{"cells": [{"cell_type": "markdown", "id": "de2298b3", "metadata": {"papermill": {"duration": 0.00375, "end_time": "2025-04-03T20:45:15.875369", "exception": false, "start_time": "2025-04-03T20:45:15.871619", "status": "completed"}, "tags": []}, "source": ["\n", "# PyTorch Lightning DataModules\n", "\n", "* **Author:** Lightning.ai\n", "* **License:** CC BY-SA\n", "* **Generated:** 2025-04-03T20:45:09.320955\n", "\n", "This notebook will walk you through how to start using Datamodules. With the release of `pytorch-lightning` version 0.9.0, we have included a new class called `LightningDataModule` to help you decouple data related hooks from your `LightningModule`. The most up-to-date documentation on datamodules can be found [here](https://lightning.ai/docs/pytorch/stable/data/datamodule.html).\n", "\n", "---\n", "Open in [![Open In Colab](){height=\"20px\" width=\"117px\"}](https://colab.research.google.com/github/PytorchLightning/lightning-tutorials/blob/publication/.notebooks/lightning_examples/datamodules.ipynb)\n", "\n", "Give us a \u2b50 [on Github](https://www.github.com/Lightning-AI/lightning/)\n", "| Check out [the documentation](https://lightning.ai/docs/)\n", "| Join us [on Discord](https://discord.com/invite/tfXFetEZxv)"]}, {"cell_type": "markdown", "id": "e7a6604d", "metadata": {"papermill": {"duration": 0.002518, "end_time": "2025-04-03T20:45:15.880567", "exception": false, "start_time": "2025-04-03T20:45:15.878049", "status": "completed"}, "tags": []}, "source": ["## Setup\n", "This notebook requires some packages besides pytorch-lightning."]}, {"cell_type": "code", "execution_count": 1, "id": "05169e36", "metadata": {"colab": {}, "colab_type": "code", "execution": {"iopub.execute_input": "2025-04-03T20:45:15.887498Z", "iopub.status.busy": "2025-04-03T20:45:15.886708Z", "iopub.status.idle": "2025-04-03T20:45:17.073847Z", "shell.execute_reply": "2025-04-03T20:45:17.072435Z"}, "id": "LfrJLKPFyhsK", "lines_to_next_cell": 0, "papermill": {"duration": 1.192483, "end_time": "2025-04-03T20:45:17.075700", "exception": false, "start_time": "2025-04-03T20:45:15.883217", "status": "completed"}, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.\u001b[0m\u001b[33m\r\n", "\u001b[0m"]}, {"name": "stdout", "output_type": "stream", "text": ["\r\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\r\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\r\n"]}], "source": ["! pip install --quiet \"torchmetrics>=1.0, <1.8\" \"pytorch-lightning >=2.0,<2.6\" \"matplotlib\" \"numpy <3.0\" \"torchvision\" \"torch>=1.8.1, <2.7\""]}, {"cell_type": "markdown", "id": "6c30b5dd", "metadata": {"papermill": {"duration": 0.002604, "end_time": "2025-04-03T20:45:17.081249", "exception": false, "start_time": "2025-04-03T20:45:17.078645", "status": "completed"}, "tags": []}, "source": ["## Introduction\n", "\n", "First, we'll go over a regular `LightningModule` implementation without the use of a `LightningDataModule`"]}, {"cell_type": "code", "execution_count": 2, "id": "ae5b803a", "metadata": {"execution": {"iopub.execute_input": "2025-04-03T20:45:17.089170Z", "iopub.status.busy": "2025-04-03T20:45:17.088144Z", "iopub.status.idle": "2025-04-03T20:45:20.372725Z", "shell.execute_reply": "2025-04-03T20:45:20.371388Z"}, "papermill": {"duration": 3.290903, "end_time": "2025-04-03T20:45:20.374751", "exception": false, "start_time": "2025-04-03T20:45:17.083848", "status": "completed"}, "tags": []}, "outputs": [], "source": ["import os\n", "\n", "import pytorch_lightning as pl\n", "import torch\n", "import torch.nn.functional as F\n", "from torch import nn\n", "from torch.utils.data import DataLoader, random_split\n", "from torchmetrics.functional import accuracy\n", "from torchvision import transforms\n", "\n", "# Note - you must have torchvision installed for this example\n", "from torchvision.datasets import CIFAR10, MNIST\n", "\n", "PATH_DATASETS = os.environ.get(\"PATH_DATASETS\", \".\")\n", "BATCH_SIZE = 256 if torch.cuda.is_available() else 64"]}, {"cell_type": "markdown", "id": "32bc7907", "metadata": {"lines_to_next_cell": 2, "papermill": {"duration": 0.002592, "end_time": "2025-04-03T20:45:20.380266", "exception": false, "start_time": "2025-04-03T20:45:20.377674", "status": "completed"}, "tags": []}, "source": ["### Defining the LitMNISTModel\n", "\n", "Below, we reuse a `LightningModule` from our hello world tutorial that classifies MNIST Handwritten Digits.\n", "\n", "Unfortunately, we have hardcoded dataset-specific items within the model,\n", "forever limiting it to working with MNIST Data. \ud83d\ude22\n", "\n", "This is fine if you don't plan on training/evaluating your model on different datasets.\n", "However, in many cases, this can become bothersome when you want to try out your architecture with different datasets."]}, {"cell_type": "code", "execution_count": 3, "id": "25617f95", "metadata": {"execution": {"iopub.execute_input": "2025-04-03T20:45:20.386984Z", "iopub.status.busy": "2025-04-03T20:45:20.386666Z", "iopub.status.idle": "2025-04-03T20:45:20.399408Z", "shell.execute_reply": "2025-04-03T20:45:20.398417Z"}, "papermill": {"duration": 0.017784, "end_time": "2025-04-03T20:45:20.400668", "exception": false, "start_time": "2025-04-03T20:45:20.382884", "status": "completed"}, "tags": []}, "outputs": [], "source": ["class LitMNIST(pl.LightningModule):\n", " def __init__(self, data_dir=PATH_DATASETS, hidden_size=64, learning_rate=2e-4):\n", " super().__init__()\n", "\n", " # We hardcode dataset specific stuff here.\n", " self.data_dir = data_dir\n", " self.num_classes = 10\n", " self.dims = (1, 28, 28)\n", " channels, width, height = self.dims\n", " self.transform = transforms.Compose(\n", " [\n", " transforms.ToTensor(),\n", " transforms.Normalize((0.1307,), (0.3081,)),\n", " ]\n", " )\n", "\n", " self.hidden_size = hidden_size\n", " self.learning_rate = learning_rate\n", "\n", " # Build model\n", " self.model = nn.Sequential(\n", " nn.Flatten(),\n", " nn.Linear(channels * width * height, hidden_size),\n", " nn.ReLU(),\n", " nn.Dropout(0.1),\n", " nn.Linear(hidden_size, hidden_size),\n", " nn.ReLU(),\n", " nn.Dropout(0.1),\n", " nn.Linear(hidden_size, self.num_classes),\n", " )\n", "\n", " def forward(self, x):\n", " x = self.model(x)\n", " return F.log_softmax(x, dim=1)\n", "\n", " def training_step(self, batch):\n", " x, y = batch\n", " logits = self(x)\n", " loss = F.nll_loss(logits, y)\n", " return loss\n", "\n", " def validation_step(self, batch, batch_idx):\n", " x, y = batch\n", " logits = self(x)\n", " loss = F.nll_loss(logits, y)\n", " preds = torch.argmax(logits, dim=1)\n", " acc = accuracy(preds, y, task=\"multiclass\", num_classes=10)\n", " self.log(\"val_loss\", loss, prog_bar=True)\n", " self.log(\"val_acc\", acc, prog_bar=True)\n", "\n", " def configure_optimizers(self):\n", " optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)\n", " return optimizer\n", "\n", " ####################\n", " # DATA RELATED HOOKS\n", " ####################\n", "\n", " def prepare_data(self):\n", " # download\n", " MNIST(self.data_dir, train=True, download=True)\n", " MNIST(self.data_dir, train=False, download=True)\n", "\n", " def setup(self, stage=None):\n", " # Assign train/val datasets for use in dataloaders\n", " if stage == \"fit\" or stage is None:\n", " mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)\n", " self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])\n", "\n", " # Assign test dataset for use in dataloader(s)\n", " if stage == \"test\" or stage is None:\n", " self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)\n", "\n", " def train_dataloader(self):\n", " return DataLoader(self.mnist_train, batch_size=128)\n", "\n", " def val_dataloader(self):\n", " return DataLoader(self.mnist_val, batch_size=128)\n", "\n", " def test_dataloader(self):\n", " return DataLoader(self.mnist_test, batch_size=128)"]}, {"cell_type": "markdown", "id": "df95ff1b", "metadata": {"papermill": {"duration": 0.002639, "end_time": "2025-04-03T20:45:20.406679", "exception": false, "start_time": "2025-04-03T20:45:20.404040", "status": "completed"}, "tags": []}, "source": ["### Training the ListMNIST Model"]}, {"cell_type": "code", "execution_count": 4, "id": "953ef0d8", "metadata": {"execution": {"iopub.execute_input": "2025-04-03T20:45:20.413177Z", "iopub.status.busy": "2025-04-03T20:45:20.412889Z", "iopub.status.idle": "2025-04-03T20:45:43.773587Z", "shell.execute_reply": "2025-04-03T20:45:43.772647Z"}, "papermill": {"duration": 23.36666, "end_time": "2025-04-03T20:45:43.775964", "exception": false, "start_time": "2025-04-03T20:45:20.409304", "status": "completed"}, "tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["GPU available: True (cuda), used: True\n"]}, {"name": "stderr", "output_type": "stream", "text": ["TPU available: False, using: 0 TPU cores\n"]}, {"name": "stderr", "output_type": "stream", "text": ["HPU available: False, using: 0 HPUs\n"]}, {"name": "stderr", "output_type": "stream", "text": ["/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `pytorch_lightning` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n"]}, {"name": "stderr", "output_type": "stream", "text": ["You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", "Failed to download (trying next):\n", "HTTP Error 404: Not Found\n", "\n", "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz\n", "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to /__w/11/s/.datasets/MNIST/raw/train-images-idx3-ubyte.gz\n"]}, {"name": "stderr", "output_type": "stream", "text": ["\r", " 0%| | 0/9912422 [00:00