZUYYjcIzNpGDdGoWC6VRNPwWgpHu/db1hU4n8rpGhAFwb+QO7e/fLL2fhPcFB4B4tZvYmKPfbTdaopdvHlDaNZi3VxApaGzemwtYaRNhFtKvXwa8D5yr1OH6wVwb5J/7Svjy2dLVPXOyWJ6VkanRSEi3EaGkdmucNya4PBt18OFiuVYSQfYH7T4PRir2oFBJdSgU0VJudl9SJakBxyyE9/TyF3lWjTsWHzbNsirNfChn8bhtkT9ATVS6/aabJUXFJL5scyeHHR7BSDKnevMLeW+/IXzJv49W40MRRAM+naD779cjabE2xOzg9k/VJmGKFwyab165JJBxy7oxd+zlVa32bUz9pAZYu5bXt8yPaeK7vl4v4GB8hi3RyfpeOyemydrq/rBY6MyoqmttzfUK5Dmx1PoyYuW9cbmsIgwU2BF/X9QwZs0W5OQNPxaD22TNeX9eLm1HQDrJyp0RluboutD+o065s1NCk2VVZCBpfsSQOyiDcnIOp4xB5baOoKUxc9vIy6rNxEvhvd5D7uSdEROi81H4DZUu/6rFPb61Gotok3JyDq2LweR2fq61JBHF1S96R7gLbr6lVBtOyS1NCZJAHZRGuhkfXMgwDhFZ67XRY/QRndK7ubNHyftY+WmygFyR5LM6lfYWQddG433mVXq1ctUJig0uXvadt6xpG/wlos2s0JaDoercdU6PqCXloJ9ZYAaZNPEjMkEBkpsuj3pKoSqyR2qG1J6zx71WfTjt8oYBe3Bl54sAk+jeAYKEwDuROWGGRZqcwqZ7qlmPUVqpGidUEVMuTzwcWt/4ImU9jcB/1MRCFgrJR3gkmbs3QCjpPHibLliTaC9B/LKNGPTqk7iM4kxaLrdDi9yfrvkAkPHRe/octK2igOf+/EJmfpBBQnjxJlKxR9RSMNRmma1nMLavr3Oh0odNGbSOljTUyTrWiNATexn5ChxbA4PiHD42/Ywq5ICDbhGyOLDr2K+zVWXVULRRXMAdm6Fo5N2YmwRMt4Ik00kYHUsb2zgGp0EOzrshN8++WE6WLWljUfQcuoulPAyPCqf3610EbUvRTAThleiOpMetgJ6GQO/cyRp0ZyViRTeqChhe6QDta0zYjpcWM/TCW3sTlp0vNs0189WrGZ7LATkMkc8pmjr/T1mBmzf2ZZ/VyI/JTBQXeRvIfi8v4Zt9CTnroKU3qUx22iywl4MR6PxlYm+kpGND3qgoh0iRmnXgfF9SVHH0Sw2u8YzbvULwf7Q5M+WRdosjgLJ+A4OJQIW18W6dHAVVB4HlhUFiYGzAGqdHpqTJO6rreUYDXNHGh7fTSPsKH+E1ADHCqBLS8LxGjIM4ZWbykGlA2hISmmzVOOJVpTXYkHyKHTjVgmzMPegVqsQPAEgaMXaNoENZfP5uy1XgUFL4BPdP57yjTqM83/9xqPnVafIA330vZKCdxkbLrg8Nx1XPsJOm8H9qTSWby6b0+NCioPrgMUrdRPmd7rvmd163shMLOYHsflhXg0EkcQ5wvoCtxByhAiCUJ6IZgUzpOEgV05ohEWWIE1E6oR/DmMVJ/iTYurcAJug8eFMNWVvhgTWnTY52i2QJe53sf0X0ofcfplWc1b8HPmYDt5XsMUWJbHeWDSFU5Ab3DYEKa60hdjbjaNl7dPD04CTlwFgfiUbajQ7efLtaCnWLvyf+hA6k8Sbh7wF+CyOoxpsNUkNJ2Raeh/++XUz45TDXRLhzaY5YNfFV2LWMtYNu2qbEkSrXK7mPcGWGbxPI5PC/FYJLak05eAQpCEDhjy/pEoZb1OnULjx6ZAu8ElqSyU2mUGo2fcQ/Zq8jyOywpxSSS2ptPXgIIHlaQXdkO0VspHG4pu9lpxgVPJuOPSBNIqdZ/rSSelxQkaPoieHYVskNUG5rjaqrjfSltCesSN7U2QBIwhQjdIJSpwhD/Q7VXsGFIKhMUFusSxC1dZdX03GkQwxHIBGnEqOSOhbLDEnAUrQXhwHa2dN8IUyCFpIWTVLS542NCCZm4GBR4Kd0OZQB9D64Agmx5fX69MYVBDcKCNmzk3aUwLBgta3G8VbdCRILaRhsbU1XT6ElAYSO8L6tIOIuEIjJiRPsk+xYhI0zEzDb+GJswlzUex2KT5nIAW5LCITEmnrwBFv8lZ9blR+LOlAtKQzjRJWxqC4vYxh6bD6HNyjv1wsjapGidgdnhMEFvSGUlA6QwV90zk9mVLbj/RZKNtDVsTtGVTx6X5n7L8PW2womC9pWKLqnECaodHBbE1nb4GlOkFqV2IcUpzQ1yHosibjaZPSyMal/6bOuRpw5b2hyoDbveNVwuWGe8fdV82bPDtl3NgHZ/c4XFBbLpuwO6dcG7iQTekLfwpFHIzdT2DKcFWjzp6dCVJqRx9OCnoeqlWaFI1jkvt8KkgtqbT14BWNiyp8rhoz2xiS4brpJymfJ6wmV0KSqPQIMtxSBHvd1bicDVOwO1wqCC2pjPSgK5LSeRORk3yfgqq9mylyNTZaNg0dVjKnrOy5AoqV0/NqAW6nwCkd0B9R9QZaEDpJoq8fzphc+33KtBbaaWQttK97qid4wQOuMfc81mztYqkJyiqekVYWwTK0lNhXcgZNJMUKTg/Yma5nEFzPMo/Jpp5AvDTA0ttVWekAt1tDi3nDFBIq34Om+Mi3MoN29jr7YwUf8hWXOmAKE/VqIFmngD89MBSW9YZqEB3Bz9Q7gHB+W25jD1UUkdYZqbrvDz6yroQKZHqP7BVA8s8PvTpQqW2OtFXM8KEGe3EZOvICO30OnlJBILNaElig59D16hTg1lavj/Ej7/wH7Oq7yco1jvFfUfeE8mBOqUbQ+pFdIg0adC1WLMhTayBxAyhIGPcAuWT5P8ZhdNH5tUHD43srLDEhDZ9dEGX3onul1+ODegJbEM9m1GxaUewlpEjo7MYfw7bWWldgI4+6Li99QSmO05duDwNkop7HeRjuA6LDYu2Gc+Izjq/DyAMNc/0UuZpAeEnwM09nN0WaLp6TsRRRdqMYFOeWoVGNq/xJTzd5vi4TtODy1oWpeOtpgcaRGFmYR90OmRTU3E3zmjJ2vxvtcMhZaToGg9hPk7p2+EQ8o3JlPc+S7s5m93tnXcRyncyV/mUQ+zz8h0ev8n7l2EXeF3c2Z5C7pTfguUtIPz4uLkDszsSRV/SmCWo0bcPz7fr492QUU15/VC7C7wPITzv5/z6c0vpWcG3oNwTQL8eVGyL+3wxIGxiy0gXMtFSgrCcdAufAC0uQI2G4lpTQaL8TLwzxWOdm5NnKdLTv82LZ/pfiusbTY2xRLRRtkYSsH2jpAgpFh2tsPnv9XY1o8wfZgiZK95p6Odoq5hgBU5vgxtEC6sV/PiNZoc0+VAs59PpP+HxV5QSeK5m2swVVdt80ECA19EKdkjXVS4pohVv5evQ60zrkS4s/KLMxUH28WbIFv8ggK7/rTQ6YJcPIcxSrLJVwQ/YZ3ZFDYAdldthzya/2CiDj0p4PFDPwwftzTYatuHvdytvGTgYGOrxEVcXoTWVfb4QsN6ylkQwS5slwBOXXo2yQymJHW3qsBRWa64M3HE8AkkTQj0B5OpBtLa2z9cCNrh73diwsR5Nr0M/O005hyYddx/DX0wLvWlu3vu4CxNDPQHm6mC0jrjPFwOi3xH4gxqkzyrHDF1n0T1syfnoEM75utzSaTX08E0oBz/qFpnybA4TR0fLTWw3FH6kdVW87rdf/L6ALaITOQS9ne1ADj+3SSfmhiU09pklrBp+zrRDQ5W74PYMVoy+LxSAcKAu6F9rk0zB7VzudTq3OqPLuLQcM9S9NPXQGfoHjoE9UbYbNAfh7WbBA0fWov/tlwMdnABq8KAJu7riV2MGytqcyNAmSC99lHsdG4C0Acs3LG0NEP4EmL2H8Zvy0EBMOimz/wBWOakHAwVsiNckbxh02s3LLIB8Tn8k3E73YwJAe1VZFUMrpuJOIQsft+2O/+2XvIiJHYkZd5lSX23oiRdXOaLcEASjfhJG/BsEG9RPuM8WZJyCnNKKoyULEi/gLsqyy+0MSjsZl3gTe1BKJ1Y2BACzBddHu7G51jUQQGZG+7q01RirvZRRmByGE3AeHIqELa6NxLh0dteLWVH4ct2DKVoUBBrsky1tjTAqjAg072VHs8ft/5uhjJ2+Hj/dddNjk4frRy5epGNFRv9pN21a95P/ftDR8UynfiVdtbDvE2DlDrbuaEsDKSrjLPIcaaqoKzq8jG+DNfRbxjGpw44MuEPePoKjB/5gkhBOQFrwSA62LM+X8XWkRbfIsSiSl62g4LVrR8uC4oo0UsXv2fB/V5IOnWKPypaN4R8f8ncYAo4+NtLTch/yrKUqdO7Uz0H00eItZV+7XJtoeORpvEgxYPnh6YYNgztZ0ANo3MmiQ0xyAVn3W6lOAsTADje5rHaLkxPZk8C0GQUJgecs+NYHTH2AFSqcAbYqHELopaV7GURAIFw3zIWiBaWOujeqotxEgyZaeWclmhD+CRB/jyFgy2N9OS2sFbuI9Bt7TaWr7q3gIWd+zRTktHrNqaGyqU3n/G7P7m+/8bYyqVQnoF55kdLgOnmRtI3+WN2tEKBQBIFiCP4eZft7sNI/XeoY7c0KrnmVQ7uh0Rv6TYsBcQLGhMewsBWWviITWHi/RACYPpfr+Y2cYV6OIJ3bH2ZHRglUkq1d03z06zGh/OMj/w5RwJGJuaoyZAsUim1Nkdr3ZWBOq+Vymn1T6v+waqS9fsr0nkONL291Axnf4EJGRREKQUOCdEWqG/630jsNPbGXVhkKax+OGnbJ0wSkiHYJV8Jjn/lm9SEqVhjuxF6LSDbKRBUdU762/+PN+JtY0iJBHJ804ZEsHIGdq8eD+oS2ZRmWQgjpS4jL0Ak5FGOik6AIQ4CGpfvfS6cwjKkeWJ/JgjgBa8JjWdgCO1ePt4ANpiJzEtacEnROWVFVqqwUEyn1ZjLw2fSEpjmRn6R7kwRxAtKER7KwFXauIG/LpqGR2rp06wlBVWtaZoW/3brDImlYsskgKphvcTKszPu4rAmbYmHzWCPa68hVYEgEn3P3m+xN8MGzBPA06rjub6isFZFsb4o411tmiRYH4gScCY9jYUvsfEkeRCdTFi52n9F71eusubdEjQXxxKV20Fgry5ynJbzTYyFa6OoJwFgPvDWlSYGQiWah6J+RKOyV71Vozyj6audSt/5VuUu4TgVQKB78LpvGcXzah0cTcWRukSwOFpcy7ALnST6GjLA1BWxo15sCZNGwDZGEfN5pF8pPRobF4zg+7cMhidgit0gUt0qbOmXWTFmmDK7TtdcUoOWdtdl2Bs4ijwLNoWmSPYh2JmHiBAQLj5BhK518XRQa9WjGt1CA5y0dAOFSqEutR7aOSkESq854XxlCV7j0DYMwcQJ+hUPHsGVOkSyK3mYa8uToHM6SFSP9uauN7qHBr+omVBQB6XujreMRIDuI8fEBZgeOtlVOvipqwtKFY38G+YpCi3Qd9IHU3QoWtvO6GtMPkJO7onFtfzKUTNjzBDCpB6uaOidXFYVCSS36vAEvi78/rkIpiizOJN2ZBbNF9U7voKzy2FgtyPMEAKkHqNoiJ1cU1eDJeCsKA3bVTS/T0lxTT2RaUwLecMPAJSaBsHOoaz1y7Ylme0wTgXqF9fvYtTU0CL6Vsl9mC1YOounARkYlZb8EuSFSSmwhs2srdCum9+NoP+72Wrl7/ZMRK4DpxmYhFG71l4r+Nup3ApTQQxVtjYyvqUGuOTU6HLfojctU7PAyA5AFy1VQ6c39ZqDoePI4W03Q7wQgoQcq2iIZX1SDTnEp6fIfeQrUget0/McingM4KAWJ0bnmrCWTWoBIf9+FCfqdACT0QEVb6+FKQxhp61OGpZUx5SaALdBZl8T9is6uop05gZNBVigBHM2YZ6RaMsJwegWZ/6GNjT2Y56H3lbKmC2I/OCU2RN9TCz5sbT25skcrIpdLYKYnggARGdrqY87L8dpgsQLBGf9DQiylKgTXlQUOnDVTSCybPpAUEGAHIyl5te+yEb8lpOqUUYxPmQntA+DgsADsqYf8G8CbhXWdABuzoTRbIBPpaaa0puMXj6nEx0tBPjWWFq25O/v1lEWT7/1Rltbvgt8XSqYLAYFOI9rRRZyPEitckJWmjEYLUnexRCe+0CMShtDRU9RblKLELKl1AyJVJbCCQeNUxAXg1B5b8Ryc808diQU5HR+h8gAtU+gR6UImfFDlOIT2TVJOujWawFzvxC3QwS3HZANBgp6Axoyzr/48DH6DgVuV1BNg1B6mbWezUfZLh/1CLA0NIeUJ+ZIt7UqtXdl94Tg0cacT4FQOrGXLZCJZzUT6IquHbjRNuU4BoMFMJUyBgl7aOiyFJ7dYgrb346FgMBGbEyA8HiJky2QiWQ3tilOTRwRE+1q10xTLn7uoWzi2E1JP4etXPhmfN2FiZyfA2jxsztZJ+LoKsIYpwNg3m9Fsia6Dw64K34Minb0v9sdN+uScpAiv/BD4/7PxlFVlOEFRwqlh2PTriK4N8iyX1WF8UpI4k4lbxW7CgkEDqXI9YDrqXMJ2oW0713dUiTbudAKcysa1HK2PLw0qKDL3pjFaV9McXIbOYxGdFJRm1Aof3ta0/Ir8Pe2uj+zKBk5OALR4wIytk/F1NRvX38pCKNhn970Ojk5565APto9FZ2Y9E99Egh/j4y0WhCR8ZkiTRNTZ5i29ul9+ObPmBLPMmZUO7SGiSdgQi5O+gc9HD2eK909CqfGdyM4sUZ2gpOWVwGxJEkuhUIe50Q8lWuVeZ6icC9FPF9rKLYFZWNgJsDMHarMlRr4kCcs15S6zjF/u9Y1EMpIl6etr1HV9KSesHjWNogykP9IlE9E5AQLkAEa2yMjVJKGARo9f76GX+rkMrU/R3UIHT7mN/D3qGGvq6UDLv3zDiw6gcwIAyMaLHJGRq0ni/qG7apKN+uN1jaQ4SmpjIJ4XQfrxazYgWMkHABk8Sae4baz/wSkqOG7ru3ef+6W49FKwiXwCpwj9oc7CjVIcxbfMFKX3VMe1mEG1tYApighsyUnDjls0C3rmPjDo/lQ+Jr10l6DFg8GMDFpKMhuhNzZ+RF0dfN3rbINQeCF5bKDnMV0Cv2agOezkj2mxr/IS284Ewo4PnDk4m6Ow8RU5BdlD1kQtAzrreh1Ka1rTVQipxh2WXpMQunBm0jJ8FN8ol2pingiBNxILOmGx3iXl97/9ctL4o4SLiWwUU5KC3CpVQ/AzWJPIE6blIYkpsgRaedhveE5NlbAJZLcbWzRiX1ljXYJmBgJV/6hdW0txmcAuK3wWANYp0Jq+OIhDq81yjSfcL79sHwlxQ6MdFwVbhpQGt1zQMjvHQ+w9WdV0fOCZViTVLH2kE0OL+BahW/5+02a+pW1SHilJwdxzqbBNLd7AJQ0c8ASwoQcz2gojX5G0sZ6L1pLxftK9zqIQs8gGTgdfkmpIYjS8VXGmWb2k8khSTBjt+KibB9LZEiNfkDTwvDRao5NMyl8Ie+l1VglR6RUrVYIrpvTb5BxFY/f8RoZiZ/PHx75drNxmQ/rsSeS0PTWx8QcdWwRPBXE5+nf/ERgTTTl03MKxJH9OZ+YcLzmnmOjdCdA+Exu0BTaRHmfUOpWygv459Ro70oPTY7pyx18dkwskMoGBXubvsp2N3R0f6/OwQUdfE+lxFpomy7i08xQpLQxGyCRzgVSoqwcLNFF0mky9CxzP3zdhgncnAPs8cNCW17hyHKBEkkEijEJQrleBuZqGrRUL+0KPs2RpNEszdQNIexwjv5DCmm2eTtAWyuki1cEwbbAiLoDlcmkXzvhbqCifo3Ms3V2GQqCvVi68gvIIBIx8liB61mFBWmY1LCN6pYxX1qGJfJ4AKHVwVVta4ktRJjKKW6LZZUtExtfJ9VaEaGLfAjpoAizgF5OztJ+2Iyb4eVys1IVWTXWEL6ZADSnLekYFn1bWlXZUeqz6a0pqSoNqMOldnNEjSsRjfKTKFIc36cyANcJvCc3ntVQQfCu1AmBSk8m9tK/UtbVUAGojEEEAEw3X0JT9b+TWR0p9ZDWD988lF4ikaXG1i7iaPt4L8Qa3FmcLgv1aF0kD+Dw+TOqhqrY8wpdTIBnKRVESbIpX3IGLbPk1dBKlIh7BaI1Up+YCtAXVZ6GEwhPwAUDNhtUodivID3QLC74Vm/WEV0iPFcQ02jMYAmRxYYUTM9uaU+ws6NFCNWmDFIxQnaOhpm+TonOsbA7V4Vl2m+HSH7L8f7JCfF7KLV0KCibkyrA+XVfdQ8knDHy5JDVA9Ndh4bqVABiiB28fb0mvTMj4BBCzB0nbogxXxEETo9JrHFLVpnNeWEy4Tq+7yXHLvqsXCU8UJVcJMugvyoMeZkPGJ4CYHUTaVhb4SgRUUWbtCi9QuiTn0+bm3rWpQnNfo8UCNZ982Cg2/xYC45hHFQtb1GKyPBjdDNcI39v/9svRCRxfVuBhWwB3ac5n/hxVm3IZpRT/MCEDUMdWuBafI7jlDRJZB1or6HVsAxPb8OQN2YIFHJ8AaPaAaVtWEMkQZuMwh98/vSJJ6QoOwDGnvn8Y/TcdF3UpJf42uPg/+IEmcHwCoNkDpm1hgS9EALzOXWskPKT96goUoI2asufSIf4xSkRTUA2Iwa0bTyDbgo5PADU70LRDj4/o9LT9FI19x1RsrkGiNirX9TOLCOt1SmwI9zVngaf7Yy5ShD446KXkAzsa6l973tJK8K26Iw24A+O0p/8dcpwiBgdiIYc9RbLpmiP93eTjP6+pRtSDY3fufy3tPmYaF9YwT6u1OOTpfOZR5FfSO7CDDRufAGb2YGlbWBAJEQY60Gt0SDNbuiJM9j+Weggkelk062yrSnmNRsow63oavJuw8QlgZg+WtpUFkRIBGIweYwPys6GfwyeeYzQxU1KhZef+L7pCaRZK3fANjy+rIn+CCr5T8LeZ6S6RHZtxrVvQORwQstOhogzZqaBwED+l24UKfeG5VpCR7uf6khTSxNxPgNE7mL7DavdZ8JRc1ZEVkQI0OC47nnYWeZAol48itXOQYijKGXd/6/Nhc2RDxyeAmj1o2pZIuIoK0DNz0tCu0ybZ7lVoyy3C2WEXmeuViYZjWv+nSZ3GE8m2kOPjI80eMu1w830uP7MN5dfSTSS2edPrMAtc7qJU6Z7H49L+nGQHKnACe+BtJtJ4AmTSQzJtdn7E5keQMfSwXmmue50ELya+iSlGAAKUojqgtWj84KeyFLfHeVRagDNpaq8Cba92J/e+FL8lxnsK8x0hDteeEVx15bRGWgndnlUUlS+UsjhrooxZCrbst5R4V0CmuJZ2kHEROgfQs/A/ydVo60KUjIOTRh8v2S3ZIO0JQF0HA7Z1Db4OAurzyqUHvH3aiiXSp+s0ms5FXz+sNK6gnQ4XsVxAWbWuH/X6f2Vj2BnHCdh3DlvPqadH9fcFXEbYgx3e+xefMzMaJwN6wzLRwjhPgIl6GKqtCvFVJOwtmDSiaBSaaA+gxoaLS05Oii41K1+YPhSm6AZAP6g+zxMLqjo+tOVBYbYwxJWRgGvD/iRSmS+CmuIq0EdNPRIhZdBBKRAcuhEDrlvPYqcFVZ0A2rKBMFsX4utIIO3sRRPCCsuSqy+ZlLlnCU/R+lteAzzJR0rtpl5rPaHvf+5Pje2uoNGfdKPgcOF6t2qjscUejRpeedQ7k7TkS1QcSYtXSKVhaWmi9MZ9z9BF+J1alwlUnQDX8nAwWxPiSkjAYG1yeeAlW2AZXKbDD6pptNvv39PD6E1EjeDNpvHtNObgVCfAtTwczJaERBKSiWkra7/A318+B4d+dt1JKO/K5UI9KI1tifawzn44kP57bmLv9idAZz001+bP+nxblNmKVPUosIb1S9frdESH8ntoA5vrosiU8ZQqWQtQ9rdqtibQdzxY0AURbT1NpL+hg+HOPApmlEOwGYGdRbJTWlR6ljAgknaR97GRFj9qLP+o18FY8JllYQ4S6jTUKw/NwyvreCZ6vIqk3pD3/OcKaiIBDu1lWJFM8Owpz2vEQvkPEgkmhI4Pn4cL3ZiwSF0pus8/Asl/dxSwM+ETZM5Oom2Tp/0d3z4frNNE0ng6ujn/Q4t1Wg8vUbNtgPMEgKgHoNqKIleBhFI3vc6mU7+xj5teB4Z+MvUpGJNWtDxuBp9YtqJe8n4YyANBbUnKzHQXYtJ/+HPgpjrKBvGVn76pcHIVRZEAiVbv5dPR2ppiqNYQYHYuWeImKkQzOiygE62dQqv4cCixcdoT4LoeDmxrinwNEgL21bKMm5ALD71OETNivgvcnUilUHlELx65C0Baj1dh4o3HhSc9NNNRxfgqGj7ExSGtIDrq5V4np6IVkgqESFBRdGHPVas8ENQ/AwIDMDs+vubicaYkxlfQUMyQtT0HII7V01X0NNpPh95CW7InYNgEGoTcwW2z9nv03jbDPIFdvoNOwdirQv6Ov1j0S6U9GiJTyhQB8RTeKQXX5X+pi3vQQ8yZLgUl8Nq0vDnfkKv8BTaeAJn0kExTTOJpT9BWB33Y9C1veiofizcKYmuW/RD7lzBIN5YZWhJKnkOPJz3MDEy47ATwmgfH2WKSSHwCO9squzStA1GfQSQDL7shgTmXe6uOi+6IWTNOCMD+T6PvvwqDJygkeoVHW0FRGZG82QXtI7N9PE1QQ5KboGRaJu49agwM7/iQnwcROoIIX0DBSe4HsEBJZeh1EB0WfbK6JvFzaD2LvzjS4FbW0+iebo67sI5V5xAyf0aiI3VH/9svm1t/XCq+R91HAw3aYyaI4aC2AY6TFt2MgXDdEQa9WRKFhHM842mx/xaFifNenc2eCvv8goI7pe64pXUAwtGOnhjpJWDchr9OAJd58JopxPB1G7ghHKsajdKsmHoZmtnC1WQhcC7XXixTLK+qrAYpwaNkY2K4x4V8XYTYFsT4AhogHV1ahGXmpFa9DCSrTbY+mmCKxGBq15Z0M+mo3T+FsRaCdwLEz0EIHU1EpKFYvdWpmAvoOkM/p2xpL70LCvpEWD5RqEJEKndBsf2TKvoLXNzWUMg5jUbeSUylUfS9Qm7Tg5q7CVemJSWwQPU+C06V0dh8kB1Xyuc4Rh6M5wuLa9SOv03VLIWGreh4Q3VgoV/HB8scaM0WBfgiAlTeZ9YcnOOAotdB9zI94mjHkWbNGJbSv3xXIh1h35IrB4U8AWrpoZy2LiDSEeyOq2r4IBxsviZgDN5NkLdeaBUuQDeILrWPJxBnAF8nwMk8XM3mtgdU+FWKlGb4BmaVywMAaUl/K83lUpYOi1i8yt5Df9C/rcYd+OYEcI8DD9nUdp8Jnzk900ofBWzt02YWvkNdrMQ3qJm3LS14NVouowD0oQS1AYgTABYewGFz230uPIg/pdZPxb1fijwaJtx7gGHTdfmi55mX3gTtn/OBh1gIxAkACwffsNnZPpu78ymq3he0Y8gkw3VWw03I6TopSd46LCXSVfcA1Pmek8mEIE4AWTgQh8PP9vnc6CmTbjWVNrLUrkMXcrKud1E/CqbNoG2XJUEHQnm2c/sV/xvPkxZY4dSvQt8lNbWBQIINEgEMwmPqFsn+4ot7/GyfzQ1Cb2apEn0OFo/sCB4hDI0hINCufPVef/DVcApkBt8zvzEak868i8wH30r5gE4DtJoGxZYeg0CzkO4h4JUSacZpdb3aKdzPyjSjdZ9lAaF8gDJi5xIpqvWy96B+AApi5s/RuUamC3xKChssLfbf1Zo0XaYgV8PPmRipSCF3JiEyLo60aZbu+o6Cw0ZhToDaOCCPTVD3Ce1oBJ3vHk7jNCm6oV1NXVJ8T6CgCgSPYVE+0+VC06qUx25qgjAnAG08kMdmWQek7Ikb0mOKZpdeBlEtHepyMmNKiTH+YATlIgIMlDxtyCwc4QS4g4dT2ERrl5VNGfYN51taCl8h+oNMUqgGs9R829lDUavxA62D+WRO0h6dML9oi92sOe78umUVet99OT2KhINfJ2TCnDCOnJr2QEJjNK4ZMvWlQBenr2mCKgSVAORFHHpFi9ZZ5NaeoK91IN9l8KXBAPctHzKrjn78urtbp7cJ1j4hm+vmtV9IL4tdB18nSzQICfWQLls8LF28atSMbei5CzVE7wy975Wlzwu01foA/G+/HEbKCRgsHuPFxhwjjBLCji0MHFTZ8+1PsjhgYxsT1ACnDtsyb370MWoWb5lBmhjECTALD+OwyekBl52R/xve9fTxdqPDsiv/qG7pOoxRy9YieRYVzvf2ZQIQJwAsPIDDpqb7VHYIlXLJmu+gR3LV62S0j5GQFno8MSdokgdrDS7dzj9vAPPWJDsBcO4B7Tap1SfB0nZFV83zhox93uvQEc4yD5hdU0yZLsCfIO/nP0dbsfRSLGHBNydAezx0yCanR2R2tOTQqjvFjWKCi9LmpkWsNLpO+7eUWyeO9ibVexYO9Px07bcQnBMgPh5CZJPTfTI7OE/807XqvvMluVPOIG75UB9nMZ3E76HtPaeld0GvdL0yj+0y5fHLml4Z1KGn+3R27K4p16wTs8gdMUehcHsPnuro9rt13DRpDsiTAdP1rR4aJo5zXNzHx4lsardPBa/clFGDcbAPa9XrTJRAZcbSZJMoGuPSxlK5rsK3sh45Ie2cmV/ywsISx8l+7Sj9L7+YwAAqRxYXr4pmi9cCDx4RTGyYmPWzXTqFTYSwmWw+882THDsZZ0c3por9oLBc7RmN/KYnJ5b6KKg84OCc9B5EE4qNqbIZGLeERaFm6xLFHEHVdHI71S3qhwktFNYD9/CEy0u51W2abILJLJrXH7UM3TEwPpbK0hJUCHqgmRBN7Sy6/9XvvsOYAdpg0VFKq+ql/uY2/ncCvNDBFx1JQCQhQKitJznlP1K5hNQBtHTZjujXZP14ie+aLIoFV5Pn7B90VHCnK8qaeaajpHf7QwfffjkY+fEVn65C1AwX3eASSGZCu2qEpejDtG6sa0PwJmL/hrmKgVKeANT0QFBbTOFqL5Bx0rLUvS9TtrH0MiggzqKhPkXAYnZXALQkJcPTLBrtcYqbMNXxUS0PBLMVAb6CYABNlG7K8Im4eAtdZ9LRnuRo47rC0nELfP2aljtme9RXbZTqBKiWh4LZrPaIBY9wXCusCZMh6+cUxgnjCvSapA0P+YCeWRYo3UJ6EHZtqOUE0IwD5Ti8dpcGjwR1TflNEOTlqVcpYL3KLaCePZaOij7mGkOP3X74+hpIy/FhGQ/FsUntEQmefl1KOmq5IBEsobfUqIAMonamw1Jk0osm7SmnB3RlIy3HR2YcIMfhZkdc7jH71kUKcd26HdXn2HXfTKnq5QGl5NTklgdE/o81bQItJwBmPCDHpmb7VG5E+C1pOkz7bx73OhQppi03h81LuxzwoTay3B1eyo/I/F8b5VpR8AmiZi/KttmpfhDnBX1WkChRPGDuKSUb0EzeyS5tjOr4kJaDgDm0bJ/GzeCdvkzmEXa9DE1y4Rcmdp0Xaw34pqy2syzDXtdjI0m8925gEYObHuAPxqerof+lHGh03iJWRX5GGf5U0JP5lrAmRR480S9daB1/t3L9z+udGrVa3Qyp/gFHiTLoLTQMnNVCH8JfAE3pOiY4d/CrGhPK5zTeKpBa2N4JsEAPO7SJyT6RGakwNhc52ji71+tQ6CBWoUhJKNCpOi5tUaPKltBW6fsba8zA8HYruo/Qau5sDtB4odek+05VLxyTJu3zkiMe8+54lno8j3RZ1VA4a6sAeK5Jy0QAkDQtkt4Cdyr83oNNePIEcKYHf9q0ZJ/GDAfxxLgg4xF4i3odihDu3kyH6xahYEOcU6veXaMU49E+ykaZToBKeSiWSUz2aMxT2HVNnh1FEaJRYLQBHHwVHbQmGmiFGzTYgkz2uZH8qxYZLOEJczYxP6WjmR0qmB6EXXSxVmQ0LBk8SKCzdIhgrQ+sPHbfwOfw7MqIu7hFAxMy8TnCtFYQK6E+Q09E/ZEScPPFzCKQCiiWlFyYAi+QSqcAp4hfpLyVUCajXWsxKZA2xLVfKu6Y6NwJ0Dwb/LMZ3REBnJZKVsRiUC5QLgZFc1MQjs32GhfKqjBPkQ0Gep5vU4D02x7fOMLhcjsR9JcliHeHmR0aWv9BNIfmP+UeGeZeD3ZAh11s5rU5BKhHZkQpHxt+sRFaU2pph3Fag5tzgylV0VMKC3E2HDB09YXWEVUHpRgV8RT3wyq5vqSBNIHNE+CgJmhq07kj+vemM2oqFAF9SNXPwePu991jueqgtHCaztCKPhLfYbAJzp0Ay/OwP5vN7bO/B9JoafOBqZVEXsjXoRN4Sly6KCqvn3HpjRfZ7ZjTWh43YdR0jl8CcktGNvubSecDLCk9875NMBqaOd0z7ylJtFGvE4BkDqZmk7k97ncHHQXNzzReFAiaw63BfSH5qbYPwIcpM8VICKB63Q9TWRvxOAFC4iEqNiE5IjAzrl80n6MbFYRncLuJKXo6ShyHuAIC00jtnoRpjPose5jI3QmQPgcZdCjJEYUZcrKmeRu4d/pxrsJFxqugGTIv8EijygtFIp6+VX4OanMClMdDhWxCsk9g3nAUKU2B8a51Jhz1aE8gL2LSWlJ6EoOwU9cJzdFVHtIqE0A8PuDoAZQOJdUjsIID1YeWbkouCqjxvgzQDeM3qImkbLrhQ75uPkunVvuOV23k5ARIi4fM2MRgn0g8EFtt3f0w2dXtnK6TJm9MhXuu1HLHpeU5FMmBjUB/1Axg3t3Y1QC9KTaT2ui0UIPP4Nsvh0l+uMhNiQZM6Dn2uw6nroKrYFpyyZ/7B9DWIjh+gQFE5mgXxXJU1m/xG+4BXfiAE1XKqxzzqOoGs/06nFJkz2c6Kq1JPEwpUtZqfvDtl2nfrz7bu6Dazq46yPc/Ptujs3VxwgSoQ1tRooRNu8AWKzmK3+bH0pk28SKmOQkhx/XZRkqNv5+wc1naLjpoD2C1E3ijnG8V0E9QcHfq8zYn2+dwL5j66mlaadfOl9qdNt4Br9bKh4xU/xHKaLZD23x/uv2b5fMTlNu98rxJyfYZ3JthQd3gJ+Vo11Zo0LafZFuk40CBOrSVyIuLoNiU5n660dG8gy0piggTJCNsCqx1lhnsf6vNcvGoBqs16B+7pKubXvTgoj2snmihCifYddHdRZoIFXbdLQKY+GZTnjmVZWYlVF96/li2YOWhfcR6q/Jn4Q4nwCk8XMNms0fsd0rS05gabCEP5s87EIWtpdiOEurFU2BxWCRSoHyiPW1rfuF7YEKGJ6CveXQ3k/kTEYUGVu7U7pNTbDjxGyYd1myIQCttJm2Ai5aQIDVX/hxGI/0tn3kLtjk+yuNgQrYSwFcONLp63/IxzfuuxUI0jk5LsjY6K8cdcy404pSXn1T1cBEkC7U5PsjjYUK2CiBSDdBrKlrootRbJnBdaKzD+yliqc4d3mTY9tmc6SmUR95pYjYngHg8SMhmckfMb0pZiz45urr27kAfrpRvOAhftNuwms7+dNNRNF58EsUtyOYEEI8HCdlMbp/5PQF2dg0Hud/PJaKXLpgLqoBZ9KYYdsIJQuYS/Gmf5kEItthrjv6iTpCp6YiG4aZWf9xvhd22FzMdUI2uU2WYlXkoODBQLaZIVGWY2F8mJgS7KjetoiJtqMDIpfUXCETyuynNgA3a3Aw60FITm1tkN5mmCBpWjIVWGtJ1na9DbxKu8QPtNVP6jAvxOv0R2AUJEctLxqYmbHN8lMcDhWwevEubbww/rq3Rzfg0DO84JOTt40ApOiiaBW9N1po2HLuiKwt6OAFU4UAbDpnb5X7DJIwWugY3K+XrDLO6lC/gSEqPR63v6IawbGUZQrny6LhuYw/Hhyo8ZMPkIwfs5Ykquh7OdUqPRbSYnswr5zuAi1HTQdGgRv4cj+F7FzFBhxOAFB6oYVORfery/B/olPpTaZ4nKUU32BlNPqhwC039bDFuaovLO7iHVvMTA7Fgh+OiFB6mYXNpfe4tlrOSnHDE9NnvdWiIpiEVototfw+SU2cfdBy2sKB7bOdW8fwEtXavNm9TaX3qLc4eVoXITQhKVIT7N/WJgqy/r7UM2oRkWefoMPfDbvw3TF2rvnaCepxTv3OYtBHzdhRGjrj9615b/RM2Jxg4q+GMSEnvunVDaKIxG+CgldAM+KX93Cqhn6DkbpfoHSZtRLxFr5uuETPETUM/p6xT+rhv7pE8ddSBu9CQsbZcHzPgF0TdwnkWjhtYTqI8I5wQuONu4WAgdZ5N35vH2TCZtC7v1hOGWkJSGTXD+bsxbZK2r74epY0KtjQb3i38H5LhVdCnRhJj/9svp/gi4RzKjX1xKtoq39p/rAdsIOqi5kWhTbq+PVAvNlWdchmtSlXWFZp5wjRLyCbjos173px40+xt4zH//1U2Z4pFj68t9aSoHXn7YgcKFAgojcwatKHJMCpSGwlSEghSSthcqGNkFsXS25zeZkGjCQfbi7I5IU2f5+T/FVHZgp5OAFV50JbNJHaJxxsPu+r2Dzlmn/cy9ByX7P8oUKvPElL2lDUWwkjziTpZSM9xgSEPRrLZsD57Fp6ng89tjjGzWO31wvbUS35MgnpDjI5wEvWqkUTraeYHTmAiJMcHVDz8xSbDRuTZTSlG1Rhzo+Ocfp4o0lvCQKO8XuFZGndoZZMRhJofLaFtiOS4iIoHwNhcWJ86C1IMJYnjsvGqLDI0mtiJ6wK4BxztEmOgtFCXhqUUYqfx5Npa6MIJ0AgPvbDZsD57diOw2hqHUforJUS+Du2NU50z6SG2dseF/FqeNeUWLT/wPwvoOQEuZKNINh3Wp8+CZJJBSuEjmg56ObqraD44AF3IypXnAN0t+ibLowZf87mlbzTDFhtqwNDYtxKvGdnV/G+/HL7/CfQBjpzALsZFxTto/CWUoIlT8lXOJpR9bmiwat866gCvrosWgn7j0yuejhYuZq7V2HEBBj/37t3vvhzw6QR2g542wv51/t00Rsa4Apr5zM9Xk2GDWzYY9karBAtcOC4W4UEXDgfZ5yzDiJ/ilFtOo42g6XXABdOInhIAabiBcSno2FUDXbgSPKiedJ5UDtboTG7MQKJjDkcJP4DgW7H4XfTcNYqkd1tmVotfitwXchSUNBDEX36yHXWajiGRwYjZoMpoZ6WkaIoDEDHAHBm8m3eYriY+dnw0zQHfHCJ9wLuHeUm9GeqSShQ4wpsOvCSb38LBsXXYTmtVt2jKF6Uhzi8Z7mb2ePxs081OTQa6n/x4yZKVXMmwlG2IqpE2XNq42zvxrI0rnQCH8nArm4MecdZh4aVnH1jjcnmYXbOpJB99aFB8zaLarEMZF9yW8wHV/4abODm4XSCzA9Ho3FLrcKZD+x2nKBUOdXSAVa2s/N9qtl899qvNlEZsGDLz59jK5FDAdTbCR1ZelnKzSNSwWgXNBdenxPGtaoaFLB0fhvJQK5uD7nPWJ2NoVUbFAfLhstOMrIot5pwkWRIyR9WKHNCeRwRKJzRb29WquY623MJrKzBIkilMz1PCaJMS75PQfdI6u5X2rkAKzRVJf0CtX3CVlK1jNWnJUTGd4feimdqj/58Djh0XS/OgN4eBHjHWkXvry4dG8dNveu3GVsZ8AmdR3WNcsG41JWMr3cdNWMDSCXAoD7eyacgea5n9wSkG06iAFk+6hjolM5OGseZctXA9UKesbAlXmKYk0cWtUFsQ3/ERQQ9ANHn0Pu1+saXyRWUS/JP0MrSqSpcaJkLWdFszUwDbNG9EifxZ3hiJXxFXFaQxVIFtzWVu+d+KDJ9+B3ZJbuQAL4WsMnwK84FpI0imlD4OVcxel35rTKfvs9UmWmuBlClh4iRmBaYnT/1XlV0DHDs+lOYAbzaT2mdeY/tKvV0kpQqhANfpiKckkaWB5rxeW4lSKN0kN03K/IwDf2MmY6VpJ+BkeBwOmx7psSkZ52DxLe4Tc6vpVbDaN/+YjgLmdZihbTExpjbZvPXJWvxlS+O/ccXjw5AOaGlz0H3OOiIHNgTj/WuhI4Beh52/ZO3TobvrbWhcB7ep4P2Lkpgfvu5WPfAE9UO73OiQ1pkrjzJn1jMvSTdWvkyb7W5UdP4/myxbaOfxwVEHSrVZ6BFrfQDz0WLJSClf/ynUYzXiBxVSQmwalpYiE4z5XIDd6ffZZsKdJ4BHPTjVJHC7fO/OFa+8dHJk3QLYSz7p06ZJWKTaTj+GJkxVatait/KdJThw5wngUQ9OtYn0EfEeT+L+Kgoey+0TjE1IHzgdF2LGhXGHCNUlCJzpyQ83Ac/j46MenGqT0H3SOgxDKZWTF5Sw6VxWCsVP8PXgm4C3VPlzgQnU8OQmUp7laVq4Eb6hLEHb0GCMpbDCXfAX/9svR+wGbnWmpdUBt7PEovKs+c9p3/Sf2zAparBEWTDl/QzNQHuW73UgQ2FS8+CmOZIRgZuWUC6U3nU0BV7i5Vl45wngUQ9OtdnvEVt+565nWqoUmUz9OEMrIbOYZsvKTYelCI0l8pgA0lj2G72w4IITwAseHGHSfyO2MBacLq1Foa+4EKAAVECkkCpIB0tdh6WTGSQdPpprHenBqDGBm+PjPB4sZNOwXdY22spmOf/BD5tpXi8XbFFN7oEewfUBB89sdQ2jBp0V9cGRNDGPE2AkHqZi03B92i6c7kfrS08b7rwq10HVsGgdqdM5dDGbRUnUyBoMjvzworUxj+NjJB6m4vBJPfYpqC2t6S1kDf75IolZ8dK6e6kMHhyfnjQtpuOkPfpz2ZDHCSASD1Ix2aQ++XSBSTjuKu3adAqXUQsmXhAUkkkiXRGyoPgvJ295dA1x6tYnqHN7dXGbiekSNxFYwlZAHmwGvqOXoeVaipho0BJr6Q5Ln7YiPzNPOGI+FrVVfj1+udar7tqU2IhCS9tS13538JhK1/yFoqGm7YrpBNZUcmQmZdzsvqnv/j1f6fexqwX6w2c+Qdv6SNWDb7+cjjEn6DBj96NBykhHRBUrDPjX8EuxlPDy56gNg8SBwivdsEAtCTwGPCTWPdDCFlY5Bq30G3F4w+2cHsrThe9X9WCrAHvceq1X3nX4pAH9dNLMbbfglDR8Q0tINP2VZG/jUBs6bOu96HZIO+Z6Cn2tKuIJio5ekdLmk7r8UxCWaALoZoIqCwOGla3dRBqAm0Bri9uxcC7pBYGboF2uPaqaVhnxBFVHr0ppUEoj/ins1beWHKamuvicgvCuOfcCiio5E3o0wZRao9/xIJnYRcQTFB29IqXJKI0IqGPOpBsYLZIuvjK4ZykV8T1QICitZxuMF9stp8At69mqwawiHr/q6BUpbTqmT9+sbF+7Nags/Tb6yyi5y47ePj1UJ/gSXao2m6bGD9sRq4R4gpKjU6J0SLE+iRZiF4oUZGpQHjClUyZ6JA52v+LXACG4dHEBeTK3vjUbZCrtO4RVK888QV7q5bE2oTQioKI9WhYyBHpVztvwayOCx+9BwvR5kiDM5KF73ag/nVV/2a7w70riCSqPXqXSppQ6DFQ411JMl+4R/WlXSDszO57A2xOtR++Y9Ahbu4HvWP0pP6G8kxvOUd7dGcGDP8ZVn7hffjlykiMMRIqqOzuZ0o6mncw849OFzZjt+WfnyOZDjaJ4GU8ESTT2y6tJgQdpklhhzttRx9Wq2NqWN2qaVhXxBFVHr0pp8wl9/iEiTlAkZAfbrCuT6yCWBlcNr5+e17zOIOjkoVM07b0eb/9XSmw0u4JPNKoWaAT57ckJUatAEZMO8Xr5fRTBFyasYrOY6+M+BsOgJopuirfKdZihGKWLQVpDb4HrbUbvYCwxSIP52ecqcGLnGg1OR1BkdFQK20EFwjRCHvlSN0KzUnjcuqJbhrRZjD7rEf3TGve05Fy86Bncub0U13BRu09LpU2getbK0iYcYfMZBlnl2hOUd51ysMMm9dmnmZPbewQjGSx6HTS3m5pVwdbwmqfQbxpLT4FZn1UGs0p4gqqiV4W0mZguc3Pxj+WeHQybFC0nsTtA3kliIXpRu1+TaNowi0QS6IX3hHctPOa46I2H9dgURp/ySOEr5f8aFlBUpz2SYfoMHZYclljvUu0ELxbYm3xOb/bB+3eKdcev7XmlQJtKGlFPaQPcY+hr4A4U8jl+zhT7SzqH07glyIGoU+YYbWWP2uE/U51sHuLxSZgeZ9PG3wK4DqWCJAwouF2JzIH9PmvlVIN+GEVKYt4H12rK/qsyTilSHC9FQWaR8wRFUaeI6tAQI9oiTTPW7XLikYTp0wV5UwNv2hGq6DbAc0vj8yB/CKKZvVuFxVvp/PoDZQ7sRZTl6n75xYy2RXsbb4zoszVEuABqGWV2ZcoDR00lCcruUdFsZU2kxLE5lBbnUsaFeyPXIFFgnA+fpl/SHK0K8Qkqyk4B2iYi+sRFseHPN7KFs51eB5aE7eYHNJNEPjFg73YXGEW062FtbReIT1BQ9grQNqHOJ+BxUL5b1ixnK3K5kEPouUf/ONRmacHfZkj1YvJhk59b2L/bUtjp0wnSLSc9cyiVEQXTXifWupJxKzPjZV9d6vb0hpmkVdg9QSHYqRvbRCifOEUn5hJyM29MTTVbA6dA7rqR9VbvdQbyga35bC5J+kjdGp2BEhwfU7ABCJsW6LIIKfpOia1IMBNoCo1ruUEvn7FgTOHKbh06KEQS8pwnPLq+49LaQXNcQ876jM7G7NxX2RRn6/LZiqraHEWXFehyCDe7N0n4vDdtQ00vUmE9qGuQ4htOwvBbsExz02QLtbbvncTEOE6AiTgYikMK9EmE8BjebWi9ig3B9DqojGvAQaeBuFFhXOAB+npotu/0SI7wsKWrBuRdKANUnNTqcRR8++Uke0ccq+mhMl8fmm16oDeto5M/dZFyQr2ZL6w6ElevIdncdDEVl/3tAiYHPJqCoiKxYOnQph78Ti5pZp4vHIcmtHICKMaDbmwyYkRexDTaavper4XCgCa0SXVpIn/MUl8bwI13kT8f4Js/jkMTIDgBoODgDzanLuLgzZZuFQtnkOISDTXfXNW4fpZdr3cHDdr07/t8NP+y4YHjwwku/GATw3wimfR0bvJgcSyOD8Es56z15JxVEsnjonql90DvpT0ic+50wBIr2LThH9C/demRHnz79aXmzCx4QvEOIlmOTBF/FXQYhTMzrZ4d00KBcA/2DqNVyM4csTOZ42RmOp+JWgdEfuymCUlKHvstTbFVFDtBEc0rupksPHyMLjIai219XpUvudhwlU8NeIR+n28m5HMCiMiDlGxaXUTDQ6FEHwVFAOk2n0SFfsqkTNxCQYcFvKWHQ0NnpYdpigmYHBde8cAYm8sVcb9oI+p96m9qTQ4+VI7p34ZErjDEbrerHsXhUrKaTID5NrFzcKsT4FweLmaTA10uIW/Zt1Q30+1C1PitJI4aB0pqs99h4Y6ruE5Dj/vHbDJRnxOgRB6qZHMDfS5hwyOfGlNQmCoFSlyH7qSqfpW2JMFFUZRNQwM++sHrUYWnH4nCKLYw7PvYwQpkr7K/uV9+Ofae0kMGm0vS/W0rdE7nMtwARI5K6bOEzaBtoMnXZA0hZVlLSrCuvYRnR+F7h1peo2+gTxbic2x4yIWSbDadz76rTLxfMt/obta8ZEDauBP/FhRdUL3WYWndCfo0uV3qeJCTzLL1CcrcXlncptP59Dt4SvS5r5y6i6U4x6dDPCihKqQLltt/haastNmhu0Ot9NmOyapcn6DS7VXGbUKdT8ADFYZW3NQ1uJKQB+g6jdLvJnnjQlvxoePSgTa1KRAmw37ORNBKMhe5KFQUbxo2zpeZ6H/75SirT6DE9pTbdo3Sr2miQ7JmPBB+FqkM4TpwA+aDOTPbd11lODorcqKa0KR3fBNDfrcWzcL/8YECF1iw6Yg+fRFhN3Y1Gbd2PfroOnRmjCxzAE0/6gU0Csh+MvNpzrYf/i2/0LiYZdfjVmndoq5NootId5NpyDwsvfJr9lhQzeo8LAxUKS0sOm6jh8obGCSkvT7Tvt/oXUfnts95sJKUpmIVWo7g3WhYBVoP7V5qdzBYjoECX4b5y24KfbNPEYUClXWzlOgnPXg2P3jwzTuaq4wyr6wv488rt4Gi6HPlW1YC4jgmOwohS+offyQohxb/PcKy/U79zIZdTgDTOLCOw2gNCLAUBm+dGhTAl1z1c7goFdnNKZGUjq0YFmeegqIZwMkjtDUBsBMAZh7AZjJafQIsMqU+NKKu8O/OehmKgbCz8+5IR1LXURP9Y5KP6d73U7ZM6Rq6YrIId3L3oEJRQb9CRf9bsZhH87BROV7pFWxgtZjPoMFXrumgeqXuGdwYlk94BAGLS9b/satG40OB4yrEkApzYYejd9M5DKPtQ7ht+JwyHm4JmSGGWrpRFACPiNb4OotmsVTHMsrPCzVqZKsZ6ohHUEmrYDN3hcKiyjXvVnjhCVHV/1YckOhwmyCToKoxc1WDcu7lgOSXvbLppcidWkwIn3sQcRVAia3yOd2PVPa95m8ccO0lKhMU6B8nGZiwbEWzUJvEKkX/NqV1+F9+OW9TuuUuBDlbGgyUa87uNgCgVwLapTYMSEtpujjWaaki886MZt729qiNDa6l5w7phTowubPFnl1vgFkWenQCtMlBpxwidUS83qnvuwHQoxnXzgPC4aQn+Sha1evMx2CpOk5yyimfatV/9uyx3ucJGkB4njp2pOVHZpRtAZLiZQ3z4vL/mS3W7HohijExlxNgNA6mYzJHfZ4pejzd0AlGSaJpnNKhnusXCC52+zQxo0wrZ0HAANqNl8JYC3Q8AUbpYJoOi9xnnYvpWr6ZSevp9uWks0iRRKbD32Gxf05FGOlB14cEDoWTwccbABag9fwMNZEJvv1yPCKPxFhM/IbOgIJ6PeMms9q5azfsa5qmixPu4ovrnGB50lZ+vRNTBU+e96wJBvxnVlTEFlzG6LDg7XoZum7m3gwFNfXcrwED5T+FtQsUfNBuXd55/TZgdwKAz8EDbf69z9dfUpyWaVHKx/kfpcx1EWmK1Mfqd9jCDpbiklbyo7OwDdodF+NzEEGbge8T9gugyk/QOJdeHCXyNpqQdEA/aRdvnBCMNq2T0XR5trunXH8O3qFr5UiNHu2ns2zwrXQWRpDGiWWCDXrvt7PwRn1F/V8pqFOU3WOL2KZYgYeWaWNhuV7IqLTNcKE9c3PZ0V4iI5lg5wnAUQ9MtdULkdphUxbS5XP68GMQk8F7ka2d8rE6LlY7ZmtDcpOFxqMPDNxE7E6A8HmIoM3997UCKFm3pvtwxu3clqlolzAlyaajR+prGDcXXvV8FxChPskov3HMsCo+J2C92SQ5h7UYsRzRYEhdxcAiv0YatN+CX8UHsTjQyKj05ASQwHoZY7/kHGjinSfARz081Wb/R2qBWdlJXKLKKc0FoWiAKHTLPK5wZFs6Li2eoj5sE26AD46xhQacADzwwAZbwOELPgD2oGJ5azxNGtvTddC9eMjrmqB/isECvMEULMHNdcG0L05kATMnAHJs3MeiYvu87YyeP1MjHPzSdfnc9DjHFA4VxT1a0G442/rSO4bn/dNJ1gSeTwBUe8C2qSXwpQfo0MRGJjyX4Ova72Xo/5Wsr2e1Ou6w8FKRz2dmadqzCePfIN8JQEEPRDSp2BFze6N/smzUkHZ8FCcUsjTZEQYd+Pva0g21qi8Mvv8ITUyw9fjYrAflmpT4iEGPQL5qZXZV4fmA6T8RVfLHFIOL0huj0gpLutmPnfuTYdgR2HP2COCbi0ezj1tYCb79cgLaEwTAXsDcYJ/K8TVuf+6P9UiiSQ7jIFQc66jXqQSzUP3g0d5X36BnoU5nAxTZ0sQaK++pgP4FHYPOX0ijUG3ElWk/HMIvhAsuAkwRI+cl4IZZiPMLX26hDGFgygymAQ29ZHghDTP3GiUdON2pvwgifMSpeFw0qXp66Uw30bUToHEeemcTuX3iN5bLXmIJusWGXS5DsVHmPZaCut7zkD12oJxWJemmoKI8s6vfJJcmy+3ofWY08ZZaFkUBH1MRumCR2hdtq23d+0FZAs+L4W0YoXFe6HS79LpjOiw6m3P3BjxgYcQnwJQ9DNpWcfiqjwFUZCcNE3qVBYbr0BRRmJSxMhmU0wfN2ODM8Jz+k3NT3GBlRSQKPvft+19+OXjUCfArD++yyb8RWXjC/6JriErvXgpXHaXnwgkI6DlTfZpoXKyJLatiAjZ67H4DrU95f0OLKb7HzWCCAAv+t18OoULwMWyKWUqOA9LhoneUcYR1zkApL9WDfbBpLOYtckrUW2+xzKrFOJUbtxmI3TzkjbqyhcqfAMX3UH9bxeCrHuBkBNGkTDCK6/rtDEvR/tZ4KgEGlHHRXpyt1znDos+/kSUHVz4BDu3h1raMwVU9DG6XrT92UEbbrtsPuiZWCcMWuj1NHbYgXdHYhjL2h2GbDQyeAEh0cEeTxh6x3mmrblt2Fog+56XgZ8oLtuwMUMlsHXRU5hnxadlmfkpXf9Nox+ztctuZW71gvN4xC0Yvk8MZSePUgZoBNq5y0xqic6prtRS2GrAJ4zCHfk+SAxesbGT63JmWbnRfAziYApTGPZcBvZR3cmva0f8HvxmZS7Mg2OH6YGMbO+2x0BBYiQjAEiT4IgBfNICzmp6GzuEsTGjWNYxWNCnd9GPEDbAiGeZgAa8fAdmDnW2hwicAkT3Q2VYA+IqBzX6tmt3Q+p0SelaOyPqUKQyNlJh0VaYL5yw/szRYdbwTS5rQyPGRFA94sRmiPqO0/Y9brsmw9BfqmkXXoYUtOm4g84qOzsLtUbMcpmPDvuydOWyigidAET3U0dQARJIB1MeSIjL940lFR8bSTZhmduk6Zqvp1uooAmrpWeT911DKLuOcoOzjlYlsIVkkPNudm/ric7psq1cIByELF4jwJOYatzxFOUuq8vf0E9aLjU//wsVOAKN5sJslnvClFtCntnumtrm6/n3l7ttLSrWUjYs+FaMuID+y+NHZ5aHct7GdE2BBDnbkiCd8sQWCQ/htyl1QlDyrXmdCt7nkLmgKt37HrVMkAZh3ZaXnSyysiwAtUiy/YU4yr9zS/fLLmTTHn2TepHRUvZEK2MaBLNxIxqVttHN+gm53O++X0kGzDHiCsqFXZrTlFizyKFgEet7mND/lyiagZYejdO1Pby0Lrzk+vOOhQTZpPyL5Y4vSmltBI5Cin1MgkeW3gggnlQ4adtAGvuXPE83O/WzIa4GOx8coPUjTVoBEihH0+026/W6piOLjBJC4aD2lq30anE+SxNoDFJT8zDP/Pc82qzrHLwI5NSOHJurTSvFsG5eqwHnuuV+2KYXwYvhUEEeIrTeGnXRO89zHQqWd4B2vdRuqOz6050GBpmLDlXegmtsETkOcB3aKXqTRoa9wBT3yJlMOVFZ4O8rT5TLHQ5hjghwnAEU8EMVm7fssf5SVa9syR/CqtN5WsX9uRv+w9U6ZqhgXAbacGJT9lWds9+9CfLs0c4JSjlf6sWlCEa1oSNcssPEoI9WSyELNrPAJAMpWr3dUdY0HR4+m4GtdgC2o8QTQpA1letKTSKqCSEpDasQjWlYEcNc0SqQlvNcdlo7mrvYuGyqxxxy24KEToEkO+uTQ9SN6/6YtUKcwJE5iAbnY3FLU8A2za5VrszZyk7MT5bH5HaHb+NDx4SQPfnJkJ5FMBWGcorEZrSv5Y1r9NPe3vAf6WfnjG0XpSloymxct0/moE8wJ4wbEYLRvcDqJSmNSFXvw7ZetF5OKbUUvOlBVUTcet6TIvucsE2afll6kvMG5VOIzAEAPLb11bSLs+qZXD/UEaaZ+7YWFaLIejk+S8DgVNlU9YLaD/qm7Fr39JmYbFVGy+H92NEdQBL0iKE2l6wQu42F+bVT4TwAHePCBLRfw5QVonUP/hR5utB9LBoO3gwkvoQNtNLctOdLWVdQXZQ5Whn0rUvIeXEofjAuiA9z4UMH8L78cvYg4rHLxcf5BKJeRGMuxYPVr+8/tkBZ1VNs0FQc6sy3R/tzPKR1j9BMQa+aezjIudAgVOpUC+GuV50nyr6ZcFtH4BJIxT2JmU3xcShB37phFSz61Y73rddDUu8vpCrWTqHFwZDUGd7i5KZwgX7KhMAv8JwAEPADBJpq7xPQBIKa0ckNt3kLlOhndXeUJl8mCQgEoJqww5O8hvf5hTNbghMZJ9Ebuh7cMCw99Av63X070ffxg3YvtbUjMh9Bo/tCU4Y0kg0OfPhI2+4CAbzO9tsZ/TytHGEP3BEOTagbVaEb2LC+53CUQfPvlIMiHkyTatLnNMNQW4Ic1TUvotrm8lzEbxpWegTxJ8UCRowpJ5NU2m4pqR3/t49MWnv0Gnd2Ch04AJznok803d+npYuNfNQijBEwKZehWmxkAw+cU8cvDXShzQfIo0y4pzeHXmbBVkz5BCdsreduMJpcAhRJMynzao1PvlM4YuAx7Qq8/0vuacrTL5aGViySd92OY3r3k0GvhaieA4TzYziabR+T0TcFc0jlX6bkX/TzTJJe3jIpaLzrsQG9rmSx0JP7ouvaLxc/Nh+hF44Vm9JztmavEQNlSXwwgg9dPccySCqPH1ba7Avp2MY67jOFFI6MOoKiC5tPK+qHk+Q3KZ+Fqx4fhPNTOZuq7zH5AZ7SfFDnlEMdLS2pAZ6yhkfefd1a0ECW3Lf2QO1ho+5FFmrja8XE4D7dz2OY+O72AMpaqlvQb45BynUZ7nx7tqY4spPjKLZJEtN0ROqwfuvp/L+ZZlZcTVGq8yo5J6fIZYEjBAQvKnjSmbuygXtQhBNUC6mxTx9GO5KIkqeU3NJN97mG/MFYwQ4YThBheSGIWa9zSDvTNfbMYEzWkPYWc4Wasdob7RjXTQBaPC0N6oKWtUohUDfSgmyJBrXbFRJHktVplMSZ6boLMQPdPeZYe6w0Ul2cE/5v41Xg9x63TeWU9B4QOMGs6gmRDKqg+zXLVaDAZqKrRREZ8eVeVds4sSk8K3cZb9jYWrngCHNLDLW2Jgi9pQIaYt57Ig3nMchl4K+hmQU9Ldf6gxFBAuYomgnk+3ct+wxc1CconIDQ7/GfAoqjdoT5UtvZVA/5YFvsB0anObizXIZ1mILsKJ2wV63MRmwOEJ1S5mfuW9jPlleIFMhfar2CmMVmhnESHDu7vRnb+B/kqGnG3cnMImnrwnGsIo2jXvB7RNHOgvAfOhXBNc7fCjBj6sQCoBsWG7dqS0MHaQYrtgMSbHKwwMaFtbqOmAe+vVdKFjzBHc5Zax569z3dmv4X8nQAo9IBFWxgSCUnWzlkxBjgfpNteNSlPpCHAF1I4hu2UXxU5oCkMKU+M38TUT4DBe5i9LQzxhSRgcpUtw1K0Uj6+jHNiBsiPrUkKzpW3uS04UWczjx9K+g7NWJJWJpnPZ9jxqRbT/fLLOS5PcLzap7G9wUb78e4DrVAQ9heUJS/qY/JjTTbtC0e3if2dACt0oEVbm+VruWAtTZeUUzqzuZlep9K8HfLy6Xpi7omfs2gD0+pT2vtRQEZiNTLjAlgURaKzfkM3/8svp5QidkiNfuDgl9n7p75iwsROZcivJHnQhFunsco610KFrp+5mx/ci4CStMl3IRYq/rcC4VI6DOt/pIM7S9kFEA6oBkM64+L/LoALkfwSh94+85zX+WTWDpcVjsno2UnZCfE2nUD05x0FxpE+hiuUQtDC+oO4kebDVLy3cjkDvsA0KSelph/8FrKj2bnhL8Wv7a3Sq8V5OD5DwiNU2EKsQLdFiUPS6iXy94/v55oocvCul5rahCJUne2C1708aU2/6QtkNXqSjiwUj+LnYYl2UJuvHM8g/+J90G7AFjzQFez0wTeRaAGj2DggZ76M44n2w53/PNFJcGMcp4mU1XPqDYGX1eIZAi+aBB1wAUdy6JwjebMpCPvPk2BFii1KUidO59TZR0sWBKT19OPYzIe7FWhGgHNhNiY+psTNrX/4h9Ai4re6WFqA6AtlDJ337pdfTn58gnzay79tdoy/TVp7qlfLBsyRIJvgv6ZT6a2ExSQKnIBX4PEQbAWSK1eihyMwFyovKyUBFWEaRStQAP+JfgRbB6Up1BVszDg3H95nJk3gBLQCj4Zgyy8iucbOVT9OgO26fgzkWMs/GVWrosOCO1b1LAfN8tlo1yIKHJ9X4NEQbB2Mr5tB8lcUn64UUmS9CkwOmyTZY21pRYxRE6WON+pIP3pY/ML/wwzzThAVelEkBBrcWxarB8+q3nI9ZRwMVmNV1TrrtXjeWcC9jFdFqeWn36Yp4TUtcm7rATovJ28y9DnnxxWHud5/8C29fQhogV02AZnoKwY9UTSg2KyICy+cBoW0stEGG/06uT/wQEFTPqd/6QnTmeviiMrF83xxfW7JgdVzU8tzJucwdg5S9dRu2nxI0bTF44Irb18S6uPnYF0zFMY0lP7E/Hvu4HZCRQ3HChwygBSUtBJ8+yXm62twMwHeMKrAHmzWvtBDQPZ8Ou/lh8CdeLSlnnZgv/C8pX8ZTIxkcSh2Zmm34T4v7/kar+M//jV0qMPIGdhBw6N+QH4ZgTp2V1r7lU9bOgtQqpC6gf+ttJ6gBbwbCgfYklZS8iCgZQ7uuZAHG04JDlEdmmC5YgXTNqDVJIZO6Un/Yb4Tsrt7NJl1BrcuYdUxZFhaOp1/Jm2iq75kRGuzTI7PSvFYLI78zFWrsZ6/KOxRkMY2vQxS5KGOvn0JqIRhKaoRMh+i4j2/e4/YXJ8TUIMcJpGtPorUSkB8teZC7105whXuDI3TJKAQZaXrzIkuP6nrEdueNqKwdJ3AkJQfQjv1EhcquAvUrhAFnX9DFpAlSnNVYJFojAE9+Zz+mz6kG07DmVi3PG76E+mDilHpWC11a0mENtKnsbXF2Dg+w8NlhNhCoEA3BMu8plAZWsIN/TyBcqkSCNSTlg5L0VVRnQ3lc+mHYv1fJRq2++BxvQo9Z0Ob4OMTghZYQ43hBFTui7arYd3a2EPi1ol+MVnHxem/tA3cAvr+RjBvRgYnwAccOMHG930+ALrdsfQSt7lXutaJfuBhBSpvkEcMusbx2R0OGcRRQfmqqQJo86I4FFRoYRp5I00pjXlpEaglPg1bYI0kkx/GID/sOv6dPWK9nxPwOxw6iEkwdvnILB2uq8moCLnlGJ1g4TVpW1GgCvt/rF1JdsRGrtzrFD5Bv5yHOznvv/0IAClR3wAWKvai210qM4tkDkBEIHBJCbRim7JU+v697j+oLrXQ7uOD4x6YbhYIROUEtOfNIffegEJfp98EIfuWe1+l766jghfgvR45zBjrHemEKVU5gbLFU8LYpXNRqd1GVx4ZN9VVVWnDBuc9yRQHuJvvuGMMPX6hqv9JAm2lwgmUDZ4Swq60cguzEPvkUSVUQHtyAXRQSwXaWX4sOk4JfUInXdlSoYHDpuyfxevwFcenNzw2xKx3w8cJj0/bMdJPT1kvA7dLjRQKfDIfUY2lYjm+6sVVydjVX26xWEXlWulKvdMS1FI0lHUX8fRsjCFXQUgxw2rT5zrh6fA8E/++M9g0wgloB4+msGuD/VriBch76+edwvzZ9TqlqpqPp/DQmmQ+U0TNVpnn/hUVfCLJsGQQx1dNeCILuwTMLRmDuqFSdiKvdEvXa1xlFGksBSVv0TgUAG+XXAfyOlqST3fVv3M6NDDc8DjU6LS2a9fUEl2Lp5TUUkqo+YQrF7IRyAixtNW6nj8UXCBonsn30V37cS58gK2wO9VYTJgggadNTAQpiRuRD259xCq/KsRL5rvDwwfBMoADyOfwU2lL+sYB/RefkQw7QiRmDO4v/ASBt8FZdZAfeSOcyOr3ltHjSkRQqQBckYog/JxFAdTWDk2UP/SX9MSmBuT4khFPYWKXjjmVZvgYPJXGSnNvFZ4go69NJ3+G3fq16lzQL94mOrU9sYWK6BLcDX2HdWcoC7x37/9RgiLK4uD3m/k5aGUp4hA5/xjVKkPcCO0uCv96jQu8LgfQsG7k2Nh5J3CS8k/EGAIVzTChgjyV8szantHwJ4a0Vrp2/HoPtz7ErFdyq5vQT68PxRhoZUvbLlyFAsKdm8aKZfc7KtJlFSLSSfWLzKYlOkVqSHFZk70N/yA7n/9XaXKesXxlj6MJPqa0ksyAwMX3iRE5oZZ9OwHb+NkXH3tiZUvcLOOOOjk7g7YCUp53gDWTRz0+62pztE6xYlTcOGYvWqpCSeJo19ITH09lRiiUmtfSE8I/WfkAlx6H/qKfvBg3XiW1wbxBA1Qmr9//65cD458A9veydTCPBQWg8vppmt5Mbo5R+DqwY2va9WlCCpK46wT8uFO61q6m0M20BX1Bh2lmYCfI2LwMz9YJR7piO7Aw4hAZtkEEJtAJxX5PGRNdSEmjBGN+oL4J+40UErh/FBE2hRpcdp6RpNQlzoXob5PoROi8BDH194h+nRmV+EGMZ4rptYpuLAwDFYmwY4yU3hEy2VTqCahXk6e1izyjolDUqMhKpvhwZ/n6gIJEg/qx974j0lzKGglUeg7PGhIKp6F4RUyXAY4hKEvgLyXi8/+KiI9S0IGG1HyIU363pSGI3HvKkyM+iLKkLU/q3F6oSKvtzTAhPqa7X0B5xFmO3poQ92ZAKd+nf4aKAaEGmivJHEJ74E2n+2Q2iZIrtSxKoLILoDpEfNCTPr3y/lhCaudWJ8jFnNzNsdDxz0jvTLXOYMkNod4tAoNRqNh+OVF8UkJqsdfH5bo9Ztwu8PQLQmF3SQHo0ABWt0NcB3nskqBnoX5YDlWcpPsee2XNh47LEREcX3PgSRTsKr2gqA80pCIQ9EpWvhWGaDTf9AigCEDwpIXgoc6m90YP46lKoZXe+FQCMMOQLRoRXxIj+Kt0M+ujMW+Ajk7iFi6HV6MVj3ebgcYgUdNT5L/bvb/B+hsyahCqOKlmbCpt3sOL5lRhVTtM/udat8cqbfiMIib4zNOu+EhbR2HCDorbBhU65RyFHYvlCfh//eKCNLrknvIECj1zaQiDrka06IBZJ1B8Ol29NuUQooFdEWNkWqxVwCmXQncYd4ugl3I6ivrzlLI57B4vrWKbgz0BZ+tQvHalolvYiONsri6ha+tJOlVUnlRL7CAqjo6erj1qgqJNoFPaTMaP7bzNwZ6AsvUoXrtQzS1sgxFCQlWsLOOChg96HfrlYwv2Puhs0PwLzQXWVpQXce8/P9ipxcGegLP1OF6zYtAvMETnsrrveyhiro6r4J0krSJCx56so6ZSlqIHGfUiT/Dkz2SqmRGcgO/z+EGT8/EIIojbaUrJxVH7IXFHkG5Y6cnHwKHZxfAEXQ+9vnc21xtxw3R17toInXgvW3twMjpcupCmifb+dcet9AsR0tLvgTD2pc5iNnd/Aq7fkQbYtXZRbR6kNU3RGQAPcnk6/GlP2TK74K4uIdyo7PWrLCsYyvEIJSwW5wSkj8MR2TUzbonNQuWVdDtA0tjFZhqXqegxrwuB+TdhoJb8flRzjEdfMYdDPgHn7HHUdsmbXyKH22/ScwUBWpItC9dBrpJVG0BxoQDbcIemV7SW5jmlPisqG3rsMkZNm3HDP1Q0cNN1GPz1y9HjnUC/58j9WAMACxXkM5QLaHPfxEgCciEEHfD5kmlF36fPOztfd4CECtfsxVZwSRqfgAQaV07YWVkmBtqcUb3B6f93kzw+5+5y9Lb61lfrVjSBEclxRaVhW1fF2yRa5K6jQM4k0kZWRltS5s/pUHnLcNTkkY/PO3s8tVMvFtWXbSSYMm5hjPheh0KerrJ4GJJ0HXcgL5DggmL7PB9hhMl5noAjdShVs/4jqBahnWzr9g13J3GTbXherDHmW8iqWqPfMmhQ/o1ACFv96QtnknbHI/hcOtAu2/LLvGhVl6ZIHd1HWrf6q9P2sGQHqqg4vMaVtE/srmtC+POffdRiXo5H1Li0ji3F96X7wCAqC8/4bKKZeSX9NJfH1HuY36gQFMKTMVu+BwgCHgkV/duJ8V56SA3/UKBr1XzK/aPwQDji8MwSWjps2FAKDzQxaydruukwSJrYWQmon/BFCSKCub54E6VDSrFjr/12FmPkyWlcWv/PlOETJsAC348P1rvgvlkDEJUMdEwYRf+2hkQdtnul6lSFFm5ev0TKMwWYYDH3yo9QwCSQTkA4OfyUrYENJLO7MxEov2nmca0A6SZ3FYB99yEiNow6mGqTe6Ot+LEMLTD0+MipA7Q6QuRIuDwRVSlQQz9vXde/TZv/VrAQJE/VcWl/bJrHoEzr11n+gU2sFQCeIF60w0tHRearztBlLAmHAYa3a7/UjkBLYA06TxeorazhK52nbcv3G1K3JyMLpQxvNEjq2MGINv7bqDz465cz4gl+oXdHJm3i0hge6+HBZpl7IXOKN7noob7DS9CSpX049X3DhFoY1qEtj9YerU9ZewAcJOG3BOm+BDySjI+Rsh4rKO1acv2C0lrRxTKAJHgixi1bMzzsYGk/VPImpHsCCNiBjB0JuC8Zz4A2qgYoE4vyXofCkZ0VdaBtS8dd2Nyqrnok3k+HgE/KtQwq87i8pwdbbCgwUIGLz0vB/WgkTRkI3w0+31P97NBjIE2RsMMliM06/w08QSwHkTcU1hYYfgLw3MbaHQl0JJlG9C7vEh2+pAMoKod3k52wwPx8C+iyUNpTpO8ALExTewpNTSTw+MihizTaUlBXOYp+W6tvuQmKDce9yqQ9cgiT3CHvvPhmwX0OXZytPhVxn9Rbmc4oxzdS8XxXsApRvP8PFBW7LZEDwlqKfiqodMQ/dIjVetvU0d4LU2luYUM7mNDGghuB0eQuw/nh7VkhF5n/SGxPm8U7mjAbzz4B/u3A5ZaY2Zc+o+dFyZo6Apa/15AZwmEU+qteS0K4CiR5+7XDu+ENPMGEHU9QwuKUvNiqJV/khBOlCj8KMdnQsna6DCI8NUWjFGLKdlcYZWH0tWR29UyPd/9JS0PTFen4JkrO/gqCGEWCjTMkmhMaRS96ePD2k2JeOGFIxAJkhsJ5AA0UA9PB1yXWchuv2Y3a3ujhYkEYJ4A8PIjEFJ2z0j1p9E+nTtNGMEDNa1LYMGMLfRZP0/xmPQM96MIvLAF61cPY/eOX00D3MHoPa5Qkr4d2miTyHBPV91H0CHWnM3qwNSbsjZJsCbzf91Fn+da+CTVSAMAxGMXj0llS30HIbFLo+BySQzk58ntfrk8LupW8up6hW7uNNET4qep2Rv+lTNcCuMJ6aGxnpcvef9ElC9o/ARXgUQe2iNyXnM+8675lbkvbq6Glyh5TjRfVCh1jVpyZsuNRIiJNyD+v2bMCxBPwYCZrZgOwPl4LTxYIhSUPq1rLHkWfVrR6dWqj1FmFUGvcSpxmJfA8Ear5f/1isShdbnPnBAAwvUuLVWiO2FkKHHOSVeT60aINHm0psrfSohuxKsATEViag3/5p1BMyvMEqou6xlvBtEmmnIB88cgaWz7uy80XJFBT4ceGbfpeZ6KBrZzSrMZsOi6co4ru3nijjwIjE5A9Pn7rwb12+YtfLoOHMep3ka6YA+AyDUJFrXWFOOwfAZP3GKrnWvQcnimtBYmfAEF3AHdLyBvJfhcwNgnw2vdFkEeV3JbeFf2oawnVIMPSV5Awrx6T8AOVvLlHnIAD8jgjWw7ly6fY0WgsDQnTvQiFHUm2sQLzKdmvAJbw9gNAiq79mvWCBcSfALj3gH5bzumJP5FPqLcvnnKR0glcBW5oKiqmb3RtZ0LPE/I1aRiITmhPreTIHN0C+S+YILR3ASu8vID/1y+nfud8iaB/N2Y/GdteWgZkuWX969pTRXZWNOO4u23CzKY5IXVDUM2sgsmVcNDcmk4at+0tHXOwfmEV+078ZGLxx4fuPaTfFjT6AkhIq6eaPtOJdC8PsmFO2dPaTkJSY9TUt2wiCFtrffbGNnHs4+PeLk5uy7ki+dekw0gXT+pqUQ6R2t4aKnGR19Ci48xnzdC9bZT0uAubUDgBAeHwFZacKxJ/oaJTpUnA7Pftspywh8stoLRJAqoKnwA6guX7I9WHCYyDp54Af/XwWlvQFQnA4DBUZDalCh6XPwd3ueWFcs/RKZUuFW83VX1Bk17/eukwMcGs42NfDlJmCWJc9Qzf/JwCFczStUU5XYQO/LnEYg49MvstD6f3WYocJjStJQV8QzBlIdEnQK49pNtWNPkKqAbtQJ66cmaqpep1YLe4lD2hRyMV3uj10tGOViYxcuAHuPJ3yVxD1y2kXKyAW7krrEoZC6weO+fQk7L3eS0YTPrJoV98usZTRXskNvv1c1vizGd4fxpZ0WTJnKXgcfF52Sg9KzoBgr+KbhskTmtcYtHRm0pl23PR+0Gd5Ob9tlx23DY5pZ2Q3jrjs4ihaf+4dTS275Xnk2X5ail7BpEqSjsyrj/XW8W2Fh5/fPjeQ/ttMVkkPttgaLam7F3T2c36mqm7eIIs+rIMlOdJ1wGaPL3/snL7oMu5kXscP1PxEhu7NsSvJQGGP9q8n3dpxobrUPaXOVYFE1CXnAoTlon1NqLoaDjy2P2hHtm8whuaxiGY45NIfOzcP36ZtrCHoQMKh3MSqT09et2ePeBzZSGfl7aoSWveFIC21n0jRhgjXoiDjkQAH4m2NSDO+xvhMF1nLZPazysWsPlhajLAOxl3SEV3vwQUPPPnyLTEENmU5PgamEAysys051LJQI9CzeqcUm4449HExxSFfJHS0Zd6wNpMxnF5D4clcYR0vvAOG1jJGuLQfMqt3etQgFN1EbUiIRGPm4EESBDRVGtyzz6EaZwsrS1RDh1v+06A4K9fXAIGFx38QrplNtfhauOFWpPKZDpcdxCqxOXQZnclF/sycTILVPuXfwqs7rd4jY+Xdn0T8z0BROxByrYC0RUsAk3pEt9xg5wyv41nJlI3efOUyOnnEFOUOyPoEEmPBtYm6nt8jNgElB0FYqRYHLgFuQPEcxLnTSbmNJxDUe8dk050qVCGDBG13j/ZkwndnQDqs6FBT4HoKxYzHDVn1lhypTXudaCpR5AFQFprBDBsqciOJSNBrdUzj/9j41Az1D9BauBkErbuyddJOYGtFQfLqLmxMhKX6YCOnonHXxkE+5w/flzgxRGOD4O/UXkbm7URSpwyUcmV5f63enu+YHVgmqyDBYTxfYZ6j9va3fbANmvos3Q+q1e5Fy+zho2dquu9DivPRaxDE0PiejxtZC3CSVLa9cv275MN2AKNj48xO5C0Iz+N5KqoY9UWZR0uDHx9qIonPeshGfaGaZaOS+98XzhC2kr84D+WFOAE0gFPamALUH3BaoP3ca6yr0KH2e51QKAu2TzgGSFvscL1f1XOnjNaVqS3eoeZ7NsJ2DqP3TPRchdbR7zBnjZsGkrZmSjLuP0CB/S8vGm30+8Xxu1v57hVxjOM+GvrZ4tnP0E1nFc9Z+tGfJ3J5oZeVer5J4VV9Tq6TppdWcZFKFWuMyyl952xg43tb7Tn3X9Cwxhv53gsiUep2LI3XyZHJwSd5Et61WzIX/QyKLPtcpzC8EZbB4DMGFJPnxFZ/fKq+YiGsYiPExAlNq1i67Z9nTdykCmdFwuAnPt9SCeydHOALfAs2g0efTi3JM6IYbPYyGoEiW7ka44+NLOYUmORMSXhsaAKKjxZ3iVNLbArvo20unNVOc0RFm7Jl1lS3EqV+AtSaF6mGBU9FpumRU14rY/7ZpkyqePLVj2hgb25RHsRZb9VEEG0DhXdvCvCskVbb7BIBm9zfJbHI4VMybKvcOaSnT2zBtNZeqvgMhTCy2rCuUC7622DAYK2y/xFy4n+VMValMcJKBKHUnF0q5HOFRNKW6gh+VASIMO7dctOTknf+LYDoFMgJdnJKdYZ6+G/alJPJ6CqPGrLll9Gck3adkeWzwt23navg41azmLk4b3dcdPeeh7RXrYeRvQ2eHECsMMDR2zVHUv92CZQ94wpEwef5+8fS5FqeVQi22TSCcgnj6yypWCucgz4oXiVsN6pSoxJV2l4FjLHEc2mO2qSlIxPNNpiHrdgEiInIFA8wsXWggXSMeRtGmHSNBEWboAQ78xnSLopHeEwKu36a8mtUaQgmsNP8Vm7cvm4lc5eZbQYd3IfJ2CojfZc4edM4yn5Pn05sdkK3Pe7xl5oLtLaZhkWCMmlDC6N27jUCf8mnFN/WYR/1p32v3TACegDj26w5VCRfGpDXCpHdILXaNfPaQVnzZPgP1Zujf0AW6XxR+F49kdu9V906ARYkoc9mXooVz2F7DYlCSbGADmjF4GX/pYbwA7Ub4kuB5+ypWNCrafaygLoTgDoOfifrYiKFFQUsExdnChK67d8mnb0tSSfoyBvS9sc1DrQFr3k5qYwjG+126vACsDvwawnUXCmPv2ZKyS4My3aC2ubBrSW6zi85HXWNK8qkx45vO0zsyBJQbaF20DXQl6gkxaamFssmAVvVAmz0yqEP7eGCBlgFtYSuZG0e5hgM1HhylQVUsQnVN5Ywo54cILPRDy40SpAgkX/r1/aEZdiQfFQmSlplw50xKWpwjgL2qhRbCdciQ2oOURuRPya1c4eFUPDtjTAwwIO4gYa7ygFTHT0BGCqB77aujBfRwa9JXx55GSZFKhmvQ7cx2S/yY8idRTvTFkYnZbar0YzFshzAlDIA5FsaVOghOqQKGnDXbDKtzCbAsq6JaBKqMRrOiwFTMD3+JCFb/VTc2RhPCfAhDwMyZYF+TIiWulb2glj3IlUUq9TKVXjCcDiLe2hWRsb6shNAJd4qI7sdPUE6a2TDjvyLF/OhSdTZpdwcXSaA9/XoZUlvY8pk5X4DsPS2916EzDVT8/V9InoyMgUTpBYeImILQyKhEQwVFyi0Ke12r/7UkDGLGhdpQOFUU4M2xb332BcGh6RL0kYrVT/BMiAhyTYqrBIRUbLZaVvTC3drlhAvLvQCzA9kxVaEXFzL3d+/7RBPYICG3M6LkTlIVqOssNXgtCPoo1LD3nal9N3CyDoMZba+KIw5iJmdK5InsdMdV2P0MxMvI+fqHuJvSPQ8gVdhbvjZlV0wLnzlkyjcrPLdrIoB5MUjH4PzVxZ0TDkn7M8MgxA6UJzJ8QxCGc6nFrVrMn/65cTqkg1y4a1XONYYsJw63rAWe1+WZY0uTMhfl/KWhxduTtc6dIlAIU/EvCgugMeHZx50E4xyy1zMQMhJ3B6weDBBKpOALI7mLyNtPrI7ARMvtRkbnBDbbnMQrWuMHGZ5S46qh7A+JU0oet4SwRi4R0nwEc8PMWWaUSyjoUudsp50Of7FuPCWGMpT9CyBP0Yt8uX5EQdvywOTHDhuFiEg1w4ggNfoIB4q3Yllhp9Xrtehy6fl/C7MCaXVV+32HDrHNn5V8OcD3go6wA7wXnnnY823x3Q43bwbyULMiyWDhsuTFQ35NeMDy1g5vg4joP62HoNX90xt0LF9L5LEe0L5YELKnd55nBSEq6exgROrCE7xZhSw/ZxNaLJdJ+g3tWrj7V5sohXoyvuIdYtKHET1Ru6bFNkN0VikXCg3rpcWlBDdzCK8p9GUWir3lksQBOKw8YMh189wIK/fjmyxBPUb3tUQ4W0H6EP546zq4QVei300mxMiAxYL8gO3nBUc7KVISou6qDlyh5tmeQb7bIsUOf4GJCDGNkiU1+UOiFEzlk+r2iXvPU6DJQ3njAb/nc6KiV4mmN0OB+/VZJpYXInwPA8zM8WOgW6KJQ6zakRWdO+t/Q5zc6pVcDIN9OFGjG59FyDhXJ6iYc2V+jxmXKPWXdkEr6sAoamvU2NrBdmg15ngMaXyIkCpFxv25wMT2X9HEW5T3+fT9REVs0aauIWc8qIVfA55ZeSi5jqI1fu44qDYDIzGLbMnKzoQsdrX42z1VxYZCbfx7ZKwe2WDSPBAupx/w1dO/mAp+CUXRMoD0PZicTw/l/FpGx2sdNPOHPyFi1Gg7qA3tFgk7+WtuZiZpOpf93GTn4jqMxls7g+JGf4z9brjIUfxDzElmMeo9LpULgSEXrz3ttbXoEWIHwCANkDnG25UySP4g40GtDREpFy9QYBAYB7yUWRSHYdt1F+36TnBP+EJyr0X0zvBAighxjakgdfIoGIDi3J9PAYPTW9DsV2QhYD/ICfko5LaUjPinfR/v7DSGdYZyNG0XtoS4x/KVZIDRyn3APtYRKGmwIMV/IQCCQ2RWUaWFUKhPlhQ8XRufaJb6BOtWgrsP2lxGpogvEoy3ZAyROAmA7mafP2Ps8P5lWL7bDdZ2lsj+tQ+JS7bOFlcn4lw1L60/UeaK1Jg9VbEEUroSDPnx0RB7YP2hy/C6L8v4qD/ADLXbkyCdQ16yLgII95jPaAFGxTMj/EnsVkRnwqwmUu6AyjiYO8n+KtlS6Sh8ss6AXw9URzQuwTMCrtPGPw1RPO0mcwndixDvFygzUUkw75FsQFf/1yosPj61Y8mYudr0f5PWCiJopdClqKEJdu8GkHqy+4LYGk240N1RMwCq4LF6ancn91VHmjku76pv+3huZft2jF71dotzf0Dips4IP3V1DVbfa3/D1MOP8E8L9HF9iaF08i0xInp02GRTC7rnQGTTWGxNIUsUjNDX4OTYW7OVPMmfNTUmPA+SdA/z22wFa8+AoZdOet0kwCOzW2C71Oa1lOSTxt7Dt3XEiT5KY7ih4eJfImDnR83MjDmWyFTGVCY0rVEk6NKfZRlYO3dCF/ehjl4altAuXHx9U9GN5UvEQCGdrfV1VMuBT5FIiLaPPxVGlI5QTQM51zIH6qZaRnmglVVMaSx6EyEVBTOA9ZmxwN/l9hQojft5F/MJjRuKAJJoRcGJax1ffNdjdSnIHmw5Sv0PtlirEPUQfQpvg/GFvAPXCAYalS5YA2h/SmIPADEg3QVBCIiXZezLFis6eIRtGqyUnK5vrFjEBCbM7o0nifOOOQAaMs+S1PahOdPwGa76H/tl7I1xd1LlNqmsnRLytXd0TbRpOFTqtFDk38nEkLVymPNmZ6ypE+KJY1MvsTAAEecGBXlbhVKAvd8iYHWUjoCpNCch06HKZ+Hy6g41bp0kufWapiKNVvL4mebY7pBJyUx2HZciFfXsTNA1rRTBul5ld2RGe1PAEQRDcDp9+DXER722Us1WeXrw5bLz7/kyx3iiogrJDowP/rl9Mb8AS9BL3eg3b3aLfbtDRDA2TC/c/mbXWKpti0DaqR2OalpOOCR8Y5nlCnntbTEPwjJQyfcpPBcDiOcuGvVK7RU0KCLRFik7JZHwy3pSq+tMWrSvYisMGQD6MwNG0r3dJbPXotduMEbIjHnthyLV/eBffDLkwxO1H37+vQj+kaJNE6FLEVfg+W/pbv0xxe6ZHpmTj9cWF9mwNwZHORzI6CokvI0COpqvkD8c/AC8d56FBVdNTKBTQc5uW6H63ObKTxuMikA2R6oiFfYgRwYegdzNRn0c/hsN0uXdq+22PA1PHuRGM8CjASw5ODmWlI5wBvFbqNexYFf/2yeWjps4MCTzaLRRyQJZD2zAVQDtiR+wA4o7RorIvto4Em0reEfGRpmSDqtFLlJqMJ73W3vv6JaG6TFb+kB22s7LeP9rbM6FHikzRJ8//45eySwDsRh9AWsVi3S89amjPbnmH/uh5dvqcXxSHI8MWjHCeV7GXoSk1TqGgtCS0luX2GP3vnhtaDVV37jUDEzqKPT6p7HLwtDXGlJPCfQC88oVkp/OkCgy6U+E3cG34OLclv6r8W9PnVeIZOwXeqh6245/hxkhtXGd4CvhEBFIAwP+FjbKOIsetFKrJk5YDhlHOtT9Zmnx3hjMuebx0/Frh6fDDWA28dnWGkS0Q125StrMLuSq6TWVhTddJR1vLdhR7lGxoWo9/4k+3/s4Ey8DE6fge07BkelzQcs32oO6RohFkKph0UNXVNUu1WqH7rVPiKVzRuYS0uLbN9W6oWWDhVDjRoaaVxrV8nrTk2dGbl5Xyp1apNMJ2AkPIILFOj6Us6O5LVotk/7fFLdktk/6Vx+RTUF40L72VYYNdN5wUKuB/vn3EB/C9NksExJoNe8v7dP345K+4EK9Rb0bZJrj9fvPllzUfZMVZFqyb+PQxsvNRizqQmTkBleNSHrW/15LAZ1pxFs20KRYrAYbgKPccm9GuHAmPoqBSKcQdZzFL0snumoR8QviYqeHwU0QMdbXmrq4aFqQTFuoOPkUHRjJi2IeyntbYU6p7Xywz+5KjTm/x9CvPz07VvLrS04viGQg0OcGjpJl0AwV+/nB3n+DuUt6MhIx2ssYUio9F0kYQCaTsFDJxUQrRR9DLQLDbuPIc0eIhhLEd2iYurMOpEq4Kh+yWl+KvKOqItp42XYCiT2TouEebQZo66N1IDA3macp5RUCiiKdqMF3oz6vSnyViWjkpzeGssRvdT8pNns4itExBhHnFm62JdHe1AjDTYq4s92tM1zKCYqlASKEsKlXPCRHbwT2yAxgjLZBLz5yX+uVGzJSk4gT2JZ2diiqp8DRYcqRq7+qGGO5chS5gbky8xsBpI6kSbIn5Ck+v9sIXv+pLvpk0JnIBC8CgHWxTqi0hhNZtWVcQUb3PrdbCCd9E9r8tzx+9BszrZCuky86cAwkHgj4vXe+i+qQl1JaRQrk5W6eEGctagrSInWLyX4wboFtvtS55SwVB8B5l9596RnFrb/gmOCedUsTWhPmzmwWwWLCfDzg6cUqIl2EO/Awab4PsJsHoP27d1oZGOlBb8HF1BeJWu0McUkQ7dbum2d77D0lFZ5f1TXpPrG76Z9g5zAlWooyJ1NGGRhoweClTcLKcaSZ1ycPRRwKPBBrYW4aAKUn8ceZKa00k13ypNtrD3E2D1HrZv6wJ9HSFQhV6utRlm+tTrdKh95PdkelnSYBpw1wUW21xjPdZ/QxMoqQxZjTt+wJhy6v0Hf5UGtZTzbm4UO2hmdW10jTR8MOyGgInyC9UR25qwznapzA/A6JMe57ztIm2jXc+Y1/DxlUE7jvjCANyEMPDx+mkvWNxqDaqqnuUFl2t+FPz1y4n6jh8kOiFlg09U7SLcoxuQ4ie7gzo+h+6nzipCRzoWFeOg69A0KFOAOegnxNgNjv8TfWAEmKtLasxf2P1MxPoECLeHiJuy4EBEDHpxCXWIAtshODmM/RdAYt52aF/67iGCjHit71PnITGwiYMTEA0eMWHL+iIZIN+EPjvaw6VVMX2O3Ey3dvS7H7f/N28RijtCY/KwofvE/tps5HeCxn9eo0Box9HgliUAEH7xa7QlA/gc7oPoUvcPXintXVIshOtQvFVZHgZgOw2RJtO4FDuj0BGscsr9tcaCFm9xAprDJkVMTWQkoaRci1tp4lAGMbH0c5qPmQ89TvGqFofDyWRlDUPRNukpWeRGN9L4hIPUKjbOGc3C6EQoEohQnCSGTaZG05VF+ipKvAbarzWwoHBT1giknqPqHYBzEy1mhypGojbW2Pb6TAYtBPUEiKuH0NqqyEhFiWepQQYtcsEFIfYE2NIluKGJffviYsp3RnQzF7nmZ0aPGnrBLFBcwPMMU0WzweCvX46xygmMWDzjFngLF/hBgoeCYaYUbZq0vXx/dFgWMM0FqEsugwavlYmRxF5f9+sVfVJQFoB/cw7uHfyOkaKlczyBLtLTUdqci0vRbMziJTVSdDnRUBVuNza5JwkyUlp6/ao36cTFOuL0fM+1H9H0B+GEyU8e3yrdKzFCN+0yuA4AEzdlrVkdYjkolQc0b+u+6lIKuNHDgvsiJ2Rf/8T0p0WXvgHpWxj6CTB3D6O3hZG+kBIH1LgZPgV0ol5GCr9Bh8p0gU3HdY3I9FyWYpoU/4wfQMBGgo8LHHswsy2L9GWUKCabLBhBdNCaWNbhOtCFZNmL6UTWglzImqtYTiJRQBPcZ0z4iSGmsciOT5u6NKutXvLVTtgwstwQvZQ9i8zuXTi44WBxgUIpQvtu6Lrz0u2dcoT9EiRgw0gngJ0cmMoWoVbJnFsdeuZqxSFfhqK8Ic+dIsu5Hlzr31u1mjKAE7QC81qH2YVPUaEUHTKlCDOF5SlmAjiMqx4GiA75AJRxOc8ofH2a3POtumIT3D4+Fu5B57YmN9Lw0qbbNcvJeuixzHhd3p/iZ9EzYVTKi4dCInR+9Idk2QS2jw+Eu8C5rSl1JahIvGixXhfgJeQXLlPpJWW5B4riNIUaPJZMESyKLAKri7Ra6OZxwVAXO7UFYb6ADA82cbd4LommF7X0OpWC1ibZJldL3E66C0GRRr8pj6fw+O9dmszj/gQVyF7RiB2++OEOTE8nkMwske937GVHE3b08QbUaoGbx8dCHejUVtNF4jvapy92Sl+QelgoBDeaoOrrz2PeUTsNqlMbwFR6ip0+qe+20I0ToCEOeGLron0d9WIGaksQRM+276uvHqlubBGA7GlbkmVBw2ba5IoGTZDyv6W7trDNE2ChNnbqqRFd8SIChZQuHtP7LPcyvTVd5nT3rdxR6WzbN95COPtY/X/vU8Ot+ID1SaEx7TBNupTRvlUXq/cy+MFSvykVmwqxFcG+gtiu+LLqw2TURJsiC77oDMn9pYavNip2AhTNQd0cPVak3wIxNyWVpJxVDHCgM4NWTKLKQm9DN38sf+42wycbnScPqNHmJ47PZ7j8h6kpiiRImM1VIsMBtZt8DlvoKjNqwuxcm8JWaS4nX6f5VNNjCn/SNNwEqE8AaHsAOFAqCInE66Mk2apNo1z5PMHabwhgQc9DSLeNA4UO6MI/h+Lrws8LPwd2mwxwyFbY30lwbWzvBFighx3aqiJfhQSEY0gf+IXS6ynZJK4DcFCmK6CI73EBVXX5nFb9T9WACe6dAAp0oENHGRIpSRbQEz3+0J+KXyLWVNljyu/JEEtcaJJWfdJ0iFbI+vUSPxFeWbDA8VEEB3RwlFG+koqrKbjAilOdpLLuhrMNRu8MX63E4ICMi31EFjfCsP7SVmwCoycAUj3g1VbV+CocDq3WlkkJtw6ZYZ3dqLbOSDgRr2ubT/tl1j263d7Wn6t2rIT1BE4gjnGIKavxVTg45vfguI02sX1dPNhaeTd+/VySX6SoAQUqdBaIQqKClXlpDzMRpRMgUB5iZapqfBEOxOmz6axDfqWOc2jgXVfR5VJ6/m5+TU80dXn7gAMeDhVWDn38jNtL0G1ZTSTDoUByDdk4aM1Ole3QBKZQqosga6Eqsuq4Ge2eVLYA76rnBP67bMOaYicQhnlCMltW4cswsCPNkeRVIWXTZj44hYpcZ/yP6wWKjjuV0oKDWyvrnUzCxh9OgFc48IapqvFFONiP1t2POoVY8vrpMlCEqXyP/W6boidzJsRkHIfRi6k/kI6Na54AB/VwU0sZEulIZuJ6SH7lAwE0f45V2Ie0f0G5+7hO/BQMs9d75uqC8mxZ+5HwzDr1TnBKeqeqrQzz0ycn27KSMxk2YUXJJt+bdpL5vAjbyr5PkK072b1ToOMX9KBygh6w+gnWXWTOo0NPQaNq/nywJkjHpeh/FfmdhROsd/JBC307AVrnoXu2qsJXYWARc1Ge7HlcaCLXoXRlqQUMnRZVgh+eX73Kc0+UwDx7EfTCE3yumtiLhnu76O37f/xyTBIOf07ZEHo1MfyV1dPS9vP513XQcQ13JjACEDFQb4EaHPcqCIgHG4bR5Je2Khh1qvvPUo/yZyL5AVHaUMJC+6Q2gqQ3JUw53mab2Ce5NHHnka4XqQ1XmA4yvuGM56RmOa/JsBRa8GSBOOQtHNRAHo8PVLrApq2KilRUKCtM+W4tQmBiAi5KkJvsrJ0Onzp03AZ/E1n6G10bXoleTJz6+Cy+zfk79J9PF3I4XZuccPRtlRpAAVjEXI4DWjQd1mEpoC1JNn7K+lZ9S6tk4I4ngCkdVNNWE/nqIz7JubiXgxE64ZteB3KUJGlmpyyp3Arx1He71letynUuhABfvbyG3kT9tojD7o1jV26ibk3lTHWTryjy9EcQ3/ay7wzuAg9BIjV6qTqB8y4SxiNBgxXozSxgvv9zCxYAeHy80MUXbTVRpD6isa72AKXXil8W1NnVJOdPoxhVYBO0pd9JyoERga3xo1ZyEMATIIYewmgrIiIFxax5655Bd5/y7dNBt1qmhCOpAYPScSv+IFFdR/D+M5tsFOsEqJeDkjmaCF9DgTneU9O8qLb6Leko6Dold0GZZ//uWznrYFE47rpySvFjdWUlsidIfL1E2dYBsPwg7anHBkzQb/EMcu+qjxbQ+BPrs9C146NxLnpnstMBl003nHT6JdpT0u2lSWnrXmJBTjtha0tHhVG1JtCTnRZ/7sHEh06AJzn4k8NO+2w2lD2ZPcp4C1y6hAekpBRmakwMwUvTcWmHSIrYUfSdflGHf+vQa0fmJ4jkvcjfLuT1C3/5wNj8FNv/ECmN25WcnoMcJB3usj/dxzf2WDkw6bQb+a02Kxa8cgI4xoFvHGLfFwJkVCuO22d9Xb/TBh0uFD+yyaG6UYelN14YNYGUnG7qMYlNkOAEoIIHQtj8tEtnA8imf1vmMK1D1azQZWiLuWcj7fBLO6PQFANmIysUlqJPyMIACU6AKXgYhMmwBnwsbbpDAzeaVEtkSiCL6KBhgBRuKHOrKxf2w8wpBK9OVWndU99K806QFnpppM0TurQin2RSN4fZTJvQrS1Iq2VF8tD4vtwee5SFrSxzqUxWk/x0IrQi9hNE+F5GYFP9kTRgoM2GvArMjXrrOWiD6lUwGKBXsiVMANcly2UAwDwiaJr+7Fq7uPMEAPqBen7h0b2/fTlWYce3FnOtyGxTG98EBwfg5M5k4nqmDY4gYaNDNYvbOM0a4dcz9jIZFbMd9VOvbIY21noCbNbBcm2O2KeUkT6lrWufpsAUJ9jKOvTV5Od0iS1lWDQS0VOI0tf648D5kUu8TfqegCS2SWWn22nUHBUvtKqKcog1FPdwpbl/zQp668pwA8dDWCUAx1AP8jfSRythO0GC5yWEJkXsM8rYVoceC5SolGsvPuC3JBA/LUVV6HAJhx46tLTKrzZHf7ZMMkOPE4QqXmhje9r4HjhIAkrnAx8ueHRKVr0OdskuCj3mnG/oxNmmcHeUD4+XPHPsVPf4mbGdRtvMesTEU8g+dB8HaqbMPedMenbNRM+yapbe9+LSabx9eoHPff/vLXJMweLx9Y2eHNIGdlwgaAO5VbINBsFdSiFxnY7WjlsmBZ0Z+daugI/TyYXq0vpgDP4uHzUPphO4uXnub7bMOpJl048oVTzK0YNuXpl4orCvibybpmQVE70MUo0yFrFep4wmPYt1P9JtWODCCcAID7wwhRWRDuOyePBOKlLZDjxilOtroO6eNCKMt5d4scEdYL7EeJrw0AngJA9+sjUVkQaDHk/TjR/miLdhAj1ytjtAxEdb/b6oV6GcJMnXaRqU9Hj5HxraJ0gvmhQzJVoEWw1bN/36pBQAGuWIwNGD9O32JX6zE7MM3iybl1FxwSmjItF41vh+MvnN7ekEuLaHg9uMrksAdyS4vIkOtJpQ+eiGZr0L1kX/Iv3yfFF29MvglI9+5ebufO+oVixM7gQYnof5mbISX4WCSGZxzxOWVCzBkPkyqQgqP9BmS1TyGHbiaJJNBG/jR/Pg4F8nwMsceM3WlUQ6lAH7Z03E6K2IsTnkMvBakiAdLG++w9IGN4a8dTqM1tNu45M2pbRd0ZvM6LQO267EHeFoFneUrdMsLtw4JAG6FeeHhtmAaJyTT8Bg0mhi4BDr/Dm8JLTtM+1iEHuisH1y2pjW0M/TSqgfAKFNp7mKCugytMHQMcmLnva/tKcOS+9popEFHfMVWtJXHE9NrdcJtGGelswU1vg6HEjA29bduowx0jWSgosiD9rXblenBq5vy9HWsfm/hOOZuOkJcFYPl7V1Nb4Oh9fq1NSY4km5fVyHVvzUx0Vh/8q3CzAFy21qIIBik2cE8+cA1oywjl8o5xXW2crASEg42uQSAASwqLGVzzMc3kcRlzIKHLd+nytuOZqiKzKS+ohf/2p4yV3BS21MIVQu+y1C+cPcZImBJcbLV0brKXLMCoWooMFWFFgKBBmWdigBdzN32CsPq506Ns5LqDrwH+xusmuK5MP/65ez2Zxgc/I2M3Tn2IuOM9aIIMgT9w4AZ4wAcwvUtgQZxucU7lZuvLH/BwmWqP+4OTbcFVgksmeSUwTjzs1zjT+nU/FpNvRn3M4yIzi+d4FndWB3BIg6CKAXLChEVCykWWWxYI60JtMC0s8txcn079IBhE4m/PWmjY3e0DsZpMEJOAaPk7DkSL54CWGa0vR4xYBA9CqVzuKb09Bq0aKbDMytaCtgeoa/MvcP2nMb6dJxMisvDXOUeJFyz95XrH1IxqXQUfirhj4G/bW2xhbXcgJuxqZyHD1OpN+hxP0bgqU1JqrnCVfRlSW4g1PhWjoqzAs0qKCJKir/e/+Zu6LzHp/Y0R4tae/CD/765cBkJ4DVPBjOtmJ1rVs3upGV1QWJoKRShVMI6cAvLT5XcWArE4p8qKeuiM4q7RXgxrThOIFth1eYawNLERA10R69yUnWZxVYBLcJk3x+WiiqlXAAb4n2Z0QhiSUav4KeT8o+LaLuuMSewwN6gqRIwDSZlpRh6TGVWw66YVcheyLaleRbDtoaAijJ6CjrePKGJsV1AkrMo9BMPW0kv2VllyQAtPktCV3RaDHBR0c21Na0xTnCagBj8vWMrhA/92CSjScgJ20u01EkRQqmjZdyMYSy563M3HNMPWzAaSu1yk33RKiAOvnan+1STMLpBASVR2jZiiRfwYSwM4vejlbKalvI7IrQGU2Q5E3Qsf5NpEEBMeVhZwpHn30D6ISeLI1fUF3xYYluNCqddf/45fQoOUFPE88EyFzu7uaAR7EYTGd79vVj4ISNqC/15Kb5lnXUgfm8GZWjI6bst+gvg3E6Lj3lkVm2kMsVfoHZ7SATZHnSSdJuueZAH2U168+pra7jog3Slt2i5gf760BHJ4CaPGjKFn6x3oxuWdcVeDHpBITr0LxO8qOAAf00MrHJnBNwPw5X5Ci5IuXXonhWnwXdnBzRFW9/yYtjfLGJBxxaClPI2OTeCv2E9bgHE5U+PojtYd62jivSffU+OPXkEpQqbmXQp9FEzEVQHQonRrrj5iWd9nATdDTslwzoFvwsN/ff3dx8KKemBmQU36GtN4zmaMtWzsdteGQvX3+5dyiQOfdGqN1lvuMydKCuJnapcJaUUWGNRVfJPCqqHd5iSUxA8wQAqAeY2lKuQPnVk9i9My5Z1JoftPre/J7ph40q0wtNaDM32uRzD7vPQ7BpglInALE80MsUcvm6L7QL2UuPq5qLCI642gQRqIBKFJgImYufg8N+6k1Q5vgQu9n0wPHZBId7sJVcvvILG9G8ikhUMvfrqUxRye7ya/CElCJBTNfFtQHvZ41fes2/t5+2M4zjZyRuBmMb//pGwXD2m7fpC/3CKaHW5iYRbYtnyKCwWN76BkzPJWP4nbThzv2AeiiDmRKI0M1wVoemsEVzvuCvX0ynVa7PkDVOU4jPEzg8Q4GEUqONxiVtKxjlOD9X2M3imGG9K80DxcA8XsDjESzeQYaljBdiADxTABb9nazHhlhOAMl4EI6tBPSVg2ggkbgflsSd4g6F6zBWKpOdEgahNPB7aCnNJCHM6i391LnYWMEJoAUPirCEgJFskJ5PrfLoEuhk+X6FULooikRpwRp31IYmcRIs0JTP+x3S1Uyzjp+VeVmcI432pdQFuHvSwIGiFWmhjOsMRDyC5NO5v+X8WYlVQfoOC50n7R3KxmCITkAnefSTrQV0tYNwFkFngapxE7vVy3XgSpDk50CuWy+9BbtpDRbx9p/x1AeFahawcnxFkKsgsklxn0THpjcLnx4wY2tLcjOcBgDGBOmkG+4i5dxwTxalDzwc9v9rFP1JsmVhJSfAVjwsxtQDBurBlaVLK8cW0gGNL5K6SFbRnWF0xYsqdx/XwoZJyyU9lv+oA/3A6JiiAIMxSrrouF2S3T9Ka1JMYaFBKDLGOpDWpA3uQoWLZQs6ct4mof+Nvf1o1w2O2eqPPRwSFDBc+SeXWZ3y+MEe0qkpuoJh0XaElSjgBqaAN29Ijix85gR4jof/2JqgSEOEmttRdbdsTbwr6QxHLXGVz2mlCT6LcVtB0byEccD/HzULJj5zAjzHw39saZcvBKNgOiWZk6AT562no/BbTkJ4N9J2lnXUgeIc3cFpjf/MYQdmOD4s4cIYtjjFF7NUtEDKuuEif2/lXofebpMNN4Gnu3VzdBbtrf2tKIXuT+r47955tsz6eKpsX8RtO59HTum0+QzWmkNzmZJqxxlUnEM0lPQUm+zcCYzxhswQ3x/IP18KJ01A5Pj4iQe32MqeSAk04VzcNLSq0u+JBUuAA3UGjKqVJjRubVObV4KgePYHsOCQ48MnHtziyDN8OQc0FVpP2dnlR7Akug6MyJd8To+olAvzJJhQaqScWVTwgg9zqyzP0wISqLVvpy2wu0nmWEXT+Fig8F9Pgsi/wBZHWmJKGRPkdxkXFH70Wv9I92RJTU4gTfGkLLY2yREyAa8YkoGxIF8VIQVzug3Vz9DmWNP186IkqmtYR9NwPn1/P1q8BhB0XNjIAZlsbt6n8gvzG2nqo6pq59e4dW4fElwu6EKu63FKVTq4IYfQxnZvaP4sncnxdSmujoXuCPXqk5tJ0fzV1ltm9xv5nA74rl1oEEfJ++frNLDbwGlQHiKiOoybuRgRTDD6ted3wmgbRDsB6OaBdDZF7zH6UA3R0kiy4QI+E0gBT5X+XZ3oE7CVYHoTFipLv5932c/j+4/1y3adwAnqCpw6BFuWFqnYFmynJHkb6K+pH9O2lLNcJo/bLJ5rb2vlw6MAjVz7nZdvo48nQCttdNPjp30+m4Kx3uXB0LiUvK7Lc1PwIA+S9lzNRjZMALRqvGM2lfQk7P7sc2VCFieAODxIxC6p8kuwEH5oo0q0rORWfnKdTmeCak7Y7bbouBQWLj0saM9q44GEfoIFm9jrCbBaD9u1TW19E1yIxBfHotwAPEvPFVyHvii6KPSRLiI35OyxonUjf06RW39WbH4EhVrQ4wmgSg/atIUBrpCAPqf/IyUAnQF5qX9rKEbn1pW8AiDCkNrtScuhjDx0DdT50+rbQR9PgFZ66Kat0QgkHbQD3HXS08y3dJuWfGraYjjBB19HbbTpaZt48KPrhWVs560nyHPNrNiR2EWSvE0b1FZDVu4vKx9nmsFLWtivnlX+ToNChtWn7gVN9vaP/WKtEu8TVIR7FeR2YZxfSAct6pSwFiQspblNr1NV6UHXoZS86+e45zSXLGA6T0p9BwW2kbfjA3UOrGeKIiINxUKDwKyQSEpqwgOqnm5OjR0pDFBDrMHg+5LJtQQQfTq3/xc7Pj7W7GLTtqzHlwEBcaCZrUlm5ZZgch0KVcoUH0oKl/MQTDxxw+Qkn+MX5EdrKhN4OQFQ4wE7thSEJSj0QurQmAH6fb1OgUJIni2tyP0rL/xzRYS5ko+/8L19wtbsRxp/O+U2MnQZdlBuVGTBQU7+q3v8JxCrBWmeAAL1IFNbURIpUGge5ZtfQ2J5qz3nFHqallYqc95qz4puR3LYLHQEeMkF1pKbnUC66khdHQYkYkxoU7q5x4K99a313ohRZdyxRleZGxyFJve3hbEH/deTYfqk/7LZKvUErVWdVqwTDckm/TJOgvdY2rF7cvyNO2IWEtnE0O8vejBTHEKRA699r0NTbw1hMfrQzouD/SyQH7F7Ak2Z9Q7NYL+jE7BgHmtmqzl89QcKhr532r6LQKS4Dm5aywlQplN02IzGNE1/Js+Gn8JOCw89AX7q4a22NiiQEqHrwH1GvRaJPSuLf4SJbYBOm1SVVGwytCNq7tcp63oqr/6e5Zj1NCcov3HKdWzbHNdkB60Hc9OCAMxnKSGh/9NhzS/nQUpZ5Fu4JtwoGFpAS/H6Er5nIsknQJ49pNoWVfkiLMxn2ry3hjw0uW/BI5r2ydvnain5uOA+RPWKGU//+MhxB/3LazMTw24adIu04tItzvf/+iU9hug9F9EL0uyEd+uRnkSb8lrBpbEKhfn2yuedRu+uOsgTE1nio3/556C2lKlYaNvX3I8ImXYhmHiBDG7QA6MjYK2Xnwr++mX7LcPOmc4xCnvACS+Oy8R43qSWfS7X537L/wDi03yE3xAFBl2tSSAno7hLPk/5BpcYNnVAdHhe9BzSeAnhNFHlE6DQHmptq5F89RJadi9u8J15q81X1FQ5f2OTd7Abt+MfLRJx4qQlUqXR3D3FFyps8YJp22HyhsJtBJhyivt//XJOWbz/AtfvyRD3RIWT7MO2/fe/ruG2b9ANTIiShMmn9eraCQ3XQfxYRe+baGvSaKByJ/m8+Dppz98NKT7ztP4vpnx8DNqDrG0ply/9qlL1cQmknee9Dv2CugTm2zCIkLoZ2IxQkCnfr4jwnjny32FOC1Y8AQzpwZZmCZpfsYbywNaToNaA0GWnp8v0BKWFxLdI8LIOmypQQb48Tasx38lkbFLtBCScydjZQi5f+EXRxexr6nLuWghdkN10kSHAWCNr4XRhuK1qeoPi4p/OhiYufgIU3UPdbTGSL16iA3qvi4/TLrjGrWqrqCXUCUKbohR3QNlAibGiHwUR5aNNrIkKHh9EtCFHR04YyQ8n/de40SZFxmJQv5FzXwaGIhWJZiZX9UlTvAboS97+jy33f8HZ44O5Lvhrq4IiFRFQzakEA/2Ab1/uRG9Rl8xCcHfHpe02Zb1pSiDLU3VkwTsngIM8+MjWBfk6Ij5MpSdV474wIs1EA/aUSpLphJklcXhF1dhORd4RHTHtl+7IgtpOAM05UJ6jC4p0RBt2B8rEU7g/vvVFqUlhNOzvR1boD93KJjfg5hk1f1sP/xX4tamSE1ArHhVjm0H65pGAjTd7U4qtaS+3P2Km42SJ7GhBBvKPMD0D5mZD0AlKFPNb+JSBB50APnLgJkdREylwwOcv2WjQlnvewqwBRFzwPwqPxeMV49KKazqJKd1sT9Lj75Xrts7rBLowT0dm20oELhSUYyXNU3E98awF3n5NWxOfq9LsCU4YOGoEnqL52n91afrAdcyky4/PrntkvC2tiaQ4qClYAsJgvUh+WIrQTYIX09qRiYRx0QWnq5NAV7eQN6Q7FpJyAuTFBmocdU2kxunyevlB0k4pYTMkQ3Qg6FRvAH1vZzpoWbvsjAvu2vWdJWCW/J2gItgpILYRVBdx3Ym3urov4lO1YpEiYTpL2LYZ4iC60Vu3TPtCbWL/A8f3/BJ7bYEpJ8BePKzGFtf4YpwFqWquN0jShIcuQ/GAbAEVimRlAOjn7DSXwpMT4qhnPZ6BaZ4AAvUgU1sk4klK6P3XJhbpQEzpXL3le7OgZlEWKybULfejE27IFKawY8xHZGtl9MfP/z24wGb4fUUAPGSHPKCKgEaoXFyn0AxpU29h6vJswKB3lZcwYOT0JKD/7p9jJ3QnSACdhNEp+PMLBDMn22xMV1ArLBsrrsORtnwfIYcQVPR7NoUGVcVbtJ5fklHZGf0JEAAPMTAFEpGegq4tQmpsrLS7XMt7OvYl7QBDSSvn1qh1mM/rLG6p/soxrazuBFmglzXaXLfPjU8BFrfuDrcL9fgfdxCRH5uGOo/h5+ws9bgV9fa/rMv/rCExdQsn0Dl4ughbqudL+9AKqPQl30d5ouRKMDWhzWB2HTeJnxQkCwvyS/m49bHfOUns9OUE6Y6XHtlsPFQA9FzGUIpqzDH1MqNq7IE4rJX+FEZYYMnxsRUHinF0C77OgSK2Tql30WcxpckRroN/d2+N8IqKZAp6QUoJYYVWuj77MC5EZeKYUulxM8ecsDuLKN//q3QipAN14OEncAUNmLh0IgR2w/bZAyphQah96bzt/Os7BXvUiEWl/Mu/hxLHJN0NaMd7mHd8uLEaKM3xQR0XBLIFlJHgErvZktVK87MInrNQLJnuqqQpPASrAqcxy1abN3o26elK+KGt+H+xkRNgKR72YsvPfLmaiNu73Cm4ZaHgK/rPDBF5FMTie11sZ0EDKxsT5f5SdP2Oufh/Ma4TYGIehmbrRAJZycK8lwc2dpKlBPXLBruYdQ8YsmQwbEP7Q5kClEL3X81oPzHXtrKQE+hEPF2JLRIINAUL9Xtyn+giOPTjxD0ZJEa7pA4MyOkQ0NCtlt/qxk9evwWrHB+GcWEbm1926WhE+WNrqNTGLvPS1LStNn0sk/a/XHRYSgPgBifnO82L5w7w1/IESytwAm2BI0WwxZe+WLMhe5c2XjTj0Hx863U6vVpVYUMWUm+7IrQDS+p623Z6Kb01EYXjIxAuYmFyqy4TW9nyWTf/RIHwLVpqIDR1S6Qf/t2JLdGhXeT7tBWvX+r8z4xJ/7vZHn9z9jZzRyPoSgoR0PY7uxJLw/QyVVg5fJ6Bq1U9K2CuUuXymB8vdaO1AYXj4w8OXOEQqz4RmwVal50SKjZtSQY8nWuu+bmzu7XCIZSsSnWC7JW/mMsPlEvmIz/BK3LeqF066ceLXnxpxaMyY9Ys3POUsjzK/V5yp7Ux1RNgsB5ma7OrERu7oOXVNU1vVBpUFGTceSukUdtq5frSc0GxRAXwN3zK2z+yZ/2PD8PxLc08BzQbf/TxSpTwaPhPSXtDLqDXGZR3dZkW0MyO684KkCNrezuayC9xPDYcd1z4zgb7PF7a57ELlksaF7Ff7buabc6sWACFnlITi0FpJbUbiJXRf8G7f1cgm5zaCSg4m7LzKv8jpwCKiGYXfBuWSe1+DhRGv9/hplR1XFoUHBMiMSvzJd2OiWSeAPl0kFKHDvfpc1TwrjFkV6AtYUpD4c4/ryd50ZSNCpeJ30MJwtQJQDHpnC9BqyaUeQLo04NK7fo5v94OITUFwBJ4VooARRy6K0ck+ntK1ryYfs5G5yaJL3BgvyReNZHMEyCfHlJqyzoCFQhkP3rQ0+638u09Crcz3QEKPBlvwVuHEkeyX3rq0nD1AqsWknl84NPDSW0hgSs8wNag9U+Fq5nztZdtFMVq445CabDaIE1W5m+5Z3q4PT2QOBP6OgFU5kFrtqbD14CgnrantDXfKk09bDDYqorEpE2/55ZAZZxQEjDQPG8/WJyD35wA7/HwIVuqFknb+tqjDD05ljjDQoE34NUly2+j+frQcdFN/YYZtf/aUD6xPjT9BU7gR+D5F+B9gU3/B4sl5X79DqySEfk8r8V9QWBM1YdoDeU6KPFi1e8Cm92/x23slcjiUUUa3wAULADnBICPgw+Zso5IBUInVtEZgEYaYvKKPiq0grvMV1QcazEVTDdaHTKTaBL2Xza0f8QTTI3GCTQdjgTEKlWIChso42pFogb40YvdEeTntCfrb6EJlHVINMwYEkzQa3hwVJ816TN1yofl8bQQ8SqxfuFGLnJnQzXvy9RdWftCn50BPoQ/37Q6sl6nz8LznqLtWcQyQEZFKMCen3W9l0pZjNLxCSiPsHLULL76pYDR2HrcUISz570ObeKNORxgTEkeL9pNUbTdmkJS6XkIWdjj8ZFKB9c0mfyI+IcTmYYCrbXerwyBTp1RZLbTPGn1VnqhPcq6NzBbeRxAJnx4ArjRQSdtQYUvwEAE0qVygftJV/0+/VjKgauEhRQVr1vqQzNIaGhkuaX8eA87ONjxYTMHZDPVCL54YSCYyZp6rdLnvQrtVlXOzynVl4Lgbbarl7m+Up5PMP4DSM5MmY8vCXIlRCZe7qLrFa0CZpHFQiPnck03K/Z73bdpYn2PSifWko8RY/0qJPgkHrcQsBMgZh7CZisRfOVCY2fOKi+UYroqNo2oGcnSsCSjXZM06MLPoWi6ZYka6QTcPx0e7DT+BFm/hxJYQgRftiA6b72D2uhJbL0KZvOUJTjolJpNR6U9KbWfDO+xj9hB/HFjfjdFsNl3fH9VTaSls2y/WukEaQf/1lVUtnLJegsbOwGW5mFvJpseke/YnvVdF9rk+jX8pau0JGumY1VvHRa4yBayYo+xfzopOSn+CSABD0Kw6cCIPkS0UeV1l5GlvwY+p5Mxrwvdd62Rz/+7WzBgAe1ycwstrCz1BFmtnQQ7pHZEgtNKXLKlZcwqqSaCiHNVPWMAPEgjsQmxBoWI8h4W5Io/92DndyfIB7380ealfR57ouc8uy+wCX6XWAJKW7TjUHuUcYs5K3xlyrhfRwD4Eutrcm0n4OY8Ls9WDLkCI4ogFnZ8mW8o/6x6mbZhgSQqfpYpyqgIjeVH0sRbz7Zsi2KlwdQGbfWlMLJNSa3aGwd//XKqSk/gQOwYFtvIdIRkL/SlL4ygY5VrFD+454Z2dqQFpZvJAptYZViYr/T9S9v955I9C2c7ASznwXh28YVbq8HuT71I3LDqSKI/3GjHROeh4r7SDFpQQvVp4O/P+pas2cRFToCjeLiLrfj0FaKgFcr3mYETdut10KJc4y84H7RbEQlEZMuio2SmP/YwO7c/ARbgYAeOtiDSItB32o0iKeNqt3JlNiSXMntom5PejfDAXMwVcRRFwcSvvugfRMsmYXACgsEjJOwakqjmhM7+PeX7FB9rYSd9nigSafI57a5DdjeEfpTCDZn4TVxs3mGwjQzrBAmZl8DZDLPPSMM5KEk2Tocrqi+KXqc1Xk28UaQs2A1+z4bLuE58HHuPgkEz1z1Bbmzn0h5RFvBqKLfWH0VhSZn3MhkQpu5qiMq6DjswmHyfIuZnDzETcDgBPuHhGTbT6zPD6CoE2wAZti3V3pTG/Si05KRpNRqGhZ+wrsWKvlCPHcVKd4+fHHu5tE1X+fQWZBVj3lugl6yZPUKI70rD/V0n3tBHg7YrPaU6BS+PPmhWynaCDM/LCG3KxadoGNobUwPppQA0rkNBfFF0EsrBcvu8DIQomnLTAfHEXz8I7Czc87goqQeq2pKrSKGFA6H3e+A3aSiAV9DnqLohIk/uOmyZbSiwAND/B0BxouHjB89erG3rhlydUeNfsroEobRzte/rIAxuonqZPc07LE2QtBSS6b0/W+Z+ZDlo5ewnyPE9TMCm3HyKbnE/V7WSA3apFRcUaNA6zBqH0bdH1nFpp1qq+6MYvpRnvm4lyMdPqL0E3KHcIoqOYruaZYtrUK/Jddg6X2w30KMki6oB46Jp5tLglhboowzcTJBPkE97+bfNt0T8zKaIUylveow5X5XxxlOS1U2HWhfAqzd2ONT1mmt6tAGxU+TjZ9ReAm6zhhHLyNCxfA4bln07P7GkVF7EyGi4qePWxSE0L3sIbZ43YcXIx4+pvRjc1hK4yoOCPgyyP6KaAjJXvUqn07EJjQTHdr0M6+ukRz0IozF+hFoOnnoC/NWBa20OwOcMBqRqY+vWP8Y3gQF3wS3LGo9KZFj0a8APVNkf641idWOjdVmZ9l1wicfOBYBCGTL/j1/sWDU6IgPOuWlnTlPa4sH3hqbP5CqRNrNQoH7fOhj80CZcmWOu8IXmx9JRfVqBibGVDL0LcZDqneVm4Ibp1oCaSUVnb4xvzMpOWQNKyabjZuhZhWqDDPDJkc3JvwO3OOUYzhURnj4A/69fXPcysH0tSecngBaWW2JDpuxOUAecBJJneF5eTuc+/4l5T9h6IzIu7TTcHwgeMBtQxkv5ipUjniCn9HJQm0IKGCdaL9wjRFZ3lkR9VDSTkEyCHvxu2lhiFG5OMBSPokO+PBWHH3TVM7GOE2AjDpRiSeI8AZ1AWboX8orWrRDNKTL3coOcdxcBNfFbAOkprEOPtv0S3P9RHGBiYidQgzrqUZt88rkq7NQU7kp70Qb7jaWXoZmY1GoeNfzjDku/b6tvbmrPnpAfMuQGxnkCSNRBUE0G2+O7S2I13q7fuawoLzJ6Sbey5MfUVKSMhRtTrD50BlECPX9N/D++eiuCPn7A7QbopgzcV42jkQ6dpPI5VPzp1h/AtGOJWh2/Wx2TYXclGOzitnXzwWp+AjZTWj0o6Cqqm0ZhNuMbjVtZVMZ82c1WSua8IkjbwNE3fHQOFfMQknEpDuVG4Yld3NN4CW41UaHjo0ge6uTQri5Li84q2mEGc38LK4nLVHp2XR2MpuaR+DmIDLvsIMiW10tOMiYueAIc0cMdbfFSoHWCIElPCVpu8nx5ldCRBjKLZVdDEi3MTbQbFnk3Pbm3PGJtRO0ECJwD2Nmctc9xNygHL+xKp7hgNXwdeh9ZPqfMopXrL0fbbZLHBaPV9GT1rST4BEmzk2TbHHfN4qmql6E9dI1vOW2eLelGvZakNy+Y25jb4Am2TW+bNYuz/W3M3vSsLVIGRZ7Ogw7OVl8r/TEA0hPgqR7+atP9vjxgSUGZzKLevkUDaICtTFdued5BKY+aJWuwSDP1oSUw8dHj46ke/mqT/a40ADvv3PcOaLHVKxnI3EJMbgGtYa+9zCyt3FWFTP3ZUfATDteSRJ7AGdhzErZJVp+U7f+jrZlbHSdU+w9RteA6CMC4JwoUvuNeByB4xSnLlTK0C71VwGKCyycAoz3w2tZKuNqKBUevPjSqRGGBGslsxB/zBnQwKik67ihscytQ6Rbw/YpuKUlrIqvtjW+WJt289WvBX7+cHP4EOb+HEcAktMCDkvv00WLSDNzq34fPF9oXQpnIunI6KRWDoB+x+oK5MWV6qw2ldWhczJlWNUirb3UqtmHNE8CgHmxqS00iaQrNHoRa/E5xAsj3YSxU95haI7pWu26btGWOVTXq2k8K9CPdtdW14QRdHryuELY/tO8nzb4Yk81NOp0lbKui10lcAKSemEO2H4xL++AWzKbNnV/igE1M+AQYsoc52zx9xOvTvFh6OlHG2a4RJi1ZCQjAwAxZGhgWCWe+KWee+cEBm0zRCZglj4kyFUOBvogeaFIItFIgza8Q1d2cOkhBI7Lw22WKjrKl9Qo0h0Z9nMcmrn0CHNzDzW3VR6QSwUtXzLmBkxJcfqDtSsoSz9Pyz/vi9RXu/ZoWJGGR9CZMYPsEQLiDm5vSHV/p09k1QcvNgZoPvQqdOWIdutkze95yQ9RI7KLdx+hNPRhgE9Q7AQjoYIa2ZsHXOICd7PLaEKlT+lH0OoMNHHQy1bnusJRt3jQ0oX74SRVY4PzxsXwP+rc1C77GAd55tFp0GVJS9a19oPsvW+ZSRzdKGVcamFR9E5POjQcFaKJMx0elPBDLFi24GgeU2LWtGBZq6kbWyzQUhm29B+Xm8Gv2YJssXtWliHvVG2CvBbAeD4/14VtbPuTLjbg9FFevY+HD23zodQrdtu7M9OCaNqQBb5G2dp7ptK28FZ9aSMsJkBkHyDG1Er60osO8oupuQufRVjuOBvSEQXNGgnXdTpgbzdn1vKKE4wl7UDBLi+kfuX7PcoPlgp7BX7+cyOEEnSu8Thd20ZZb47VgTSa1jWgkVFR8istAQ9X480Fb8vxusIH2TVliVtgYvYN420DLCYAZD8ixhQa+MAHuiXSCK0ewwGbrdQBwVVkYFDwIa1vZuppLTGXBAHz+2cWs5Py4mbyT9zsqA1+VkBE6Lt3/Ez07DcfxHCciPL6FdDtBA4XKEKvzHQBgerRvNXPzE+TyTupvigx8TQJcZhufqxwtzXkdzlCmmOWn0qxc+nWgRHQhOWIouRz9cZRYmOUJIE4bEXV0R5FOCTWa6nVOT3hJDUliJwwuAIMHOq193WFpHcJWVe6NTu+2HrGVmR4fP512029bKBEJKzZqRbYecHKs4uPEQ/F7oNfa7qjwDNGwcZSZfjo+OundCdJBL3201VOB2Iqe98y6cukLEt+gB28pMmnQ5XINteREazFW6d/v/0SIn2H5Jm94Ap7R4yVtlYWvymionUFzT5laU2uoN+z46azMYq9PE+PbMY+SJYk90FFy5l9M3id9Ky1c7ATFDV4xhM20RswsTb3KtRlwHOqyuPA5JH/wiOB+ehRmVR0Xz11dpmDK9oTOP2n5ZroKnMCFwHMtsBtL+o0okaFjw+RAIKPuc+h1GKgufIKj0ZKIjDEuCGIJHNZ+q+OZmeIfFxHwAARHZRGpMiiWHfeURkLyj9Qj0NvvU44GRLXiyjqQZWTeJjl7TGs+zkQzOz5BNu1k347iK1KIobtvlrsY8NCQLJ5+xMjcVwT0c2f2XMbF0pu3X2/O9RGbmEjF8YENBwaxWX9fJbDg0927Gj4lHIV6HVjfZJFybMrR6x22IILRIx/U0QP//UBRZqGtJ0BnHTR3ANEAJMeoMAaSHcR0M8HnMAGl585x/a5oaqSXoWnbuyB/tBU+hkV5I/9KOofbW/6FJj5yfDjFQ19svY+vD1rIUxiTw5QsWC96nYZmENICiI7MIeVTGwfGqjqF6Z/GIygy4ZETwCke/GKz9y7bP7G4uWxWkl46uW9pC8rebkSBjPGOC06lFZUjzV0f8KWJjxwXT/HwF4eC9hlr7rGYNCigC4rzJC7T50JBLR/+NOHy1GHpMhz/wmSFtrOfVN9Jj06QTnnpl81ZM1UOm7SmrxqA1b1OEsAT2wZ6gT36d5iwzQlgHgcVsrlUl3pFxJDvHIeDiYRthVtqcFNjPNk0dasoaKu+2SUET5Yu+St7sZCXEyA1HrJjSzRcRQe68/Wqjy7Tx+v2UoKl2ZbYkCaESuoTbNwo4NK532gDe1bWGPjJCeAWD56xyUCfPGQ3vqqHB+022s+ErkM7KxskSHtlcenH75mUIffbR1mL/94wS7eSjRMkJ3YuY+vMIlna3IlNlyXblQLrxvBvn/LxyFvRnIrZ2tgumC5P/7TaO2b5JvRwAqTCQzZMItDnDdlPdSzdscY1okeH0LqHdBVr8ORuOiq9oFTl6WKRzwdFY2IPx4cqPGTDprIi6mv3mZquQ5zHTT9PaKQsG19DQc+t8uiwkpd3SAHyc0M08/bjZ/keKGCyQBFpRK+4dT3CV5FFvhoY1JHlNVTawcodlZ5yb7pNUsT37FhAB0LKlXUdW9ZbQkNYDfmCv37ZoOfxfbBc3yxblOGLOOCg1AZTf+hjiU7y9zpJt1IU/Oz7OUC+MvgERgFd6+/kXjb0dHyoyoW2bC4z4j4pcJXVv7BRam7LRjB9yp5Iu3rtt/KPzpWeZB2OOWt5Bn1Wynb8DM9LCG0KLaLcEF0tzU9a1aNnNPQn61V6VBYAzLc8gCbW6uNiK+1XzGchLydAajxkx+bQfM4NQpedNFyaNNP35eLWSl1xE0qxkjZs6JjSSw9Kmkn9Sfiaeefx81Q3r7U52YjDRSSX5NfS0+rf3bjoJF1J7i5XCt6rjsvF03IXlLysp5+LmXmeIFN1MluHC/S5QzwNqVvBXUD0PvU6tBmxDynexeaqTRmX9gNkmnwXdOg8Sibt3OP4uYqb29iUlsuAwdEGoaxMqKxCN25IDvBJI5INsYIOi+OiyHJpWV23roLAygJPkDXaWabDSvokJvsOT51PfWxtwpQYxGFzfuQZOplg3EHjyLFFKzn96gX/gSWFGZYdP4rzgj5b9xrpZGkjwCHDjvq7l2/Dflqfm/cEuLfD6FTHbTTr+WUAJMxpPjnvTzg/K/U8QarqpbY2J+dzeLy7fu/GlLF9i8BHa9Kpc6Nd820xTucDiql4T6wt/RjrOEneCZJCJ4e0STmXw0PBE3vWYQJv5FR6FXRTKtJXl/IocfgrjO2uOnUKl1we6PYnaY6Jpx8ff/fweoeBiBgLxObQsDCysMa1MqSdKGtzCcjV2i3gQntwzrgngORa5ytT2M4sT5CJOpmrw6S5xBuslSpbWTKPWFe9hBzdoZyIEz2GNfYGz09RlZ4ldGBLyPsGw2MFwSdQPntKaZuB8RmbBUu4wVMdy7xLh05ch6LCyasV2glKqmVc+JTm1buOiw5kL0XZFkJyAkTFAWBsPtjnj5FbTemwgXRqJC0Iwvvt3PYRp8rKQ3toD+xOZSmFNtd88M12jnz8lNrLwG0u1edeoXrtbGiJnQkt0q/JHaWXaclGBg8EIeUry3uqxm5Qbz7cNO0c+QQ5tZODO2xQxB4tyP/0VVRgjf+I6nWj/+g94JMAfRiXl4x8P6EFztMZ3sqTj59We1m4TQZF5NGCg58eEn3e60wuPBv6KlqdqjigVz00QYJ5yO+wqKKXLu8ZSxZMop37RkXuH7+cKOQEUYsX5dglilFJIywZN29jMFFfty3RRoeezJcZuclu0nDqMzWLUWFL/iwA/ajy18iRT5BSeym4TaNFtButeOZ7ZAMpmuJ3kFaryoFCyYgmkPB+bIO9p/gAnjs/FqKZJJ8gqfaScJtIiYgXTG1dOhlk6/Uyo70nJwntKjrwLB2X7nDIzdEqbPmRYZnZ5QmyUS97NSmtiAGDH3G/W1ya6eqegS922UwqhHBNh6WEpgwNteh+1iM8NRP9EwADNpDgsUERezQpitm6xeWtOlQuR6bvyLyheanzGABdlsNpciT8mE5WXH6CKN6L+m3qCN+n9S7FipisY5Win1M8JXk8TB3p/T/7AVtZ+wmyfA8VsMkgnzxCH5BRhm67a+rlK/OYWwJiCodUIANPuZ0E48YiSLs+6fQPDEpMBvv4hLfHj9vdNfxuHNxKFkQdVgq0+JIFD5jPt1UF1G2oZt06Lm3ilCzwz6RDs720U9uQxwkgEgdRsTkon7Ma6B9U9I2upbsP+rWjxZCmPrT2VPmM+UWrQbYNNB7uD8L0v4jHCeARD06xqUCfOqQHUTprQ7FjUZCS7nUAs8lvQcu/eaXu+AW6DmnPzOOtlobG4X78UMCJHBwHnMgxh8KdPQXup8lRBHtttDVe0iCVVW+40gBnSX89PqLeAV9MrOC4yIKDQzgUmk+5FbgOCfMwESP8EID0Y4p8nEA2CSqy0Rx4dJkpEFjlJxxtJbsnSI6dXNrmn3y+Ch2vOldFYktFi7+p16EMYUzJSOl39/rdCXyhrYAc3OgQ/6D7zUznBJmRl0nZXK7L/TaofXLKMi5tE6JFw3Vo42Yqlu5isHBQxx0Q3enqRGfzx2loJp0nSFKdpNahglzmqECydAO4/t1Yhev5sHnyTUBe2u+w9Cq2zhj0T3pMJzNbO35252aDNhMUMUeUQDeZTrBhud2dKapeRVBXeB6Jy/9Age4eegtoH9gf3IYJgB0fL/PgNZsG8mkjdGZNQrhMCMfUCQHFrrQLNHkP9A3ZMdECkL6fFVGmZfsr/7USzhMkqE5C67BAEWtEt8/1cngRNNXFoxZ9U1KXLRgYCotzZVxacUUnHz3zmZ+8dYVBF6bOQJCIJJdlc0Jbu3/8coqCT1BE7BUd27U6fm0P3wR3q+eiM9qPx71O6uzoTp8POqGFtqZx6eHiAMF1aMWPl7wK7KTzBEmql9TaDFrEuC1IQWXmQcwt3t4Z2psppxZqFKDD1nHhlq1BN21t9af3Bb9ceNQg9ihodc/aBPyDTAH/r19WLHD8wMENNGxzwsjMcFGYPeRFU0StTr4d/tOdfUsSW+/sdi0BG6R7YoZRadspL4nGzXz9BPm9gwc47GPEVtKEvvtYYariHxGA0ryvSUCpjvl1haS5D3alwkYGWueBgpgZ+wkyfA8RsBlIh64E/9l186RFXCRr2By8ShA9aBhkszomPdWmmxvcaJ++vGa2ftzs3kcDbArNJ9zoFTZNBODf0G8fopRHl/iqoTfM1cHS/Ywtn1MaMp/myqhkEF+jCgU7ltmgA0oXofvHL2efPEHNpF1iaat7IjHQAnEkWQYac0g2sTJrJjg6Kf/rZatmB6MmRU7oQdAiSi8hkSakcHwEwgMsbPLR5SoRBOeliybfQjZcBlYkGg9Rcp/nbYOOpSHzmibyeO5BMI+WBqS0Y2/m3+XYlLfv//XLKZQ5fmGNV4hje3n41h9csCeb84JHmOIn2Joot+Bmj/TKgZDnO2zhOUoLq4zyqzfnJ8yuxaOdgHdzeDqHevWp2ozQE0Wn8p5HTbePXKftK4t32KTnLiEm+qrgKNXP6fc/1YMfNnz+L6JyfADGw2ts6tWnakXjopfnWOY2gqbpP/XB0LeXap4Hb2M3PKU1+Kj5sSCVEyAwHmJjc4c+14jjLvcrGZlVzlF+oxRtDPmtAGy/ESF6s73IvdGse42dtnbZE0g0PUmnzR77bDNchCgZH/f7/dqB0XKRMkZU59+GcrBLbyLOAuREv6C8tIlbwMoJcBgPt7F5V5+npQSS3v/3mVzUtaOCNqpDJzH9gNouLkSHBBcAcKK4U30+gE+E+BaecXz8w8VLbBWUr5qiYGXSDi93hMJK5RkLV7JOnTCjy4NsSEm2yLhZN1DeMtYwYakTwFge7GXyvT49LNNN3yjMKy9rnGGnI7eZuGBPBoW0oMrT7RkE0M8uZsI5J4B/HLTI5ix9jhP9XvL3zkp3LH140f+Wgjv9OXTkJwGI4T+FWFpj7N7Ss6LfBHSOC/94YJHJWEYE5+xT0oEBelgxydHZH2vzLKQ5IRX4GLUifJaXRhlKGk9Ig2YFL7SFHqQCpveLtPt//HIyyBNknF6GalvjRVZ6ULTydYDWPK4DUxEUfiUuF5V2QRiXtuGprfsgnR0vkUUmiHQC0MkDqWy2N2KH59xDoQta5GooBuSP9jwmozr+Ufq9YNxKb1C3LcRbz9o0C887AfznwYUm2etzw7SFl6V3QCnJuDZToCGWCD8W7VL1StspmJK6N7qD+ktcY+aQJ0g57QTVZobBSFcwz1mX+JZGULhK73XpT0pdRZ93d7PQpeOjUR565VC9ETVML0emEj3YdvMy+JoVOQDpueYL2dOwjbLXqTOjtv7w5LMRkhMgKh4CY9OVPr3Z0G4RVCq/UDroBSZHV+c5c2uaLuD36rg0uZOGA5mClCdgY4Ekx8NUTPzFYytdclNyeQ3qsW1fzpMSn8SPjVY2Pap0FeqYpUVVUJibjyoTM0c+QU7tpOA26+aRdJWlq3nJmqpZJa24DDDhpMosishkOdOodN41DoEQGdGR92jpbqY5x0+LvDTKYd18lo51Auwnh+mdKWW77B2ytyXLAbnBbRkMc4AhH294KD9Pir92WzXDwxNEk170aevTXDnbYJquidU2nQt6Hjbkg70O+XqHJP8GvROct0xPiDnyS/mKmSGeIKP0MlCT6XOJQS53Y+iMt4Um+jMR4qamD7E1iSp4sU85RHDy5EfZqJ3hnCAj8jIom2/1+VnAP12U9R2QSE9br0PLmruP4XjKRTpt4/dAElF1g2y7PdVNJtpyAnTGQ3Nsps8lBtFRehaNS9fK9+uVpQhdPs/Qmly9P015dsLnxVke2rfPDMNNOdEJ5EeeXMmy1fFNeCbi3ty2gH99a0nZQN/6icphhqKxsW0dFdRcFSg6p5dWoZmlHT+n81JAmyCNCFXKvHa9U5hmzrW7SYuhKAaoKEKcVcdF/aOCL7T2f3WGNLO0E2R1XhZok3w+KQh/KphDy13QmxWMJ2NdoJBQ7oLWhJKLEDBPLgjCXRQ0HX5kjUaidoK8zssDbaIqIrZoKVR95AtOZFeQS8tCQp4O4+uliSO2Z7xIObfyHD9MqJNsnCA58ZIZm6yKyC2wEHoKTuxDch1mCiSW6NwcJN3e5XQij6pnPe1hD/cZO+E4bnpiJzMeW+WSW4gH6Jd23aZ7rZf0olAM8nm+hSyaVYy60C9TfiNlBo/u0U5of/xMwEscTMolYmgoWcpVftPklcifcw1J4rkEjHTsfe1RGgq45VdiX6nPTf0DVt1M+08AE3iwgmnSFHk6LToEquzeFVKF+zkkXnzIolR9d+XVaROtTbqqJC6n7m9JVq2s6ARZlJd1mZyDT1EgBqHEXHcH2lnTbXgMwFzDzjVRJafDoqPwkkkPvLy847JsA/DHx+s9eN8mnXySCi4L7PYmq5XeQdfr0BaTuxTDVZpJ4r22gKKA+uPPG2UBpb0yA+zE8vh5qJO1mnyNT+/Qs0sKbncoNW7JG1KQPKrsACunLkgG5AKMcsn7p83zl7Lok5JrK6E5QQLk5Eu2KteR8CIyA8PMH7eBfhR6ETTL5si8Mneu9dwDP4AxWMru5nxJVGPn48fP371036ZqfGoHe06SA5K2k0HH8KV8IIbvshRn03IZDEsRokYSUJX90gYa2fgJkncv2bfpBpedQLw2RXPZgcRJkRV3Od6FATpcENiDQgk0l1vJmh3P3l6avqYI5ASiEU9kYvONET8Jq4sutOjiZ6qf02tesgzo5CtS00HDUjDXl8x4Gr++1RfTSMiPm727yb7N0/i8ToXkQfTkSKGrzBbujLVSSbJ7dzoQRAiUWTAsSpgOzaaUAF2AwErIT5DAOwm/wxi6BCMy9yQxNWdAQ3QYdBk0+c1SJwmkaFw8ASj40L2Zto39PIL+XN9pqklPoD711Kq27snVSS1umicZEFoKUFzb9DqUh0M8ic8T/U7ZnmjcRW8gCxUELqq/M4ftdPb46a+XLjtUTUTtUAwiWRLtrFj0VT9PlBNo7EPbVp83Te8ThREyA5p6EP04Gv0XkjkBhOMgPjZb47M7wNSlxrJj0uuZuZEEj1Kqblx0bDUdNaOJl5wxtEIf9SNmDnWClMvJ0Gxyp3JV1JJNsMMBYqTrwwnhbpVTo0tvi6c50X9RghOgCg4K4bA1PrsDc/h1JyUWe7+sD5zvtwRAMKhQu1+k3DU1Pb1XllD/ohYWTHB8WMGDIWy2JiJ3KG6aWX4UnJbVLjJTYkbbv3xebrqP3rGU9gw9v+cc/cFomSDBCUAFG4TwKJuI4pnQLKhBBqLf24GbtkS56SZlZlvHhVOvGm2M/NylPqiNM/WGJ9AnenpGu0rAryrowN7EOAXnKFpS6nUoNFpZcnfaVLIk0TQumlQs+T496PRWuGzBEyeAMzz4w6a7InpsIReRFUcLRw3gCxhoCmFlttLuM8VQpWCw3rP8zg5p7jPa/GMbbjM5OUEyY2U+ToGAX1BQEE5K4ATv+5lunQFtcS1Je1ggCbL3oV0oDT81uqVg9ZcFxWfNMv8LTJwAyPCAD5sl9EjFhQms6p6GrSX1SzY2NMyQJZ5gE9t0WLgmZJkSeEXrwQab2fUJsnEvezfpLo8bQ8Fll9yHxgcacxWhMH4dN6tNKiDkPKv1qQgIPc/0jJWtHPEEOaWXg9pkl0+OoUKDAv27p1I4svU6EyyRzH4Kb0u6tjQ4pbbmTaU+NSc2ynN8VMhDkRy2K2LH5lhdx21CIP3LJB4tODmpQOROaamEcRudR1tmfRqMhz1taf6T7J4gN3ZSaZuz8Tke+GjpmUfvT4J2XKWMtIa+B1phooJC/krHoi4g2hpnelCzZqpzgtTIyaRs8tsnyxE3pYstpdV3vdw97Ek5hEIJ8gX/GjqN0nZ/lwpd86mG/uBMNwHn4wPUHqDteCpEHgwbHa0yX3+irfC9Tob6b8nvSSxRkXE7bY5Ff2dFadc7h7qZsp8gxfcgAZu080k+lEoM8bdrfCim24K0UlyqGwrlGjIqMjg6TzTUo4n3sHSx87UT5HdePmizXRE7BmWTplhpSZyBjxPFA0UiBdrJ5dTGsL017oKOaZ/Sak8yzUrYjp/feemgzXc59Bjq1joah+n+sNMVJG4Uq0ksVsVP+w5LXyxr6FKcfTxyNTM3OkEu5eVeNuHlE2Rw/E8SJgHI+25PUEHyjnQ3lH3LXVEfWveUz2mhz2dL7Y0JLkVwI3H7FNqtkUPJcvL/+uXoEk6gY3B0D2YRU1TyNCuXXXFyhTnMiwxtPRKLOvA5faNLQ9KB6CxzT4rELe3WfN7/Z00r/5NYniAP9fJWm++K+DE6/eaSpQUzpnk9e1GlsWW6Ui40yhVVFrBhCt/SaVSfia6VWB43EfUTV5u1iVieieYbRc/FmsptYbrwkgRVroDerrKyUsjb5C4mWiM/c91PWEEDxj4B6u2h5DZr57N8wHSSpLpoPN+kxwmuUzKthyJ5DV71RecHWqvI76R4Yc+3cl0rtzxBLurkrjZ3E1E9K1MyJ5+DUZfTtSLBpwmpL4QeY7spc6ttrKmBa6svZLpmdnn8ZNTLXe3SAb/UAA8IptX8/Z6rvvwOl6gmqu+MZV4kO6Nx4X/YBL+mG5FJ9MYmZmWXx89GveTVZr1ckqwi8hEvh4reldJ7B5dBVa5GROhMIMXxi4WzIlGocGcp9aFXNNPLE6SjZvLqEDc+0QMtz/hOQ2hvFxkA92Oir8pvzUVVUmwTA3W7fE4HWn30zLGTyxMko17yajM3PtMDs/s89U3MNrXFNFrV0J68JLBDz0VJHyu2p91k12owJnjEdWZSc4IkyEuaLBLcp8xZ68ZNgtlqYN9r0N9bV8MuOmv2HZNimG+0arQ0HuG1mVseNxN18laHPPHJFrgEDO6Mw4WnEgLhMgWNq7oeBUUcz7nnc6OERZ4PBZvlAV3bCf4JAAEPQDDZk4hsWQiW9TyjhdtvM4sELEYoNnrxs1/3IUocR5Xvo2woPSnGP2voTUrv+BSgSxnaNLbLetM94JblMnRKZRX/oNQliWoRCe/t5YEdjfblLO8WwvX+zPM/OM7NdOa46Y+bLdlMVeW7qFvFL+i7UPQq9Gi6vv5MJ2p6bAxGpnuCvNjLo23ayaepNnSLQ3/rQD/RS19h9isyjdJu0avDYYh+pSaz9PUngGSnusfPjL1E2mBsInoHL6HLHaAXgih6uUPREHF1wV6ZvwftBUtb3sJ1w7opq5UiniCl9FJQm3TwSYpJ11+yNirDzPVeJw+9B+gz+k1w6TcO3Z/3g3a2U5wTpEReCmVD5xHUjtenJ0/Fo5frTMQ0Uxc9vjKvKwN3hh0ywfYvAeMHCiCTBjsBbebRbLa8wZdDwAg05S5hL72d1a9p2CxNthr4rRUFSXH/9LSLyDNQOfkT6nwoAbLSwxOkk176aTMPEVMxKezOsr1RNDWVx+1sKzwkfwCz8i1urKhe/D71ZOl8LKAxQdMTgKweKGvVjviVJqAui9hLcsWd8Ky4Su7SJhiYCzfTlEFHTZKqpv9x2cJLqaqZG54gl/RyT5uyiSgeCrWrbkq0D+1rdIp23RpTtDbUFLbi/yDC4M8pmhRI/TJCVoZ/AkTAQRAcxsZneCjKzE1cXLErrVyuSQ98JJd8TotaWs8WCTPlSKfn2Hp5+gH8OeO2UtwTpMReCm3r5H1dPdDcJTtB4mKfpZepqESWBbVzUpyLfs4CAKBbWFOzgTcUYFaOe4Kc2EmhbbbLZ8dgXNS55TrHs/SKhl6H9oQicShlNvm7LyO65+kUnjDaeGTcZo57gpzYy6FtrsNjRuispi1Jo5tEc2jdDoUdTeFlohYIFK5vLIWhUyf8vPWxN+O2MtzjZ8ReBu0wdj7DR2sJb0h+1aIDbF7mjxZbvZnC4uRexkUdXZJolYLE9eso+QD5NFPk4ybUXvptCzFc4UYHskS3LaPmix42lNkPaZkFYH3qmAldTJpmSb3Xd0oh7Nz6+Km4l7nbPJfPi9EspyejqceCO+XU6xRIlyVizJok49dMJIkaXmCKPjN9K7U+QSrupe420RURY7sUfbGwcKnX2IPOzqynIQVp108Yor65i9xbB4r/uAkzGTt+8uYlew7P5fNiOOpy1ggNbZm7XgaASpHZid1TciH4ccy9dS+haFvk5B8ehiZpdXySyyXFTB1cJJuDl6yekZRHT3m2E2UCPeuwSIskEpjQWKeS5ezsaNzy1jK0EtkTJL52ouzRQxGdRI+LGzZj60PDsaKfp8QNKcRlN6mtN5522l1RInjkpycX/N9E9gRpr5cmmwSHy4dUeJiVoic0zaG9r20+UtglgRSFV3ve/vUDO5h8v3R2JfwJSi2c6gS4lgOD2SyVz2qxTfWYRWPPps2F6ToUtouwiOb8QisaHRYlLUPCMorhpAfoxQesfPwE+buT7zt0g09PcBK9dXagd++4tAVowz71TGtrX5wBcmYNuvLtbHTpDCunPEEO6uWsNuEQERSULM0iWxxdRGvjuS/C3FnuYoyW1s2VaXJJo86CCrqnnY6dGx0/lfIyL5NviOgJijqrHpgUKjcRIle4khaxSsl4XAKE1M6zPkvsAnH609bICo1PEEl7kbcN1/vwPlpGcodeXhM1rXZ7tKGRl5KMbdMkmRrZb24sz7saRb3Pqm8zuTtBMugljzZc78P72J11kkFJR+fwZRsq+iZXuQnoG7eOu0DFdV3Y5bm/mpHF8QMRO27xMGog43AD1YlPH4956+lB7hT5TZScll+Bi5V1nCBLsXMaG3P2MWpIpLCxydZBG0K7GrO+VZeI0s2pGzIMLzR7pMc6Us8P0tFMOU6Qongpjc2pRRzcgCeV7CioS/xuZjzR2lB+LegROZVb5Z7VSz6fvdW3SoLN9P/4aIEDLjiaRV/jmKEXkg65CLSSlmwOfGlIPkwLF53+JGdCe50kBw92792eZNEnKeB/sq7jZmhuQmeLE3wxQ0UztJkETa6dVQZyHQp0241KFwVitwIgwS1OAhp0uP4RPzgY9Akwawfjdgg5n8CDEErRN+zGVSENus7c3GKF74LiMJk6sDAbvDtyoyi0+nqH8DNzxxOkml5qanNHPtc0OecYcn28rHQVpKiga/q6Zk7524wyjaWfj93aL6/uDxaxBUOfALX2UG5bKegrC9HJrq8k36/Y3K+/E6WRk72E0Dixa0c09Lmk35+q/p4h4qE3FFxW0nr8HNdLiQ3mzSPpOivCdQ1vylvkHgvIFMoR5POC5XKz7bXoyWkMSQ/rUYtpZ10nyNK8rM5mXSKWZifab1XOBabkGl8gItKuDQnlxTeb7CmJhzB6Vc3+hGPMxOv4iZqb2Nnsgc82oO8PBWp6OtLrlqdUOe6aSw4N2jaHHDI1se3q0J2L5nB9wKJm5nWCTM3L7Gz2wGcbNptNVh0Xjo1XJzmA/eh+SieKwKuwI4OgS7cZmqePyMbOvE6QqXmZnQ2Du6h5Qze53HSaZ+2AzV3mdu4KoKAn2r7DoulElpugALU93oSZdx0/T/PyOgcGj2BzVPbl+yaS6j4zTerEh7KgRmPsOy4O5X6pEpSrP/JAI/M6QaLmJHYOCh6h5jjB9fin17DqtVpPubQhmzYt+KZ+J9AKji0vgjbvNV6KsExM7QQYnIfZ2Zx6xMEv2JHJ9emZDoUKB3r5yt5Gv3RUbWYAFygKhfT30A/75f79EeFl5a3Hz3O9vNgBw13snKZVKrvJNkfnY/+/1r6dZ7tkxyrvX/GFTADU/ZIiDQHZiJMhAgSDhHQsZqT5/8LLdj1fPf3aFaDWSfo8/fbeu6pc9vLy7Qx6q4uvj0Ly0VlDnj6DfGbV/hzJiv3ylFy3lR5ubuQW+1x4zJ1L2+TZFJ+juFG1Ij8HYYcT/CzWHXrDoA2ThdTvZoK+h0gPjzLyQH0mPGTO0Yxgd20llMXDtXxbxNn66fnBZrP2817eir1tEWAZr1W4LiI9XMrIBfUjS2EYauyiVp8dhqVooEn1m0YcwCBMHR2KV/Jtq8tu9pbai79El7geEj08qsgD84PbcTB8oN1Kslg7MIHmTnZUgBTtEch6FeA523tzXjpsVaKmo/5FwXPXuaCHMxI5Lz6fH/H/sjwMxjDvrU8tNZPkmZ3NmkD4taZH5hb0YtBrSb+QawP+v5NbXX6AHnxCxD/4GTphQk+TDPPVzTOyfMyByEzRVoioCZlmq/lrNorxtKPihj/wVzk6nntBD3fEd178SEgcOcHkMg3GZQyJ6+rp82PYGulYoIRIpBV9FBT793OLkDldLy7T5QfowSdE/IMfCXlFTliZp2QiuZA7I78jBaOZpOY5kqqChYnto5nTy8Z236MBXQeJHg5V5ID5IYRXyIH3a5jLDV/IhpMPiNk8rvvuNZ33tj11Wl2SeT738GXPP6KHPxX5X34QIYw5IPVw5qLigcZk7cQiCpow2knU2sdx+1BxPlXMekfF2V9jTlyigh7ERkCEBOHhOJyM4qqazPKjh6DGHib4eSmy1qELVYEF+gaB8tWgN8K/468pCPfdMnq4cYHX5wZg4ngNJv0knbuMUZrVJhkPTJA0SMcekHrreGdCaZV+I/pRlTts63nHFHvTkffth1/iaE1B6xBdsqQqaPMkPIaRZDO7Ak2gMr/V02jHTtZ6hyE8MEsP7BthZT9cg7+HqurVPKo6rKwco0dq+/BxOP8LLnveLj2848ibdgMwr3jNTKWZezZTPdOMMed5IsdRbCqDtHa6BfCfFNMOFY2PLxXnerv08I4jb9oPwLwCNhuGapreRfGo/c6mDH1w5Cpv1A/be9kKNxMBloC+78oLz2Wj2MML/EGff475ahRjp1xMqY0+hz2mzlVt3HKC9jJvE+3juyEzRmP3RAXX16HYNwp9KZ9GjWlX0Lvs52wD4n18pv8MjBWzdPG6LThSEBWu9XADbX1FCz1/h0LvyHOkglDOK/QzEavQTcUoN/VfYDd3N9yJXM3Thqq2eRRrwiCe6y64xAc9iJKIWPEDOa/Az0bXG8vl2vv8mkHi6Bp6Nk5uYuwR5oCpeLHQ5Usnuf4WPfyzyJ9zw4lx9BFHmec2A4yQ0YlKDiGo5HdGmGo0OpqFz1X1kkNTpYuZ9TwmCh2s2CHzqfiYukdEQ/vwsYJBrtyyx7CdniehbgoqUX+PcVKzJeOJ7W6l7yF/ih2FwK8IiPiYuIeKKNW0CKYJjxNIYPzVUjFZyqqT8DkbpylLQGOfvyhv2PX7KHYTA6fSD4fF4TMdg2YlLnzcRXXcAMNTt9kU/pStjhB/zUYPBulqhKDLX9RE3XOY6OFfRf6YH794xTtYIpZBKwBCRccAn11MubZvaqa+gFVzO0KBoWp3aMHzl+jhXwX+WED9v0IFiOBOO1u+VdZRCWAR3TN0Ea0nhW5SwY+EZF3EvFuX+A4TPRyswB9zmf84UIDcvVUNF0ihwLTHlCFznVQZFqtarxiR0JFAKUvgM/+dOOyDfopdhMij8LnrkOtG5dCE/6qqQRIQ7Tkd5ke/NU9GnMPei9alWWUM+eQ3yHRBPz2chMip8MjrkOlG462MThyKJKeNouJbyDBrT2s4mnT+HiAhSG6ztquNO1XRxdb0wOIRdveZ6xfTzcbzdLdeWLH+DqCVkQgsi8isGbu9tyJr7WR/l7YvV9DznunhbEfOuR8HiuNGqNCu/Rifhtpmew7/I24nSFjW1rY4fu9Cva2qcb7EOmT7dweJnw4CPRyKyAHxOfgXZw8c3kzRaPuqv9toCEbcujqGE2ufTDUAK7spjBLLF8ZxfASKPYrIAfFJ5JBzxrTjmuyTUIRl/g3sZtlWAsqYRvMR8TVsx3Y1u3FfCNc9oIc7EbkfPhMaM6eo105zmp4pIGfsOSiHzMNkac1PwkquEtyRNeT2NcbO8xIo9ikiF8SPZbxiHyi/NcE4RGSH/O4sOUdoj91NjXUE8OswxcRn8tVjznMSKPIoIv8jYHJD4pdvYIXjowvgn9vhoTGSeOsZsJmcmiSLTAtWqM1sBjIlr/vs4muK4XiE3l0eN6Z9ByY/tWVnwDJ4npJlco0uAUVc3d4KsG+ak63hPfXYc3Io9okiHyqIicQxlCItDczkQoMbOgb9UvAyKehm8VZbMrS9iR0Pg+2vLHDXQ6CHRxF5ID4XHXPXMAJCXsoF3dP6f1dkkyfdvYWkM2sFyN+DcxsqfOilcaeSuFCXHtA4gNIBG/liL5ENa8XyrKCVY8PvCVUYKk+dNXg67xVp1S7pjL9yvVbhQRSKAU0Af3zussiQvJlNgzb+iH1QFL+yj263t99f5KJveqD1CN37XOSLu2SVuK3zLJ9UOj8jB8GQA1sos8X82p6WTtlcUKc1XSLuuoH0cBsjN9OPNkTBiSk3a9Zi1jWvdoIWQDZmslhlp3pey9oIk3h0ZgCmCVz31HMiKHY6Iicl4FNj/hWJH9KwRGWyj09NMpLSirWPqIyGT9cwNnK1aNPO1ce4asl8N4JityN0U3xONaRgoUp7MkTDQGjvkwjU+ZlrW4fRvj6ZQKgJ63pNYZL/NIvjJwinB2gPQL5Pqb4YWMTxzZymVCzrpgABIulZ5YnteTqvZdswq57E2OkeCe6iV3qg3Qgd+8RqxMN20Sd9N7uozaAFxgdU6XuL3zF3S6EXvxaxHft7fs4o151wHQl6OB6Ro+JTqyETi1u7UjYRB3ir9phWjVdZILm6Xgn+HJbhbYvrjHPaPVzeA+H0AO0uxo9oyZjGhNLKmMgri6g2b1SUAovZzvI7enh9ZqmicbRdFdans18epgvD6QHbI5jv8ZIxiymBBIBchc7N6Bx+yuAPyGoOIG+awVWm0MdVf2+YjntJkwvEKYTtEcj3Ke4HI74whF5lhq14Tqc96J6A2L8gIBshztMetDX0LVKNJRmDFwzykDg9kHsA9F2CMOYTMWZsp6SiwbuSPlPjMCOyajt4xuvWSWlhAhIDomJad9Tbw3ShOMXIPQL6Lj8Y04lodVRM4aMscB6WURxw7XTPvl5TOcVMJXbAbQmM0MrdTc3FsPTAvBFG9gnCmFBEd47OalTvKGPd9BlbkWaSveNVYMpwNwyOEPkyJFLrurGf60/Qw/+I/BWPbY+5eZSJY2idCsech7HnK5hVkoaiJ30lpuzWo6xGbtdtcEE4PUB7BPJ9ivDBKG4W6aR6BJOfbPJzBSUhh4n5wdVmLm5Q/33a4CT0nrtnhLiIl2KAHOFpnx988YlbZ9jrKSybhDi0FD7rGuoen9fyDSh2DIO9/jvTwEOK9ECWERL1ibWYiONbheQO/SpGyFY/i5azbehUCzb8DCnWQbqrIAKnq0j1juu5oJ1ikB/5BD7FGVOioNWKyXdGHdBJkxqjZbsPDXb8pElhmSZja30Vvrhglx7gOMDSDjkYM4nsow6Zgi7bhsEN2R7CqhyJOrKAabQN3slqiv+/LmDvXO7gqod06YGMIyTtk4MvMhHlSkPfm3syiSlsPscYVa1Dy8nmgBf0Ba8lmdXgXbxD9S7WpRgbR1Da5wdjPrFiCCEgl15Sw0poZ77YmMqnVpjlg98HkLIeBMPHcjf5cpEuPZCxD6QDgjAmFJHBPkHhaPZ2GloAw89hWHKsNH/d0OgKfw7a4MxhZgP12RfQ8JAuPZBxhKRdjjCmFBs/fsBhF1S0yjpZCJX9HHEeJwqajDFCWgALn62N/a5yu6Iu0qUYGUdIOmDXYjauwI9N06BdOa2WqpjQJZhhIrXBWinze3nvkGwvq0jrK2fYBbv0AMc+lg6Izhcxyn5Z7cVg0d71jBlKfLGaLgLJGnZV4Lw1VAaI4chfQ6RcsEsPcByBaZ8hjBnFjQSJ2nTv5rYeiAtWO6kLPKVB2ScngE1iqc0sR/1KhPIgCj0QTQCAXEYRNCaD3z50WzeDk3WCu7xZWc0xy8K+W2m4AJxCvB7B+4AgjAlFZAd2XRnmerZkPTkQw2raZWsijjstC2JLBqHJPdJ//1To+BN/0wOvR/je59ZCLg59CcsH6fDz0jyjo3vbWZhGiCHvV7X38gWvpi9ZHc0LTXsQnEK8HqF7n+N8caLo/W16BkPurMAe6IZdkCErYCNcy3kve1itqtjzhSztjuZ78JVitBuBY5dYe/FwMmRQb2hnQKqoIqNjSKtCtbGjt9qJ8GMuxbQVZH7sJUkudqUH1o2wsc+rxTwcFjTVc8V4CYaqzZ6D5A1RlbwGvgfW+RIgEfX2agfYe9p38NKDrxSj3Qgc+7xazMNhYMY27VYZk6k1mZj8WJRZYLeePaN9ym1ZWQ/7SjSXvca1+wiWHog3Qsg+rxbzcOBvalFFI9jktOJA0LGoMDFWbf2UmyU0MjNb1poe6O+27z8BLD0AbwSQfWLtRcRN9nkPYON7OE9R1mLlIM4FymEZly97L86r6nywLXmSF3xwICzFgDfCxz6zFjNxMOzloAS+sV0ZcX4OoqVdxYltRVqntw16ZqnGAja5Da+LYOmBeCOE7FNrMRWHwajscas+4QMv5RCDAwO2VZwYjFol75Jmp1tQKp+V1DhcxtrDsBRD3ggh++RaTMaJCA3DcXz3zBhg5O6GdZePrexE1TN4bMHH3LqIzDrnorJdCEsPyBtBZJ9ci8k4RHlnytvUzTAntjYhAbNuObvt9QPN0TnE5Gwiaegis10MSw/MG2Fkn2F7EHL8Jyp/uDfWimFUbWah4lS6dVPEWzvrVT2IgcTu7wKmnxCWQsQbAeSAXwvpOEyA2Wq5hpQE7fOYhk3UlaF30Kc5CduF0vReD3SQvI7BxYv0wJcRHnUJtpiP62jBmbbKBm9w+oTbWc5KUXONTsX7DLLiJVSTMWzXXd3hwkWK4WUIR12CLebjcLFK7fqxqw6LETWkY82S9IQQExjntSx4zU4O8POOULmIkR4IM0CkPsX2YuSgd6tdUumE93ehDTdkRdeWisW78Vao4643omH996ycn4iRYnwZ4dGAnXqxWZvRQLJbOvbYh13DNA1BLh0A2qLaGCYkfXREXzGMmHfc2QOM9ACYASAN+KmQzkI2EzqK6hp0I9DMrktHWiE12TfXvOKGIGRLxa46r+zOHXThIsXoMgKjPjcVc1kIJqLnpko3X26FIfycxTs39BTYj7Yx7BPuj/Ryk0WwZF2paz5cpAhdRmA0IqdiMgsV62weDN+lPM9jOpCXroEBsKawIAjTu3ZjQ4ubrxHwLlSkB7QMoGjATL2YLJa6vJvdUClT+bswbhspB0vWwEZjjAOBW+5npzP7y3cGgwsW6QEuIzDqUlMxk4Xcm54NjLJmzZpM2cV3XElvBCM2K7Xi1060eDWV2/dXtYULFukBLiMw6nNTMZeFOR+12KVmVX3ALvAjb0aXVfCfG+5bXdhZA68pwRb9XoVr4OkBCAL84LJZ+GuUzJpF5htu7v6Gwe8lm+jP2u7GPC6CpQfijRCyT0+FdFaWYqx1lAffm3poLiQJT91Y/vjPaCTGGKPohqN3yp245uFXeuDdCB+75NSLy0KSkq3gU3FWgRhzkh3qyGOyWZeYNze7bDRYhaFVqQc7ePCVYrQbYGOfm4q5LN4VtPowzcFnk0+TSr65qhZ5CaiBPK9lBFjtdFiljXGBOBf60QMqRtDS56ciNgvswRp2RZNgG3uK9OrXY+D7VcqZey9jVVQBTVYh42a/PORHD6QYIUufnYrZLOl/2pdKB2qr9CSks1TOAlp4FXVawKGhv2ptVVfH59DndSFc7EcxVIyQpU9PveisxdrLtOIGjZztd4Zds6sG4oNd6VTjdEiAXXaG7bc4eeCPHlgxwpY+sRMTQdDb7JrqzvIVGvlEbhn4aIoGhgxvG1uGshRe/9ATapt1zGW4XABIEVoMkKVL68QsEKarlKrfOfEXxZ4C1FdVwlJChpbhVtQJJD0Evjz1LqFwsR/FWDHClgGr82KBMPpIP2owLrM6VP5YtvKyRe0/oItCO+UnrLw0+QSdzjHw97JxDvijGCpGyNLndGIOCBOq2xGY0VpNp08s3zx9vnQsauUMsQdOMRVQdc793d/1J/ijGCyG4NLndF4c0GKzW/Q6IId1nuF2fHuSBBcxVIGX3ey9/JiD79j3rXe/bBf9UYwWI3TpszoxCcQAS3CiLiLz7T71LCztXXRA0xj26Tmw0PvFtG6q9UbULvijB1iMwKXP64Q80EYNhqU4dOQnniZdGzHSLKKBOvCe1e9YmJlVc9Kjy2g5chdHOUCLYlwW4jif14l5IMxvkGsri2Bne55wKOOWbfLEuCp9cOLmA5h6d9Pea1zq1cNaFCOzAMgFtM6LBsKvJgCo4fsURCzkvWVdQ1rmXVRkAB3EwVgh366Ni7Xogc0iLOfzOiEPNDEMKinh14U8V03Nz2HTsvUc0Fj/AyFRfLVN8yLOdJOQHtiiBzhzoVzA64Q0UBZzaWo9o1X3GdJVUACht7pV849QOzHRqkM11th3SrCLs+iByyIc5xM7MRG0tSuDraF8GtgsaeiQ9RgQ8+7nvfwnVW3HknY2l7H2cBY9cFmE43xi50UE8c5UEyX47vM0scG7JL8P3Tm6lbBPGJK5uqndxkL2nej/E2jRA5hFQM6nRWIaBdHrWafe3s04SFdRRIbVDQcgtgyyApU9i2ld9l7ynzL9f6ItisFZhOV8ViRmUeB6I/qi8rFT6ec57DKPqh+L0dWnFSvmZdjP8Afu4IiHtSiGZhGS8ymRF4XCh9zTNGCRcjvxRbY6SntgyHJP5cQj25COq7IGDLa6yxU820ixLQ1tr0+igLrBlTWvPpVtybmoKmN1aMqGncx9gzkXAtIDMkYQ02VFQg5FGLx80A6Gw2V7Cpu5o/JT3afueWiaXlE9OlO9fUwXANIDMEYA0+dFHjTKTnxn9ZaykftQOuypbllD1Q+b9lYA+6VC3Fhs1nUOLv6jB16M8KXPi8Q8CqOGvDUDj/9Tlr5yWt2CTOi6CBbWTzk2GjuaELPVzF8hGw850QNpRcjMJ0ZiIgVAvXyUB2/dOJFB6BdREJhEtk+CHKYZ4Ov0SvDx36twsRM9sFaEzXxi5EWkMCooTd+LOTUa622YA7cV78ogXkuS5PcymD82DY1ab//GA08UY60Qm/nESEyksFzuOpYeBeveaZEhNArNWliGFOJmHD8mfG5UnOkiUFp9u5oOfqIH3ArQmc+LxDwK5kj3OlXbAKLM00WQzWgXS4qJQSuZeQeXdawBv/1mLVz0RDHaitBZwI3EXApmjYyzr3xr1j7PARNSVTt1NCQ74UH4TuLc4HaMfXPCLnyiB9wK4FlAjsRkirhD5ayCb2w73A4ahYkfi57vMqNS3ztgTfT3tdrXiF0PPtEDbQXoLOAVYh4CzVlLOkZtV4szVoyvaKOpduL7uT9t8gYiAU3v+1yaCP47ffwHfqIH3Irgmc8rhDwEJruhm+g2y5xOLG4jsXUnXQQ0dTk9EVEEUVTO0M96fOeP/0RQ9EBcEULzeYUXD4HMf9k8hDP2LOf3nMWWySpKNUOBtmSj1qKql9GYYrODnTy0Qg9044OhgFeIeQhpatCbygcSRz9N5dh6gGvG76zYbJIKssel+70ugq3gne7ioRWKwU0AhVxa4cVCMFTcxy4PqCf7PSGJTFeWpfulvRXDRZeugCUy36UtHlShB7KJkJBPK4QsBHrQSbKPCDhGtp5AFturtFQFJVbNNgIRHkeCQygqa7WvhhcuUqEHsomQkMsshDzEFuog67cylDeEkqUsY4tGLDAGNhkOqePsGiYVFjZmX/N6XZxCD1wT4SCXWHjxEEjrsTvNGu70+BhANFmQCBpotLpOpSSfj+LwClu2bxrPxSn0wDURDvKJhZiIGCA6slkuzHvvJ1+7oR9y01UUKTlWnIXhXEW/k2HAuJt2u0iFHsgmQkI+sxASEVMcKAMRkhnd7DEVzWRUnmZuZ9AEny+D6Kafybp+fhEXHlShB7SJoJBLLTyICNabaxi0SAx+1aA15DTIz/z+XmzoQYcI5W1LTrB/Vw2ni1PogWsiHOQzCzET0WSAUdaNrdVKQTHEvPSpNwJd2i3yhY3umrzLa+AvXt+ZqT9tIz1saWB7Ax4C/Acb/DLsmCuGKtlzkCYhv2Oyav6KBrrgiR5gKwJnvlcee/GAGR+RLZiYc4JWRULyBbk8nwGGsyqxU2CY2mW0XNxEMc4KcZnvkIf+u7hCymtXTHfdn7AUX5Bs4t0YY6wT3cqYe2tKlDXKF9fuIQ56IJQI0fj+eOy/N5lmPfX3NEqaJ6KDKitdBH/qmdSF2fKpiq9VQP3s/Z3w+xN0UAxSIlATuOOx+y5XLakgJRCAJ28Y2cR2SbF4iwCh3x9ffP0dKVh3hoKLOuiBUnxQE3jjsfeeMTOtCAuF8W686NMNDKY364VgBd21qGFIue3YeqeH1pv9FicPdlAMUwJU47rjsfMOmRxaMyTD082wF0zI3FUyVEArnIFpRfqO7ay/d8Fgd6Opn5iDHhglwDSBN/7y3tlo1G0Gls1XPc9huW9T95uN+ue1vNFp6Roa6rBuZ9+DHPSAKBGk8Z3x2HlHZfDqQ79qptE/ZAK0iag+VG7P+ZnsuBcjIP37ihZ9NwTyMAc9MEoAaXxnPHTeK4LWfSYTDwDzQyY0NtpiIlg+e/rUkoE2T/qVZfHm3HMOHMxBD4gSIBrfFX+57hNDslVoGC3at3YUAo0qOiaj3XBKJ023oru4fmaRcpULPjiYg2KEEgEa3xGPHXeZmZOKyjC6FGj4gp+DDAHxJEHndisgb5h6tKZaCPTquuau/LTt9MABEW7wXdjY5UX+/662AEb3w+RuQr7KVjnSogCFJXx1WlJFnLDc20P2rDs90EAAHnwX9uXysqlo0+wxmgwqNuk6ZEkFqcPnPr2TIP+i3UB3rrkvQfKMOz2wQIQdfB829nmF5NlZ3wukr4ohg5LC5Bn5WDBPn9hFnvBJ9KJjevy1CNe6UwwGIuzg+7Cxz4v4GWtUXVxGi8Bsz2G71rp+bEWw92ATvtAqfVlam9ywz7Xu9EADEXrwfdjY5+WjRra5vjfNOo4rzO6D2g0ZHrTqyenEXFk7odnFr/ptHzz7Tg88EOEH34eNfd6uaa0q/Bhardq4YHFj2JazeFkr6CJCXWwVo+3bQ3bMOz3QQIQefB/24fIiySHbNQXveX7PfPmariD3cw49H7Ag151F7+5X61p3itFAhB4CJzb0eaHLk5L7GaVja5zHjFo0VInZNdm6aS40/k3NhKyXdpf4e1aFHkYoMlq+x4u/X8iD04NIbHbsOYi+sACpaCDD509pmj8QB8UAJQQ0nhPru7uYZ7Hn0POftRWrGcbfZN1qGakz+xn7s5HhZho0z3yrexdt0AOdBGgm8GBfHi+6RIpqxfS8vNdxwFMWnkZWwXannwRNTF2yQ2BvZN9d+TxzTQ/rHqCBwPmLncUsvJjeUJy8Rq4awm+7dz0JtCNJp3wEYmd7nVf7okRdc00P8x7BAd/5ezmLrE32VHnCcGaNlwz0tBnaPhl9YJeNkUKHa5a/bauABrjhg2ev6WHfAzzg+38vdxH/pV0KRrC/K0jYZqSp4tT5fujmZbTRmIqxIHFt3Vyca6/pYd8jPOA7gKG/uIGJk90JwNtP7WiBedY1sM20hAjp5JmWXfhelMM6Ct8z1xRb9wgM+N5f7C2iZHPrVkDVTftYjL3jb7J73fi71slI5H9XRE+ijUD6Srx2rTU9rHuEBnz/L3QXUevPMCSbddoWBy1StLTsYlfU3p2ExJxLkyuHwSOl9VvFegabHgY+wAO+/xf7i8g8X81Mb6rTipmHJHUkXUMBMFz2VrZKmlmWkIGT250B79lretj3AA74DmDoL0p0p1cVjj3NKmL2WUOvDF1CQcWqvZTfz/9KNVafX61nXftID3vq2V7f/wvdRUmLnFNfKaPBhj2mS8YJfmaDM46xh6duV4Qt3LoNtWsY6WFII8Pre38vb5GtoFZe8BqS5dSOJvdCouwoqa42lGqgIWgrS8WI/ZR+Jxq5lpFiQxrZXd9viv2shuoaTT2BFexqj1HiJ1PNfslIM9ZPGlRsCA/Byug1z+Jr/T4Izy5SbEcjuxv4TS8/a0Gj6d51zNo4v0MsoNCxCgxSOSlfaMFq91xDSHfXh592kWI7Gtpdz216OVmo4bGLCxSsF7oIDJ9DlzAzZlrbW7ET9pXs9H3Rdp5ZpNiKBkY3cJtiN6sgmTLZMbDbUfenGwR6nW9ZA++EZcE2OZPV9LLzP7Q7IcE1i/Qwo4HZ9f2ml5vFoldqN0OGHrHyeORiNWFVMFUDLEOx11bMYNHPFArl9ss8fUyx+g6Uve9m4XfU9Y9qapF9o8NVFr5juIcQGpRR3klonqmmh2n3kUDgPMXOFiY9prn1Y/nPrF+5zF7lLyzysW3udOhqwPOkgg+lk++JYp6pptiyR0DAd51CV2voANKua8iA88f1A1TbtoZ8yiv4vZMV3FahWR21z5fZ/Wnr6GEZA0Pqe06xp7XRbkpsOvaVgZWlpKMvYZKxWOj4xAs+rHGaHQXecnfXd+6Wa+ootoyRIfX9ptjP0raWTb91g7U7mU95S/9g/J4xscZeO6RnmK6B9+h2kF1TR7FljAyp73KEHspkBdngJMkVHcNKVaXGamDAC37HSKF07PRGpdtSCWtz3nmArqGjh2GMDKnvcrxcFLbqdkdRE9GPx4Rm+WByljZf7Icn7VJcL39fwVreLWY8U0cP0xiZUt/leLkoE5mr+lWYJ7pOsTwihvCzwX812Ud9b8Xq7KbMme4ej66xo4dxjIyp73TETgqSDZf0LcAqoMerPQdT2LosgrXKLsdW7ySTjmURrODuFmSusaPYOIbG1Hc7Xm4KMojrNluQbMTjkhkFkrWNVTAGbseIN0xX1FXknu8OM55hoYcdiuyW73vEngpig6aC6sAkZvmdb9wQ/wkrGGic95kwjnoB/cjU6s17uWaFYjMUmi3f84g9FcQTezOzxVBClT6ew3p6JL3X/JBqqUGouy9Sd4/7zlJ4x189y0KxIYoMV+B6xK5KQQHt1MdjXJC16M3gDPPSb8VAunLsZdbcMFx2loOvBF/HsNDDDgV2y/c7YjcF+gBNvlQ2xicdAVknc4gaRXJ9NpgovfU6GmrJLWHtccfMXMtCD0sUGC4ftIcgH+UkmM22dWN3P020t2Qubd3wjC75x14m2Ag9n47vuRWTZ1koNkSR3fJBewzyQRyLYMkioFxPtUcxrIbJ3HPOet47JN0TS+C13brV1WX00H2RrvRBvkyT4otpgs8K+tSYIlWMTZu+l1V5ueshXGNHD+MYGVMftj9Q/kp26TAwS/kljCVDwQB+n0jszArjCxpRLTitOoC9fzEonqWjh2GMDKmP2WOMjy+ZMvUEmn0UHQ6N56ChCIDikrZrVpTH38MbIR0KcXvRUuU2Wp6doIdd8a2Qj9ofIH8Wmc4n+8qqUnsxV3R36jhZLGHWblVuVRL+ky2ZPb/5NbvHsxL0sCqRFfJhe4jyMQahpq372hB/W/YY/idptbtAHRxEPWSQufRCwiJ4i24w6poJiq1KZIR82B7DfKy5Y/6AXNI+bRYcKhiQ/J5lEZ01lyqyJtFbFUo0KJwr36UEnqGgh2GJDJGP22Ocj6T4mu2eMi74pEngznb9WESCjplbbBSB4/lnBif5XoNrJyi2K6Ed8gFviI+RYZFRTiWane9f/1Q17tGXroGFbqZT1cjwU6/QFAt0z41x7QQ97Epgh3y8G8NjCSeqLYUeTXOcYsfaWJVVXUSq+2PmJuy8/s4Hnr56UXhamSIdHih8H+++4PHS0ckiG71YNAsDdOZWuIZeSHyY562Nj3Pr73y5692U2FXJ9FDhgcoP8G6Mj4W5V+UtE7ItyXaAV9AS+iUdbmo6/UIT3Cy9J3jid73cT6VMDyXu63wf777g8WSIXlWUWBmneeruWHj0PqADz0EtdUkLWxOWsu8Jda5GpocGDxS+D3djeLyRVyXOKGSj91oObOaHK/QZyD63pDE0HSpJRkhgCbznt0vgamR6aPBI4/t494WPp1ZnL/Q9PmmryO9uMpsDlapFctr0rTUNTM4SCePDuYZquAqZYvUdaXsP7MbQeEocOumuYsaUpeKhTeuW5kKaamtlJBNUIoubfiPyEu/EWFeT0UPzRZrSB8cy4IEtpWkM6YZVTLOikS5YG8jM+J6p6hoJehiVwAb5SDFGlmgB2ZpeObbjn3Y6rHylU/aS1ilFrwO/FP38tooMS9qXx+sqWHoo5EiB+1DxBS1ZO3b7KsjPPr8nBrpbxYN178l2RhrhKLa6gU7UNxT1FCw9FHKkwH2sGGNLiBOGcukqck+KywfmhQxp9YVBZX00I26K9JBA0jmEXwvN7/qgnzqWYp0c6nAfLL7A5VqsPfRrZzsDfxgDb2nPtNAFDL1h7K28X63qleB3zrsuxVWyFCvlSIkHYDHElgzXwRgPFY+V2jyPYUu55bVdmbJDrTCob3YQDB6+eit7SpZilRxo8AAqvqDlYmU2dWN58WOe0hr+0iZqA+1qdtU1YEb8biubkK35FbJx9Sw99HKkx32sGGLLlTBfYxbdPKi7eWZVsuzNrCeBTOFPw/401zKhB5/f796ZnlKjUAVGCtPFWS9YxvcE5TeigzAG6JS3LDSSm7IENoG5n6hjbakOPaCNfgvf0b+fGo0eGjDSmB7SinHZRmudbhuXU7aJuMgHre3cal78YQygjnihejwTyQN3/M/TZ/TQf5G+9KHWC5pNNDXWa8ouiXUZYAS5WAnZKliGjGEdsEJJ2vJgFVJte1dE/Fmd0UP5RcrSR1oPYLaHFgmi5cgY+5qu3NPQ3zGAyibINWSZDLvsbJnUrT2X2lNn9FB/gbb0sVaMzdBUqtSkgr9++5HomlC7fSzaW+yTv1OQ/aOf2Vb56rHnagKKNUeoaXxspm2XMQxXhSZNa0SzkEUiRTsiNO1u7ObqWHro5EiH+2DrBc4QRFu2FwzGTwsAXqaMk5J8wbQtBRyxq4056XJ7tdfK3Wj4p36iWJ9F+i9AKS9Uw/siQ2PwVSigPWEq3gnIHFbBx1M/A2Vbq0v/nI9n3+yuq6DoodACBRjAlAjUFKC9pnqDAaPxMEjKY+Qrx49KtTLTaR8z5kSzR/yOFkh38MLVTvTQZoH2C0DKC9Qs/jT7PTOosvNBfblMfuCPrduMpRRsYzicyhiL251r6eoneuizQP35GCXENMhQG4aZZNCb5QAgow16Z8vvSBypR+uyZG87oDHG3YfeVU/0UGeR+vMhygvSIHreTDoYrFjm2tR5qHoQ7JNaM9eJ1jvtLJpty9cMQ1cXUKw6Ik3jg5QY1GAuIhvGKq+dvVqDrC65aEgvZ58Zcal6oh19I0iqN6VmZTh/Z+7+1AT00ByRpnHt+wsO8Fslc2Shmclsn0ShnFNDOpg4/tLgXl/bUUSiB5ExIfEuufeUAcW6w1c0vn2P8QDSkKSXt1ze1uY68IRPRCZY8hI6KgGOeptso5L+PXzfLz/5pyagWG+EesY37y84sPn/yL1C6nX+XZWZFprB6xryMkM9kb6ZJNMWMgbq78ZA3i2ix60LbqkLB6RvYMPwUj3khTJ3e0qT+mQVGWiPWzQ89USxOgvVn2/fYzyAWuqsO8V7kdbqB57w+mS0L8oQWm8f9cqyIXFyrGKNerNZzs2mhyIIFIdv3WMwgETAoVlWFZzT3AecYNztVAHP6K5xRnKNPbv93nvK9Zty/nmz6aEJIs3hG8fIlG4wZ13UFZpujPFxa9inlvLLJXyaBXOHzHBJWQUfFf1fs/y8q00PVRCpDtc2xqZ0KRMjb22jWm0N0kZYwrKuYeyr0EBmzw49n5bGfSHcq00PVRCpDt80xqZUR/Y03TvkraXzHOTrC+tRIH3jM71ntCaT9kAZs8dxcyjuNaLHtYuuqW8cQ1sq3aHT1N8LxtQPewxjxioMQIEBqvVMuVnVQBZ8ovbVxtO9SPS4eNFF9Y1jbEzhCqUpXCpMIa+n2XMqugVm+b3wpmkIHVU8OUm5MI5oCKt/84o/rxI9rp57UQPLEluigvnvGmYsMk92HAtVO9od8e9SQVT76eCIwuCtX9lY+O6B2q4Q0kNoIyH3bZG0walNTH/B4lI+j0G9uu43Wgv2b6rz5/WmWBsEysM3LLEdyljmsk/tILRPgQpvfhF8J2O7rD0XJkyMnprKBt+bfK/BvRf0uEfBtfMtS2yJpG/ALnqcfJGskY8MjSzS64QXwc9r8zNkkm3N1guBsQE3zHevBT2uUXTtfNsS2yLk5LMDravIEMRjozDgXk8CGcDzRDw25jbq76wm9l1y4t4Letyj6N75ajlW42AKpBBI5GbY0MgpCE56/PDPORVFKBPtBdasuoY/c2yuDNJDZiMZ97VyrMWBS5KuLYNdsnnD/ByQX2Iakey7fg9OY7HASDE5oZnXNxX0UwYpltlIxgOlHCtxXtEe0hsBOSz9jADk5wy+gAIikTCSbJQgZl2NkmVTM4ifeq/Ck0F6iGwk4r5WDrX4lNzprXvHLp9F9vkxyJmVPUKSaU3pZAGnLtWkK8kshxsHORJIsbxG4u1qcClMz+jvpJvNH6jlNBNTU4qk7mKz2RDcg+FceaKH/EXy6quzWP0xHC1IT9d9SpYrjWkvbQyRAB01n881QS6yXCucR1tfqSWePNFD/iJ59dVZqP0wXJWlVdeAGH8/qY2zYfblrzyRJVX655pIpZbuNSP1u5eLK08Uil8orb42C5Ufjj9p9U3CsIxUztiEyTav6hL6aHkdEiBj9oruNCvAdSc5u6dH8WEHshGogZfaQIsqYFSk0KFY+tT58V9sVFFPyZtL68gkg6QOO4PFsWzffSLc06PHaQfC4emBl9ZAzQMgDRiKVev4PeosCfzGLPN8+YzgI1F3hoZFff6pl/TPw6PHYQey4SsOyQhiHZv03ShzyMe+VhVq2e6878wS9ywoPrvwrN079LpyaAYwdV/RsLB/5snwRQfIRqgbfczOGAJ4m1DFYJDYS/sqfPROgx6nF5x2cItet26tKRMJ8VW7WpvsicqfjSGc+J2Vbq9HyhrcfvzK9/Fbz3grp8dORTvrSmAssFPWKUIjaRG5nMdkOJX4exjyobETvLbzl8tn8iNzrXd/a3fh9NioaGNdkZVAaZfaBjyGbXNeByp2ZDUN+SgZB/GNT34uhR5Lj7bKO73wrBEWaktoWQyta8MycYcUKRYUWvFF5iX0ffLoMZUZhl0QA/uUd88l77+i+C3hV/k7hb/HPE046BPBrW03BaRz1xlHUDul/s4i+qdf//rHv/6Rf6Vf/z790ubHSRFLLQltbBG//J/0x3/62x//8T/zvy+//va//0j853/7X3/8t1//7r/+2z//87/8+r//8m//h/7HP/z677/+9l/++Me//fFP/L//B5OinuMKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxMzAwODkKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLERwDAIA3tPwQgIQ4B9crkUyf5tsGM36CUdCgQxhY2DJFOnE638oLfBddLTkE7gQcpYmbFt6rZal1zZ3qv2yNqvz0N/7U5qvUgkZgKRqbEH73Z9C0ceAQplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDI1NSAvRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMwovTmFtZSAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcgL0RpZmZlcmVuY2VzIFsgMTE5IC93IF0gPj4gL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM1MCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL3cgMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoinsGVBgC5Zw0nCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAyNTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZFLcgQgCET3noIjgPzkPJNKZTG5/zYNzmQ2dpeo/YRKI6YSLOcUeTB9yfLNZLbpdzlWOxsFFEUomMlV6LECqztTxJlriWrrY2XkuNM7BsUbzl05qWRxo4x1VHUqcEzPlfVR3fl2WZR9Rw5lCtiscxxs4MptwxgnRput7g73iSBPJ1NHxe0g2fAHJ419lasrcJ1s9tFLMA4E/UITmOSLQOsMgcbNU/TkEuzj43bngWBveRFI2RDIkSEYHYJ2nVz/4tb5vf9xhjvPtRmuHO/id5jWdsdfYpIVcwGL3Cmo52suWtcZOt6TM8fkpvuGzrlgl7uDTO/5P9bP+v4DHilm+gplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDM5Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFkM7jSABXzCnwKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMjM5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMzM0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE5IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyMSAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYKL2VpZ2h0IDgzIC9TIDk3IC9hIDEwMSAvZSAxMDUgL2kgMTA4IC9sIC9tIDExMSAvbyAvcCAxMTUgL3MgL3QgXQo+PgovV2lkdGhzIDE4IDAgUiA+PgplbmRvYmoKMTkgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL1MgMjIgMCBSIC9hIDIzIDAgUiAvZSAyNCAwIFIgL2VpZ2h0IDI1IDAgUiAvZml2ZSAyNiAwIFIgL2ZvdXIgMjcgMCBSCi9pIDI4IDAgUiAvbCAyOSAwIFIgL20gMzAgMCBSIC9vIDMyIDAgUiAvb25lIDMzIDAgUiAvcCAzNCAwIFIKL3BlcmlvZCAzNSAwIFIgL3MgMzYgMCBSIC9zaXggMzcgMCBSIC9zcGFjZSAzOCAwIFIgL3QgMzkgMCBSIC90aHJlZSA0MCAwIFIKL3R3byA0MSAwIFIgL3plcm8gNDIgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMiAxNSAwIFIgL0YxIDIwIDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC41IC9jYSAwLjUgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzEgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0MyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDUwMDZaKQo+PgplbmRvYmoKeHJlZgowIDQ0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMTQwNDExIDAwMDAwIG4gCjAwMDAxNDAxMzUgMDAwMDAgbiAKMDAwMDE0MDE3OCAwMDAwMCBuIAowMDAwMTQwMzIwIDAwMDAwIG4gCjAwMDAxNDAzNDEgMDAwMDAgbiAKMDAwMDE0MDM2MiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDQgMDAwMDAgbiAKMDAwMDEzMDUzMSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAxMzA1MDggMDAwMDAgbiAKMDAwMDEzMTI1OSAwMDAwMCBuIAowMDAwMTMxMDQ0IDAwMDAwIG4gCjAwMDAxMzA3MTQgMDAwMDAgbiAKMDAwMDEzMjMxMiAwMDAwMCBuIAowMDAwMTMwNTUxIDAwMDAwIG4gCjAwMDAxMzg4MjggMDAwMDAgbiAKMDAwMDEzODYyMSAwMDAwMCBuIAowMDAwMTM4MTg0IDAwMDAwIG4gCjAwMDAxMzk4ODEgMDAwMDAgbiAKMDAwMDEzMjM0NCAwMDAwMCBuIAowMDAwMTMyNzU4IDAwMDAwIG4gCjAwMDAxMzMxMzggMDAwMDAgbiAKMDAwMDEzMzQ2MCAwMDAwMCBuIAowMDAwMTMzOTI4IDAwMDAwIG4gCjAwMDAxMzQyNTAgMDAwMDAgbiAKMDAwMDEzNDQxNiAwMDAwMCBuIAowMDAwMTM0NTYwIDAwMDAwIG4gCjAwMDAxMzQ2NzkgMDAwMDAgbiAKMDAwMDEzNTAxMCAwMDAwMCBuIAowMDAwMTM1MTgyIDAwMDAwIG4gCjAwMDAxMzU0NzMgMDAwMDAgbiAKMDAwMDEzNTYyOCAwMDAwMCBuIAowMDAwMTM1OTQwIDAwMDAwIG4gCjAwMDAxMzYwNjMgMDAwMDAgbiAKMDAwMDEzNjQ3MCAwMDAwMCBuIAowMDAwMTM2ODYzIDAwMDAwIG4gCjAwMDAxMzY5NTMgMDAwMDAgbiAKMDAwMDEzNzE1OSAwMDAwMCBuIAowMDAwMTM3NTcyIDAwMDAwIG4gCjAwMDAxMzc4OTYgMDAwMDAgbiAKMDAwMDE0MDQ3MSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDQ0IC9Sb290IDEgMCBSIC9JbmZvIDQzIDAgUiA+PgpzdGFydHhyZWYKMTQwNjIyCiUlRU9GCg==", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:50:05.583338\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["def bivar_gaussian(w1, w2, x_mean=0.0, y_mean=0.0, x_sig=1.0, y_sig=1.0):\n", " norm = 1 / (2 * np.pi * x_sig * y_sig)\n", " x_exp = (-1 * (w1 - x_mean) ** 2) / (2 * x_sig**2)\n", " y_exp = (-1 * (w2 - y_mean) ** 2) / (2 * y_sig**2)\n", " return norm * torch.exp(x_exp + y_exp)\n", "\n", "\n", "def comb_func(w1, w2):\n", " z = -bivar_gaussian(w1, w2, x_mean=1.0, y_mean=-0.5, x_sig=0.2, y_sig=0.2)\n", " z -= bivar_gaussian(w1, w2, x_mean=-1.0, y_mean=0.5, x_sig=0.2, y_sig=0.2)\n", " z -= bivar_gaussian(w1, w2, x_mean=-0.5, y_mean=-0.8, x_sig=0.2, y_sig=0.2)\n", " return z\n", "\n", "\n", "_ = plot_curve(comb_func, x_range=(-2, 2), y_range=(-2, 2), plot_3d=True, title=\"Steep optima\")"]}, {"cell_type": "markdown", "id": "ba0ee09b", "metadata": {"papermill": {"duration": 0.144265, "end_time": "2025-04-08T10:50:06.837891", "exception": false, "start_time": "2025-04-08T10:50:06.693626", "status": "completed"}, "tags": []}, "source": ["Most of the loss surface has very little to no gradients.\n", "However, close to the optima, we have very steep gradients.\n", "To reach the minimum when starting in a region with lower gradients, we expect an adaptive learning rate to be crucial.\n", "To verify this hypothesis, we can run our three optimizers on the surface:"]}, {"cell_type": "code", "execution_count": 35, "id": "9f676a98", "metadata": {"execution": {"iopub.execute_input": "2025-04-08T10:50:07.108967Z", "iopub.status.busy": "2025-04-08T10:50:07.108353Z", "iopub.status.idle": "2025-04-08T10:50:07.716990Z", "shell.execute_reply": "2025-04-08T10:50:07.716279Z"}, "papermill": {"duration": 0.746422, "end_time": "2025-04-08T10:50:07.719625", "exception": false, "start_time": "2025-04-08T10:50:06.973203", "status": "completed"}, "tags": []}, "outputs": [{"data": {"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzQzLjc3ODI1IDMzNi4zNDA3NSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJztnEuzZEdxx/f3U/QSFtOq92MpjCFMBAuQwl44vCCEwCgQb6yv798/q+r06bmn7syEZVYoYkbdOdl1srLynVnnsx9//T+/++rrX/70R7d/+eLls8e3r/764m/f8Oe3N3f7hj/f3fztp/z57cs7x9dvX2KK91pbyHz7/elbjOUek6sZKKjnr//98vKbl88+Z5G/8qOfvrzkcPc5ev2q3nOKYLFwaPcS8hP0909Qn+7OZwOfVjhB7UF/vl0sH2q5pxqO///l69t/3P5w++zzIKLYMn++E3G3BzNeYMafxy/aTZufHy+W/+rb22f/5m8//uPtFy+/uH0aBVEUhNvPBhX3fPvuxd2z87242lJ8Iknn8+K7u8fWtbqvGfZ3459n4Vxy9eHmi7/3XEKpMMWXcg++8Nybz/5efI+uC54hpHvX280n6K0l+yJ4Yh3XXYs3H8M9tNR6NPxw56fZ33zwdxcbNNjy/h5SdhG4d/eefG2GXuI99pxjunnX7q6xTpz4KQaXWd71e461w1MtX+8ut14hx8d7a7m1Oh/Lk1KHfN+B125UZnevIebEbkNmI6WYCAjdh5RCBY7olNJAETzf2Y6L0eA95DiY0O6+QzJUhnKvxUU3NtvvpXodlA+R3fIvdeKLhCZq+Nh9T2kyk71mz5n4fC85NDfgSGcuLQg/3YO43yaZpfMtG7z5UtvYlh7Wisj05d6dC30uU1stcfAgtpzDfGpPheP0IdwrRPc2iQw9e9tUQn1iTWuzIYRkHHO9xubXIqEiJobN+eTJeDhWoo/VVvedx6ZJInLgch3EVB9bmPDGLuCr9xW6Wo5h0t5dDXaAnLF3dYlfzGh2M7A4Mw+w3qE3p24cRiZLDxOefHEJjgXH/kqLdXE+eiTE5LI3pLBN8iN/uXmC/sTKDErpAw4bygLnJjui3UYHUWUtU5KtgnTnFiYY6vnsjQe5utIWuCOILhrxJUqFJ7z2nHQiwFMEf4KlSGVIU681lfXQgG7bwTpohx+LyFZy8t326mPifNZRVRdaHjyQUi+hbxWLMASETbe0yEwNXRvrFMS8L14WV0KK9tzmWlpHhdEJbahgDzInc/lcEKNm8BhTPXjmG9o2uBNSx7asbcEQSSBwbFXMS9Jqxu4MJscMDXE+N8RSwzhah1L7Q3Qa1BWDJ9yMW1xGi92wUMmHOpdBIWsKKJ4t4+RP1tFiPV2zx6bgekgTjgFxJY/t+iIhnWS2FuLYVulo/yLTx/jQToT0IN+3EMb6PL8fz+1d0mDw6jn7cNCJ+Qhzu96VxR7sm3eTfhyDP9jfB/t1WhWdScepY5i8wXElMaxTd2hoSgZHmNjNguPDx267k7CvVRwWdsggx9APbqYe61g9hh5KO6gpceonZsAd1NTkhgxCZWq+LXxsZ/MTzs7bOlwX8Tl1cAfTG+sDv0/ZTJjavISqlmL2wrjMIS78gj+Zp8shPqShulpzGfg5LVvKfpHIMOAp4ZeWMHdMUB77LQkCDzh8GOTUqM9rGRyvK5N8rONBpm+lDPZgapJ7wHub5EC9c8ch4h4m+QGnUxc+TkdnMcxgbgu9h9ZLmst0TMZaBrXMAz1j8sND5Zrrc1cx91CO01pMKPCm94Mat56aC+J7MA3TO0UNK1Xywu8uL+pj6ckd3EndTa7J/qeFX5uTXNs6RAvHoVc507REORyq2DwcHOtztL4cdFazpwL3FA5yCCg408l8pFm7fSH2/TyNsPRnt6eo67cjIHwCvfyZwFiBILu9isEUBf7cEQUeaO8UyYQoU5QJJdZXHAecvEJnVYk4FgcW2Vd4lyshdr/C78RA2ddh3PimuAff7NHIS2zcArEy8UDUN+hXbKA44TU2HiIQF1aoLVCiIK/g1wrR1GvkhqtNWWsPqrFR2HCYdLVLxcaOpULhjN8FtC4STkTvrsh4hzvDqGDss8z9XRagKNC65EfCoONzOWkkiS8ocVTY5K+RCS0wQHjjxHaJD5x2i0u6JEOiTbgpFcOyYEhhJCHcBTJUOiQ4w796i/LMhHfucl0CEEdoiUJBg6wRUoor9Fd8Axdzj58kShDfMGmioocrZGggUFY8VqCeJC2IWKdM7WJ3GKqmg8YYRjHGS5PZar/EDnL1qerhUWtjc70sTr6UumDBufymCRK2Ccctv7U57ijvTwSD4ZGqEjPhsS4FWspCrNKcAlaFNxGpwrZfnbbHrLWOF5VdVCLTFHEqGL8WUAIli9v5guWFAI8cXa6LwjrcodlGBbqEba21K1zYTBwMp0sX8QlDFb3i3mtGYNun6dAvO7ES5MqGXWJXBakd5xSmzgQXoOVKW7U2KoeDcz7ZcYaK7cVE7ahG6PBdqdoBEv9hw5GsqwMkPiFOxNiRSxrVMk7EmhsZxWgEPB6eXMJPIJT564pmrUv2hgYoYJDbJmORtl7KBbETQscPsg6+OclzjJe8IPRo+HQnDQVZ6SIiFK7ti1cmjY+Ocuq2Vfw1kehuZZf0WHgnmnBM0K8v1yRXgoaqEE7qiKQiJ8rgr5AR+UTsFM1JSAsk2pznNeM4Onw09sqQiRORUong1coIfiWQUCBvx0c8SJp07a2Iqio2X5pk2BwkRpy87FKz2VQmum1O+SoPSkp53VZT8FQERS0q+CcgxBwQkLdLC2OBhOPfVQy4k7h5yVy5OkFQnewcnqnyhW1GWVt/zWaldTJ0qv+wVzwQIcfm/ApbIwTU5iAoRcX3xGNXkuFEYygwAJHUVpXMQFO/lDkWI7FXXQf7auKKbiMf1+4SQlBP4kmSIn3DNGJ3QwmXZkNBDOZWCZGRDctJfImRrtaWW68EgbmLHartoYvl0q2ZcVNmi7sSbzqZRIHN1zKHFkuEmrG5KEbGDW5wPZERqgFHdJZksBjqfm1BEcgS5F3RFttcMIsnPb9msyIp2Qxjc+JEYHnf6XaQiSVjj22wOSueuQ4elD0pbSDENkKyI2VlE24joTibUggC7TFe4QEbvV6YdCtH+TGxwxPLEfyFjdA5+VEi7mg8x1kQ1uLjNtuT0XCKtOwwQ4go2E6xY2jIO0ZDBwhXiH04zo2uqq5BnIp6iyblrFm8uT5tdkNawPJGU5D2OYWNV8ihKpWr2Xgca5JE8dNrXC8TANvM2kaFlNj8y2hAkkM8m1JM0VTKczZYAr/zlkHpQsaj6kyQP8JsmbINMoaLuAXuiSorgnmo2fnhiPpF1WllyIjmFYde6yphLZEGqZPsnKwjm8VyXHNDVhsP0hWDkvA4wnF3GWjIBjjtD1UZvEACcRBxR3GzQkewMwlZ5ZDUL62tSQZiFMlK65BAZE559c73OIU8fcqGhe7Jpb6RfYyxHBsBq4giLm49bnZI6IA81iBUT4Ivo542TPaE34QiCxd7A/c2Zpx/ggDH0sOUyhyktuMF8XrA94zNkbYTWF4G+sYJAg2LCOwbOQoRT92EDvhoSERu+jg/eOhkxjaHjYEP5JhlPCfiW0q9jI0MWYJPtmqPqbIeMgnXVHSVukIYWk5OkPAOWyHy4huJkRk53KWM2MYWsTH8GYTmwWU8BIHUDtkTRHGIsS2aompx1ya8sn1lX0PcMv57J2y1sy6ucqiIxyJGZHkTqvqipdOgXayO12pq+i8mqCoziC94na7K2jU2SSVJQDdXyU9Da/jrjbw59TrgszGNVA0v6649MKqEuFQ5fm0VZSFK8lfmTU8lTuGwWrGdksVj7DaRpyruylbzYHDCEGC8nnLK0VybTTtnNZpvFA3P1h2Q69biCZi0slXSXn7Ew7+bNZ13oiGJCJAC+aEO6+VHX7589hNCaHf78jcvDZ/SuorH4H/565f/vP2AnPOHt/+6ffmzl3/98uXPtgfbzvFBpP/Ev/vx19/86t///sWv/vDXd9/+7g9//+tsFL4Y6S+t3Anu3iP5BHyL5JruWYH9R5Ps7/l7IFl16CD9faL5DH2LaPX9vPThE6j+PhhtZcDo3qf6BH2T6hQJTvsnUO2+H14/So1nqk/QN6lu4a5Q8ppod6L1xOH16BCS+njvPfoMfevRQQ3MLb/cNZuOR+dOnFzff/QJ+uajs1fp6IOP9pe77iyNIXrv0Sfom49Gc1W/+/CjL3Z9NQPxPBnx1qOjSvYaMfjAo8Pzrp+kRZ13k6quVp0Pax1J7TChrPHZT8Jc9Aff/fD25TcIP7Ybh9dFmmqlyRTBUDFShukN87TZS1Od2Op7wEsuq9/lcQ+3GO+V6LX+Aw32g/DKJxfeI/wAvk14gT5VLv+BZvtBOOHUHWF+j/IH9G3S2d6dDOijaf9+me6TV9r0Pu0H9AO0I1dql3wc7d+PCT/RfhrYOdF+QC9pVwvdJNxXDTiEK9o/YMkfFARrKrX3KHhA36YgICEqYX6AggvTdqIgpXvr9X0KDugHKOCcvXNvU3Bp108U1K5e5fsUHNAPUFDVWe4fouBNHjym1p5M3mmW7S0KorcCzdsUvLLyo4KtaDvdq1lqX2Tle/3+jHx4GPn/+xzcSA1efvnRE3AGHl1hA6tSo/Zvt3pQ8hOdVMjnBbd5lwGP6hoseIrqShjcldGSF1hNCINqLMWt1QOZr3rmgsdYxjiH4KogD3xVEssCJ2XsA6xK9SImOFJVb/DUHYH9hHtI633AoyKvBY88bcBh7Rzn6tZ+7XWQA/NTPODZCg6C81Q3xry6pV49jHV8hWfGhNbvZNJRNXXBXcw5LjgGIA18HF0aUyrAW+lK33wdAeKY/xDci+cGt97QgtcSexpwdf/DWqc6uBkNzoouLXjJfO4Gl/75CYa1OYzHZvXAFvk5NBWmBE8ify2TivJbg0dHOhsmPHYS6mZw32MOa50YasyDTDVQ/XpuyKrEcTia+Qp+LUOaa9MuwFuqsa3H4jVtZKlaN7aWtYzAGrIDnnt0kzvt3pEFzXMAT9nka8BZVMM6gKMvtdYJrjnn+Vj0OsU44RqCaQZW67+vVWCHzd5Ua8DPaUXgiT1pTgJ4aUmdkQGPyWmwCjD5vh8TpM3mCW0ACXgkekwL7nrz6pEpGAqY67F8lUhV472NqU09BK5ZujrgmLhUFr6aRBq4Aq4h0zEVAjz73ls3uO/V1TbhUhQTKacZzzm9AtzGCIvB0Zmxumb1ujNBRrPVGQ4TjjJ1DRRiH3tNbgyoAs9sDS0THAHMY6AVeChq+BucXYcxrNcyP7Z5AU+sV0MpoU14yd4mVIEjN30YAOC49hjgQmHjaO5kvrTGprmKKI5xzE8BRoylJoBhfZ08QOqc0wSaL1l90jlEBlxDj5q8KUkZShtjmE2jvw3LB5wjL24OtDZNO6Yu7hQbwyIwEhwn6TMmiHWyjq2Pudhqs2VSApsT9qmMsduiWVsbFFCApjbsICcWzUVoDEca4MNE90FSmoO/ZdlgH22s0ixp1hiyz5oYDqY7UNJTsdqkfz3MY1Wlv8wxnvnlowZ4/KviPwJfmp8dMteIkltfRazX2Bx4aBJsq6ph35v2scEmGpXJDKM/pZnDllf75jUyVhTOujawIQTDV3ZLB7XqvCaMrYKMq6gaCdhhJxxbKn7Vm8HNxe1YgrKmiHqVWapL6qfEvsPGVksIxi4TvM7qVm+wo01vu5rm5IEK9SWnHXZqEN36WBujllupayrnNTYhAUuO5rbLWEm0ru12qco/XJ4FyRJQBri0Ox1USCO1bZyOPCcRR99iyx91GYdRqdUMbt3JVMpq44a5yRpay0jujiWpchah59kXwc/L37UdNoehCdRBCOfEgzRkfY2d1YqOmlW3crW67Dmn3SazGiJOlI7eMlFJi3538IiTJgJWJ1rjybXn7drYu6QWrH3TSAY6usfuXY3jPLFhPXssOw4SH2rgc7C7Swowo1tkzbAQpMxWjMbPCMp27MYNZY0mGC6fQzh6xq9xe2abbQwJcEYatQjbLWpmBafoRxNIrp6jcbu1NaPu/ewkYCXUl6t+d+xEZymoE2edKRnd7tzuHHEOSVMjo/tBaBwrTNyR3TQGgXwP9mmwT4PAW2yMqYzT6EclL/Hd8q8Heacw90golpKmF3bYmiGW53lns9FIS6puo5Echdo2ulpiTTTyhqB57g1y8bqbEQb7NHOIH97JE+eMpXZt2G1cM9EhB7tbG1smtzGUxmtIuOPMN8hm5HnA+Kb2MTZqd44+qiUkuz6a2h2qQ91ZHa+BFxPQ0dUO6mO3nbDqn0jH2lAEzaAG5U0bVyZEPAx+YHSR8TykK2GHXYl+NH821tYlnmbjPtfYKv1nQk5D7kE92mMo4hVy1yWcMlaOsAZTS1h3jRw05Yr6jnEEfKTDje1wNYUkBzzGKWrWrK0s+DU23gCjxH/6hqRGiNgxT8FXAHn0exOsJGOruxgjQrWGdoaHlMlEGNsuakBFMHjLMaHDrMxRbTaZiB098Xk0SsgDmmxf2Qiruozq3Q6jUzXw1LemkkezMRy/EYJwVKxlaJtNEo3aDRlnZQwvsUVudyrWcVxEUUGjIopgg1JDf71JlSCJVnD8GgPTJTzdX1DQe42tEd2ge3fZBqFrIv8nAbjEJn7HjmqUhED/XVKMnTRWfu2rq82worNNIwRehHOMyNU1U2Kw6wCEiAS7t3eE8CnxxWaIr/B1UYzsF4sZNAgSm26uYGlbuxbx4HVFAtHTmAn4SbORXrMs8Sy3Tw3eYDP57dW9TJWAPtTmPRfSvviItsoz/ifcT33GPlX19qt/D4Ux4+snFsaKUo1Z6OrBr1pUtPnpUbrqbdZaBCco8LPURUoSVgUMnY1p1K4IvOujpkU2HEfNCaGfV/8Ej+SFo+YkW3mANZgwS10aS1glMGXhKc5SV8lH/c4meMeuyETjyKQFJ2v1o0SFjZ1XlFTSws7N+l3oNgx5lMDqJJ84Zmad3RKgMktvUNPHFR+VujAms4KHzse0Sldd7n+WwHADB1gz1+OxREx+XFZRBaxrAHBUxmTTDjjuuowSFal5OUpUhGNNN69UMauazpmFMTxZH+hNXn+VkHBDOQ+44oG0ltcdBavaACf0aauiRd4tPbQCG4TVtVvJiBuPzRpiOSppymtGBQylD+movOE52yjIJY2E5wXX/MtYX7ck3WJPql5TygYnYlgVM9mxsUpIukW46m5Y5UmNV0R01OmUO43VlW3nRX3QVY9Rv9OsVTzqdLGpjmWFunQq0ylQH2W6omtaC65h4lFfqzh7t6hRXDvra6oa5YXvVAYc+EUVtlUwU4obBz6+vMRVeNPN6jYKcqSM60xU1hs3HUddz49Ldarr6bbQoB634+NR7/PF7l2p3kcmFtY6hK3JKmkB4bWUaBb88ENtFvxazHWtn51cisErwhDXOinYdUsrBKpM6x+FwK77WFYJJExd9ARNos5KYA3hKBzi3IbBCHclO33VJTUgFgbcIeGrUNc1N1ZngVCj+6tAWKZG2E2O1lbBT6IfRiEwKxkNq3CIjdA9MOBEMKmt9bOz++xWOKwcQFyFw1JTHAVCZWhxFSaDpuUMXG2mbkDJy7odIoFKcWmUxlq5a8SqDXSvAb864aVZOVwFQoLeUhdcQ1eqaKugGHKZNWFde9VQ3CgoylrXVVBURNmscIgGq1Y4C4rRrvAKrpu6U3GzCpN9FhTlm/NRUHRR1R2VDnXpMU1wIAxXl6TwJF09KbNyiI5ZdbaYHQnTOuoeEBLjrXKoyCSsyqEu7ASVAu3Cvh/V36prspqhGyXCqilMwbOMh4mgbxriTXbmQReZs1MfgAfelc3Wf4L/Cf5/AT/XjkfUOmvH68tH1Y7Dq9InLkYNyVlrczKFfRUzL7Ar2dSsIKJY2OvQt8jF6wrQuG8CtlxAW2nJBbbuH4xacLIb+cd9y9e4ZNCkzWHSETXY3Fa99gI7ZeXMaWJ33RdaydQFNlbRH9iq7OJltmu3pOyrzT1mvFBblzkvkLuDf5PV6vF617Yr49F0U2FWTF3UBZu4RUZM4rxFolvzynx2ZOgVKS6uGrPiINxV2AkIdl79gckOPAOZ/LrrcYHMvxWV/K2mif8UP3bHGIM26eIsjfuiK7d7somdEYxZ0idUV8Gl7sSJEEyRcTnqvE311B2zWVgXI/3EhoPeor8Ndnaan+qTEt1M568tA7PK3X2KiG6YqTa0pRt5c26W4tDLSAjSw5bfNZKBLGSSFOQ674SEaFX3eka9Ry1SVRnidmkCeYzDnO+HCtK+3HdaA80W+w1kfqsb3ztuJ5Wsa+wTO3MwubnduSMhXre8Z5ODONtp8G+HTTbnm58tKN0vjn0r23qJRiJGnDVkDkftlt3RpBzRq3kjxxEKZ91F225S3VS3tIyggZMMdXc2dg+c6HNSoltQmiLdYRNYEamUOenfUP20lREWIpouvs3at9Ods63ZySHqpTTzbPgh/Ex+p8G69wX6NNvNyswubLER/kJuMdcmyuUs25ZuvZFATYJR/MbGeo327LDVS+hTALvGMEj+d/yz62upThuPU0IMXNpiR5WV9Z4eq5WrQl2OKv1rbCJzdcPmhRRdZQ0t7ViCAy26JTQq71537ftxo+8VdlUjXN3JgZ0yWubLTrpVrFOzf/ZbOp4vHvecX2M3r0LgaJz5oETYcrZr7OZledzoQCGKyV7QsVPKptduxDbiBq9ExuW822TTq0E0fzDq8KhN1GuKNti6NtzVEBx1eKtRl7AzU123kEsY0q1OoW7Apg1LODxMTWqz86NrcnwLG7o93pkEyY0eALmVUo+2k1eOQ/ZBry/SN3KTMvoe19hKsENpozsY1M/OfcMRr3dTVbsxLFy9oaWWXYym20VVLWQ7GRgNN45a8CtkXEbVAOtYOeuGcN2FJLoViqqUeUl0+FO/MyTy5N06VvpGyJh1b91vJFstAC8dM2SlY8he2iETeMYOgomq7kWm9Lgv/gpb2br84rhiK7etDtRm7agb1XiRNJoRTuFdKxsB0fuX9J4hwy38v4vsjYIluaJqtbR3enmPRm0wnRs6ciW51i1ikw+Ch6DeWNkwu1aHq9Yd7fGiBWyE7kBekq3b6grFdfFs9AO8hgZ622CjT9KprEvHkbhUbyZDiS6xVWIrRJTNOurF6k4OBSqX2qvXgGlMT28QHAX6CucrtuQyt1E9QTxWB8ePF/xxsCjCtS7o739C/wn9FOjlZT9/uup3vreSR7s/2x2Y0Ws5TUaH58noL/729dd/uv3xT3/73be/Oo9If/Z5Hm8DnS8/vbf56tOXkKIuuWtIvIS7c3ZbTD0ev3o8J7heWqobOE014hOcROKMXUa/8gmaFu5XLyc47vnoHz2Bm718hpjj9ECs+0Q+UfcAfnXaywP6+xeN1fdud7MfYAEX6vGsM7CeVvUHh9KDE2fwseXTs07sueTxV3qn649e9k2w26smGK7qoE/WOti9sfdhkFZewz6mDnRaLPR6PECvHowKIRZQoNaIN4E09SCcPuotlklFJwGb03sgYV5umoEkvgLc1aojgRXwQZ8GJLp/D6jHjF8vmLcqteu305LRhXtqGqh7PD26qGQujt8vQgUtiqn97bQhQceGHgyLx7PTPY+ywgMt3gmJsn9eLhJYFeKC5ycjE3qxQn8iMlxtJ1zsO1wx6FjyzMr19GeuL0KfDujY0OMg3z/vQyoP23Rhk0KNp58lc9K7uxpf/PTHz4boIe6PixBvibpuHYY8zdKJ4Af4LPBP4I+Zm31aMp6f9BD7B/wk+QD1JrFwlj3yNX7U9FaWZ9FvNu6vVys9RJoAg2hNQ+lPwIP+s/gHNWaStTOelq16k6narGcadNmLYCs/KUCwsfvkTGZOW+uPrT340M80PKTmjHwI2HndQxafaXjI7ZngcLW3cM2HcMWz07In9j5oeDqLB72nczttLV7xIT5o+DS1aBo6cY87phvN+Pkfv31bOd56W/ZJRdQhtFeVP2nIAX1SkBP0U18SeV68tNMjH/J0gE+SV/Q26XFQDyktdiNN2dSTolTFOHZOD9lXg7KNYzoB1zae1MQ6tIOS86JRtYNnH2W9bn16UhL16cv40WlTNjPQnmXjgD2ryAn1kLjzood0Pj3/IcknUsPVpsLl/sMVq06LPph6PP+J/wep56N6bOp0qK/P/1NVozR7Je9bmvH5D2++2hTD7Qe//tWTivzi5X8B4kU2BwplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjc1NzAKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA5MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1jLERwDAIA3tPwQgIQ4B9crkUyf5tsGM36CUdCgQxhY2DJFOnE638oLfBddLTkE7gQcpYmbFt6rZal1zZ3qv2yNqvz0N/7U5qvUgkZgKRqbEH73Z9C0ceAQplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDI1NSAvRm9udERlc2NyaXB0b3IgMTggMCBSIC9TdWJ0eXBlIC9UeXBlMwovTmFtZSAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9DaGFyUHJvY3MgMjAgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcgL0RpZmZlcmVuY2VzIFsgMTE5IC93IF0gPj4gL1dpZHRocyAxNyAwIFIgPj4KZW5kb2JqCjE4IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0dDV1hEVitEZWphVnVTYW5zLU9ibGlxdWUgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM1MCA+PgplbmRvYmoKMTcgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjAgMCBvYmoKPDwgL3cgMjEgMCBSID4+CmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJohT2/m2ILRfcPemJ82xgZJ2HI7TjFrKmcFNMUk6odwxqpTcdO+glzf00yXouGvQPcfUVtpsDklEkkYdEl8uVZ+VffD4MbxxiCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZDBEUMhCETvVrElgIBAPclkcvi//2tAk1xkHWD3qTuBkFGHM8Nn4smD07E0cG8VjGsIryP0CE0Ck8DEwZp4DAsBp2GRYy7fVZZVp5Wumo2e171jQdVplzUNbdqB8q2PP8I13qPwGuweQgexKHRuZVoLmVg8a5w7zKPM535O23c9GK2m1Kw3ctnXPTrL1FBeWvuEzmi0/SfXL7sxXh+FFDkICmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDkwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2Oyw3AMAhD70zBCOFTAvtUVQ/J/teGfHrBD1vIuAkWDB+j2oWVA2+CsSd1YF1eAxVCFhlk5Ns7F4tKZha/miapE9Ikcd5EoTtNSp0PtNPb4IXnA/XpHewKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDM0MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMjU4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAyMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVC5jQQxDMtdhRpYwHrtqWcWi0um//RI+fYi0RZFUio1mZIpL3WUJVlT3jp8lsQOeYblbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/65yj59eixs+w/FDFJGSDuY1/1j98nMNr1OPJ5Fub77iXpypDgMRHJKavCNdWLEuEhFpNUFNz8BaLYC7t17+G7QjugxA9onEcZpSjqG/a3Clzy/lJ1PYCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDIzOSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUMltBDEM+7sKNTDA6By7HgeLPLL9f0PKCZKXaEviofKUW5bKZfcjOW/JuuVDh06VafJu0M2vsf6jDAJ2/1BUEK0lsUrMXNJusTRJL9nDOI2Xa7WO56l7hFmjePDj2NMpgek9MsFms705MKs9zg6QTrjGr+rTO5UkA4m6kPNCpQrrHtQloo8r25hSnU4t5RiXn+h7fI4APcXejdzRx8sXjEa1LajRapU4DzATU9GVcauRgZQTBkNnR1c0C6XIynpCNcKNOaGZvcNwYAPLs4Skpa1SvA9lAegCXdo64zRKgo4Awt8ojPX6Bqr8XjcKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDIzIDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyNSAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTMgL2ZpdmUgNjUgL0EgNjggL0QgNzEgL0cgNzcgL00KODMgL1MgOTcgL2EgMTAwIC9kIC9lIDEwNSAvaSAxMDkgL20gMTExIC9vIC9wIDExNiAvdCBdCj4+Ci9XaWR0aHMgMjIgMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoyMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNSAwIG9iago8PCAvQSAyNiAwIFIgL0QgMjcgMCBSIC9HIDI4IDAgUiAvTSAyOSAwIFIgL1MgMzAgMCBSIC9hIDMxIDAgUiAvZCAzMiAwIFIKL2UgMzMgMCBSIC9maXZlIDM0IDAgUiAvaSAzNSAwIFIgL20gMzYgMCBSIC9vIDM4IDAgUiAvb25lIDM5IDAgUiAvcCA0MCAwIFIKL3BlcmlvZCA0MSAwIFIgL3NwYWNlIDQyIDAgUiAvdCA0MyAwIFIgL3R3byA0NCAwIFIgL3plcm8gNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMiAxOSAwIFIgL0YxIDI0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC43IC9jYSAxID4+Ci9BNCA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjcgL2NhIDAuNyA+PgovQTUgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvTTAgMTQgMCBSIC9NMSAxNSAwIFIgL00yIDE2IDAgUiAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNyAwIFIKPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9JbWFnZSAvV2lkdGggMzg0IC9IZWlnaHQgMzg0Ci9Db2xvclNwYWNlIFsgL0luZGV4ZWQgL0RldmljZVJHQiA5Ngoo/eck8+Ue8eUc7uUb5OMY4eMY3+MYK3OORAFU1OEa0uEbz+Ecxd8hwt8it91cKbXdK7LdLKfbM5/ZOJXXP5LXQYvVRoPTS4HTTGTLXR+Vi17JYUcVZ1PFZ0cnd0YtfEW/b0Q5gkI9hD9HiD27dCGmhTi5djW3eDRfjS9pjS5tjiuxfVwoe44nrYAmgY4lq4Ejh40ip4Qfk4semYoemIr65iL45iH25h/s5Brp5Bnn5Bk9S4nc4hja4hjX4hnN4B3K4B7H4B+93ia63iev3C6t3DCl2jWi2jdHD2KX2D6Q1kN80k930FJ00FRwzlZnzFxcW8hiVcZmUcRoTcJrSBxuRQhbQr5xQUKGO7p1OVSLN1iMMWaNKnaOJ36OJISNIY6MH6KGHqCHKQpdCi9CaXRzUGVyQ29tcG9uZW50IDggL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0RlY29kZVBhcm1zIDw8IC9QcmVkaWN0b3IgMTAgL0NvbG9ycyAxIC9Db2x1bW5zIDM4NCAvQml0c1BlckNvbXBvbmVudCA4ID4+Ci9MZW5ndGggNDYgMCBSID4+CnN0cmVhbQp4nO2de38USRVASVZcdHdxVVDxBYKKKKLRCTtKIIsxuKzvBR8r8fH9P4X3kCq2KHpImCRze2bO+Weme6qKqnv45XZV1/ScOyciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInYzJAdp/WCgUko4BkFLBoBgK+3aCPs0YBySggiYGI353NkI/sESw5CkhGAckoIJE28IR345DN4K0B4nQpsVFl6OBEKCAZBSSjgCwGAl+jPp1OfxV8LjjfwHGcjk+nxcVmI8J8/IYoIBkFJKOARJrMS/iawE+J9L179+4HXwi+GLwT8MpxnI5P71GqFfFyPlbCUSggGQUko4BkmuxL+D4IyLCElkjv7u6+F/wmuBh8KeCV4zgdn+5SitLUovahgxcSssc3ehSQjAKSUUAi7ewr4lYTL1mX0D4M9vb2HgUfBZeCxwGvHMfp+HSPUpSmVknIm0o4HgpIRgHJKCCRLvhE//MBM6x3g/eDrwSXL1/+OPhj8KfgGwGvHMfp+PQypShNLWpHI1MlHI0CklFAMlUAy/hcvsdfb8LHRf9vg68GRD4C/tfgb8E/gh8EvHIcp/FBKUpTi9rRCKmANmlbATNQQDIKSEYBibQJmGV87vru7Ox8GHBlz4X+H4K/BDdu3Phx8PPgv8H/Al45jtPx6Q1KUZpa1I5Goq0d2qTtJhFnD3s8KCAZBSSjgGT6BMwM7MGDByz0s8jz++DbwQ+DCPQvgv8EPwv+HfDKcZzGA6UoTS1qRyPR1gPa7BJx9rDHgwKSUUAyCsik7Nepi3AkS5byYwr15eBrwZ8DZlzfD7a2tn4avB38KPhXwCvHcTo+3aIUpalF7WiE+Rht0nZdlHObUEUBySggGQUk003CWDhja09JwNxpuRrcCa4EBwcHBPzT4NfB9YBXjuN0fHpAKUpTi9qHefgibdJ2MxlTwHMUkIwCklFAMgOTMLb17O3tcYv9mwFTK1bdmHHdunXrn8H3gu8G3wl45ThOx6e3KEVpalE7GmFNjja7yZgCnqOAZBSQTCOA/TvsLOdGQFy+fz1gVYcbAL8MfhLcvHnz7wGB/1bwu4BXjuN0fHqTUpSmFrWjESYUtEnb/BsKaFFAMgpIRgHJFAFlP+iU+7ds69zf32eHzyfB7YBVnmdBXO9fC54ET4MLAa8cx2mmA5SiNLWoHY1EW/u0Sdt1n6gCKgpIRgHJKCAZBSSjgGQUkIwCknEilowCklFAMgpIxhsyySggGQUko4Bk3BeUjAKSUUAybk9PRgHJKCAZBeQzGZgL+DXVBaKAZBSQjAKSqQJ8XE0SCkhGAckoYAT0idjHVi4YBSSjgGQUkEybiFf/8fWTAXJ7pAAFLHq0Ckge7cgEQCdhlX5FaSDg2w0j8aEABZzl0MYvoPa0SFiFH/MciPjd2Qz5WHCHFaCAUx+OAhQwR4+bKQHL+DUhR2TJrlzgE+l3Al45jtMEviTeKbVK9m3HlDOU52PZOKQOqSdOlxIbd1/u9AL7rAAFnMlQFKCAOXredrwRwd1dMuz5Bo7jdBv4ZiCLDv6y93/pB7Ds/V/6ASx7/5d+AMve/24cJ09iCcFfhYsIBSjgZJ1WgAJObzxVxPEWs5KCXzu8QouJClDAHB1WgALOZFwd2x0DRRYsoAn+qm0qUIACjtlJBShgEcwO9hycWo+a4K/43lYFKGCoR2skYAZ9aPs08SqnJqL+c+v9FSsFJKOAZBSQyUDgyVobn7FZaO4atCtIc3uo/ySNsYy/po9aUEAyCkhGAYnMCHy5I0sCm3bEqYEdOPOluD4Br+Ej1xSQjAKSUUAiTeatgX+rRJ3MFZMYOs9t1p0C7+MU8xtKfFBkFBFNPj7OGEvJugi3ho9eVkAyCkhGAYk0wW934tBTok6vDzfj7DIrerfA+7IDhxKUrCK62x7HGOPk5UkYVtfoJ1gUkIwCklFAMk3w2504ZFpmL2Sv6DxrWmTE/QLv4xTjogQlqTHfLpzJWv8SoAKSUUAiXfDbnTj8kSe8RDr+hhIJfh364wLv4xR/oylBSWrMtwunEUDNNfpBagUooHRDAQpYNPUavQa/24lD1iK8rKXEpTS5jLF8UuB9nOIqmxKUpEa3C6dbdZk11iKg/BeYks2Za0SuxzX/3O2AVZ5nQVzvXwueBE+DCwGvHMdppgOUojS1qB2NcOFAm7Rd/3sooOmKAhSwaBQwAgE19bE6wnc679+/Ty/ZU8meGu6psqZ+9epV5jTktNsF3scpVlsoQUlqUDMaYHmI9uotgiMSsQIUkIACFNB0Zc0E9Am4Tn92d3f5bhV769lbSabl3uqdO3dY22Jus1XgfZxi1Z0SlKQGNaMBlr3qlOcYd2DXbyKmAAV03VGAAhZJn4DrXdiHDx/yHVtSH3vsybzssbly5Qr3OBjXswLv4xR3XylBSWpQMxrgWQHtHdgjdmNO1u6GjAIU0HVHAQpYJJOBtNcMme/a8l0r9tqTcQ8ODhgX+e3TAu/jFLtwKEFJalCzGW6X8o4QsEb7ghSggK47ayhgYDP4e48ePeKvOE8C4BqabwKxEzzGxV9drr6vFXgfp4gEJShJDWpGAzzRasaG8FndGe7Rqm5PV4AC+u4oQAGLohluvQ/AjWCePFtSHk9+Ia3yzU/GFemNq2yuuJ8UeB+nyHyUoCQ1qHmY9T6iPdqt9wVeP+T2smDVv6aqAAUMd0oBClgIs6c9Fy9dusQTIHkCGE+AYVzkt5jmsNrCqvvTAu/jFDMgSlCSGtSMBrg9/GZTn0nXq1V+XI0CFDDYKQUoYDEMCOCXiPglisePH7OcxiSGcZHfmOdcv36dpMvd1wsF3scpVsIoQUlqUDMa4InmtEe7x1/+6hPxqj62UgEKmNkxBSjg7BllEi4dW4vH1ytAATM7pgAFnD2jXIxrO9dIqE+uWKlfUVKAAl7fuVUXcG5094QHelck1O/PrsSPeTYoIBkFJKOAZNpVlxHsDR3oXelh/V9CFq8JOdpELAmeSLPexCvHcZp/siTeKbWK+xp8BRyzdwpQwFmigGRaASP4itKMHjZzMhpoRJDYybDnGziO023gqdUsQY0k+KCAZBSQjAKSqd1pVt4zH1VwdEdbEY2Lns0XP/H34jedxhX4igKSUUAyChgBfSJOfGTZ0R1tRRQXMygltttapxy5U0IBySggGQUk0yfixEcXv1mHX/XxSsRHHfiKApJRQDIKGAF1EM2ELOMnTObu+/JFvEMByShgBHQS6p3XRf6S3nqjgGQUkIwCkmmvqZspwSJ/0Hm9UUAyCkhGASOgkUDs6i2CKiIyKxHmLu9OgfdxiqRbA18X/w3+m6OAZBSQjAJGwuSzJfYqomzBIcLTjhL0bhemk68ToIBkFJCMAvJp52VVxN0XmzKf+6gRL0Ef2I2TPYhlRgHJKCAZBYyEScP2a2lLZvd6hVBAMgoYCZNjkd3LFUYBySggGQWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJL/A3fF8C4KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iagoyNjY3CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC04IC04IDggOCBdIC9MZW5ndGggMTMxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTggLTggOCA4IF0gL0xlbmd0aCAxMzEKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtOCAtOCA4IDggXSAvTGVuZ3RoIDEzMQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago0NyAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNTA0MDgxMDUwMDdaKQo+PgplbmRvYmoKeHJlZgowIDQ4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDIxMjIxIDAwMDAwIG4gCjAwMDAwMTY4MDUgMDAwMDAgbiAKMDAwMDAxNjg0OCAwMDAwMCBuIAowMDAwMDE3MDc0IDAwMDAwIG4gCjAwMDAwMTcwOTUgMDAwMDAgbiAKMDAwMDAxNzExNiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDIgMDAwMDAgbiAKMDAwMDAwODAwOCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDc5ODcgMDAwMDAgbiAKMDAwMDAxNzIwOSAwMDAwMCBuIAowMDAwMDIwNDU5IDAwMDAwIG4gCjAwMDAwMjA3MTMgMDAwMDAgbiAKMDAwMDAyMDk2NyAwMDAwMCBuIAowMDAwMDA4NzM2IDAwMDAwIG4gCjAwMDAwMDg1MjEgMDAwMDAgbiAKMDAwMDAwODE5MSAwMDAwMCBuIAowMDAwMDA5Nzg5IDAwMDAwIG4gCjAwMDAwMDgwMjggMDAwMDAgbiAKMDAwMDAxNTUyMSAwMDAwMCBuIAowMDAwMDE1MzE0IDAwMDAwIG4gCjAwMDAwMTQ4ODEgMDAwMDAgbiAKMDAwMDAxNjU3NCAwMDAwMCBuIAowMDAwMDA5ODIxIDAwMDAwIG4gCjAwMDAwMDk5ODQgMDAwMDAgbiAKMDAwMDAxMDIyMSAwMDAwMCBuIAowMDAwMDEwNTQxIDAwMDAwIG4gCjAwMDAwMTA3MDMgMDAwMDAgbiAKMDAwMDAxMTExNyAwMDAwMCBuIAowMDAwMDExNDk3IDAwMDAwIG4gCjAwMDAwMTE4MDEgMDAwMDAgbiAKMDAwMDAxMjEyMyAwMDAwMCBuIAowMDAwMDEyNDQ1IDAwMDAwIG4gCjAwMDAwMTI1ODkgMDAwMDAgbiAKMDAwMDAxMjkyMCAwMDAwMCBuIAowMDAwMDEzMDkyIDAwMDAwIG4gCjAwMDAwMTMzODMgMDAwMDAgbiAKMDAwMDAxMzUzOCAwMDAwMCBuIAowMDAwMDEzODUwIDAwMDAwIG4gCjAwMDAwMTM5NzMgMDAwMDAgbiAKMDAwMDAxNDA2MyAwMDAwMCBuIAowMDAwMDE0MjY5IDAwMDAwIG4gCjAwMDAwMTQ1OTMgMDAwMDAgbiAKMDAwMDAyMDQzOCAwMDAwMCBuIAowMDAwMDIxMjgxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDggL1Jvb3QgMSAwIFIgL0luZm8gNDcgMCBSID4+CnN0YXJ0eHJlZgoyMTQzMgolJUVPRgo=", "image/svg+xml": ["\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2025-04-08T10:50:07.493979\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.9.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n"], "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["SGD_points = train_curve(lambda params: SGD(params, lr=0.5), comb_func, init=[0, 0])\n", "SGDMom_points = train_curve(lambda params: SGDMomentum(params, lr=1, momentum=0.9), comb_func, init=[0, 0])\n", "Adam_points = train_curve(lambda params: Adam(params, lr=0.2), comb_func, init=[0, 0])\n", "\n", "all_points = np.concatenate([SGD_points, SGDMom_points, Adam_points], axis=0)\n", "ax = plot_curve(comb_func, x_range=(-2, 2), y_range=(-2, 2), plot_3d=False, title=\"Steep optima\")\n", "ax.plot(SGD_points[:, 0], SGD_points[:, 1], color=\"red\", marker=\"o\", zorder=3, label=\"SGD\", alpha=0.7)\n", "ax.plot(SGDMom_points[:, 0], SGDMom_points[:, 1], color=\"blue\", marker=\"o\", zorder=2, label=\"SGDMom\", alpha=0.7)\n", "ax.plot(Adam_points[:, 0], Adam_points[:, 1], color=\"grey\", marker=\"o\", zorder=1, label=\"Adam\", alpha=0.7)\n", "ax.set_xlim(-2, 2)\n", "ax.set_ylim(-2, 2)\n", "plt.legend()\n", "plt.show()"]}, {"cell_type": "markdown", "id": "1045799d", "metadata": {"papermill": {"duration": 0.202604, "end_time": "2025-04-08T10:50:08.124982", "exception": false, "start_time": "2025-04-08T10:50:07.922378", "status": "completed"}, "tags": []}, "source": ["SGD first takes very small steps until it touches the border of the optimum.\n", "First reaching a point around $(-0.75,-0.5)$, the gradient direction has changed and pushes the parameters to $(0.8,0.5)$ from which SGD cannot recover anymore (only with many, many steps).\n", "A similar problem has SGD with momentum, only that it continues the direction of the touch of the optimum.\n", "The gradients from this time step are so much larger than any other point that the momentum $m_t$ is overpowered by it.\n", "Finally, Adam is able to converge in the optimum showing the importance of adaptive learning rates."]}, {"cell_type": "markdown", "id": "993346c9", "metadata": {"papermill": {"duration": 0.128813, "end_time": "2025-04-08T10:50:08.400910", "exception": false, "start_time": "2025-04-08T10:50:08.272097", "status": "completed"}, "tags": []}, "source": ["### What optimizer to take\n", "\n", "After seeing the results on optimization, what is our conclusion?\n", "Should we always use Adam and never look at SGD anymore?\n", "The short answer: no.\n", "There are many papers saying that in certain situations, SGD (with momentum) generalizes better where Adam often tends to overfit [5,6].\n", "This is related to the idea of finding wider optima.\n", "For instance, see the illustration of different optima below (credit: [Keskar et al., 2017](https://arxiv.org/abs/1609.04836)):\n", "\n", "
\n", "\n", "The black line represents the training loss surface, while the dotted red line is the test loss.\n", "Finding sharp, narrow minima can be helpful for finding the minimal training loss.\n", "However, this doesn't mean that it also minimizes the test loss as especially flat minima have shown to generalize better.\n", "You can imagine that the test dataset has a slightly shifted loss surface due to the different examples than in the training set.\n", "A small change can have a significant influence for sharp minima, while flat minima are generally more robust to this change.\n", "\n", "In the next tutorial, we will see that some network types can still be better optimized with SGD and learning rate scheduling than Adam.\n", "Nevertheless, Adam is the most commonly used optimizer in Deep Learning\n", "as it usually performs better than other optimizers, especially for deep\n", "networks."]}, {"cell_type": "markdown", "id": "9e161e7d", "metadata": {"papermill": {"duration": 0.134783, "end_time": "2025-04-08T10:50:08.672689", "exception": false, "start_time": "2025-04-08T10:50:08.537906", "status": "completed"}, "tags": []}, "source": ["## Conclusion\n", "\n", "In this tutorial, we have looked at initialization and optimization techniques for neural networks.\n", "We have seen that a good initialization has to balance the preservation of the gradient variance as well as the activation variance.\n", "This can be achieved with the Xavier initialization for tanh-based networks, and the Kaiming initialization for ReLU-based networks.\n", "In optimization, concepts like momentum and adaptive learning rate can help with challenging loss surfaces but don't guarantee an increase in performance for neural networks.\n", "\n", "\n", "## References\n", "\n", "[1] Glorot, Xavier, and Yoshua Bengio.\n", "\"Understanding the difficulty of training deep feedforward neural networks.\"\n", "Proceedings of the thirteenth international conference on artificial intelligence and statistics.\n", "2010.\n", "[link](https://proceedings.mlr.press/v9/glorot10a)\n", "\n", "[2] He, Kaiming, et al.\n", "\"Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.\"\n", "Proceedings of the IEEE international conference on computer vision.\n", "2015.\n", "[link](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html)\n", "\n", "[3] Kingma, Diederik P. & Ba, Jimmy.\n", "\"Adam: A Method for Stochastic Optimization.\"\n", "Proceedings of the third international conference for learning representations (ICLR).\n", "2015.\n", "[link](https://arxiv.org/abs/1412.6980)\n", "\n", "[4] Keskar, Nitish Shirish, et al.\n", "\"On large-batch training for deep learning: Generalization gap and sharp minima.\"\n", "Proceedings of the fifth international conference for learning representations (ICLR).\n", "2017.\n", "[link](https://arxiv.org/abs/1609.04836)\n", "\n", "[5] Wilson, Ashia C., et al.\n", "\"The Marginal Value of Adaptive Gradient Methods in Machine Learning.\"\n", "Advances in neural information processing systems.\n", "2017.\n", "[link](https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf)\n", "\n", "[6] Ruder, Sebastian.\n", "\"An overview of gradient descent optimization algorithms.\"\n", "arXiv preprint.\n", "2017.\n", "[link](https://arxiv.org/abs/1609.04747)"]}, {"cell_type": "markdown", "id": "e66882f3", "metadata": {"papermill": {"duration": 0.132989, "end_time": "2025-04-08T10:50:08.941029", "exception": false, "start_time": "2025-04-08T10:50:08.808040", "status": "completed"}, "tags": []}, "source": ["## Congratulations - Time to Join the Community!\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning\n", "movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/Lightning-AI/lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool\n", "tools we're building.\n", "\n", "### Join our [Discord](https://discord.com/invite/tfXFetEZxv)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself\n", "and share your interests in `#general` channel\n", "\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to\n", "[Lightning](https://github.com/Lightning-AI/lightning) or [Bolt](https://github.com/Lightning-AI/lightning-bolts)\n", "GitHub Issues page and filter for \"good first issue\".\n", "\n", "* [Lightning good first issue](https://github.com/Lightning-AI/lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/Lightning-AI/lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "[![Pytorch Lightning](){height=\"60px\" width=\"240px\"}](https://pytorchlightning.ai)"]}, {"cell_type": "raw", "metadata": {"raw_mimetype": "text/restructuredtext"}, "source": [".. customcarditem::\n", " :header: Tutorial 3: Initialization and Optimization\n", " :card_description: In this tutorial, we will review techniques for optimization and initialization of neural networks. When increasing the depth of neural networks, there are various challenges...\n", " :tags: Image,Initialization,Optimizers,GPU/TPU,UvA-DL-Course\n", " :image: _static/images/course_UvA-DL/03-initialization-and-optimization.jpg"]}], "metadata": {"jupytext": {"cell_metadata_filter": "colab,id,colab_type,-all", "formats": "ipynb,py:percent", "main_language": "python"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12"}, "papermill": {"default_parameters": {}, "duration": 113.983721, "end_time": "2025-04-08T10:50:10.806105", "environment_variables": {}, "exception": null, "input_path": "course_UvA-DL/03-initialization-and-optimization/notebook.ipynb", "output_path": ".notebooks/course_UvA-DL/03-initialization-and-optimization.ipynb", "parameters": {}, "start_time": "2025-04-08T10:48:16.822384", "version": "2.6.0"}}, "nbformat": 4, "nbformat_minor": 5}